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Abstract: The notion of rational F-contractions using α-admissibility of type-S in b-metric-like
spaces is introduced and the new fixed and periodic point theorems are proved for such mappings.
Numerical examples are illustrated to check the efficiency and applicability of our fresh findings.
It is also observed that some of the works reported in the literature are the particular cases of the
present study.
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1. Introduction

The notion of F-contraction mapping was introduced by Wardowski [1] in fixed point theory
and proved the related results. These results are the generalization of Banach contraction mapping
principle as well as various fixed point theorems appearing in the literature, for instance [2]. On the
other hand, Alghamdi et al. [3] found existence and uniqueness of fixed points for the mappings in
b-metric-like and partially ordered b-metric-like spaces.

The notion of α-admissible maps was introduced that provided a beautiful class of mapping by
Samet et al. [4] to observe the existence as well as uniqueness of fixed point. Using the same concept
or slight modifications, a lot of work has been done in that direction. Sintunavarat [5] introduced the
concept of α-admissible type-S in partial b-metric space and derived based fixed point results.

In the present paper, we introduce different types of rational F-contraction with α-admissibility
type-S and examine the existence and uniqueness of fixed points in b-metric-like spaces.

Throughout this paper, R, R+ and N are denoted as real numbers, nonnegative real numbers and
positive integers, respectively.

2. Prerequisites

Definition 1 ([1]). Let F be the family of all functions F : (0, ∞)→ R such that

(F1) F is strictly increasing, i.e., for all u, v ∈ R+ such that u < v, F(u) < F(v);
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(F2) for each sequence {αn}∞
n=1 of positive numbers, limα→0+ αn = 0 if and only if

limn→∞ F(αn) = −∞;
(F3) there exists k ∈ (0, 1) such that limα→0+ αkF(α) = 0.

Definition 2 ([1]). Suppose (U, d) is a metric space. The mapping T : U → U is said to be F-contraction on
(U, d) if there exist T ∈ F and τ > 0 such that

∀ u, v ∈ U, [d(Tu, Tv) > 0⇒ τ + F(d(Tu, Tv)) ≤ F(d(u, v))]. (1)

Definition 3. Let (U, d) be a metric space. A mapping T : U → U is said to be an F-weak contraction on
(U, d) if there exist T ∈ F and τ > 0 such that ∀ u, v ∈ U with Tu 6= Tv

τ + F(d(u, Tu)) ≤
(

F max
{

d(u, v), d(u, Tu)d(v, Tv)
d(u, Tv) + d(v, Tu)

2

})
. (2)

Definition 4 ([6]). Let U be a nonempty set, let k ≥ 1 be a given real number. A function d : U×U → [0, ∞)

is called a b-metric if the following conditions hold: ∀ u, v, w ∈ U.

(S1) d(u, v) = 0 if and only if u = v,
(S2) d(u, v) = d(v, u),
(S3) d(u, v) ≤ k[d(u, w) + d(z, w)].

Then, (U, d) is said to be a b-metric space. k ≥ 1 is the coefficient of (U, d).

Definition 5 ([7]). Let U be a nonempty set, a mapping σ : U ×U → R+ such that ∀ u, v, w ∈ U

(σ1) σ(u, v) = 0 implies u = v,
(σ2) σ(u, v) = σ(v, u),
(σ3) σ(u, v) ≤ σ(u, w) + σ(w, v).

Then (U, σ) is said to be a metric-like space.

Definition 6 ([3]). Let U be a nonempty set and a real number k ≥ 1 be given. A function σb : U ×U → R+

such that the following assertions hold ∀ u, v, w ∈ U :

(σb1) σb(u, v) = 0 implies u = v,
(σb2) σb(u, v) = σb(v, u),
(σb3) σb(u, v) ≤ k[σb(u, w) + σb(w, v)].

Then, (U, σb) is said to be a b-metric-like space.

Ref. [8] recommended that the converses of the below facts need not be held.

• Let U be a nonempty set and σb is b-metric-like on U such that the pair (U, σb) be
a b-metric-like space.

• In a b-metric-like space (U, σb), if u, v ∈ U and σb(u, v) = 0, then u = v, and σb(u, u) may be
positive for u ∈ U.

• It can be easily observed that every b-metric and partial b-metric spaces are b-metric-like spaces
with the same k.

Every b-metric-like σb on U generates a topology τσb whose base is the family of all open σb-balls
{Bσb(u, δ) : u ∈ U, δ > 0}, where {Bσb(u, δ) = {v ∈ U : |σb(u, v)− σb(u, u)| < δ}, ∀ u ∈ U and δ > 0.

Definition 7 ([3]). Let (U, σb) be a b-metric-like space with coefficient k, let {un} be any sequence in U and
u ∈ U. Then,

(i) {un} is called convergent to u w.r.t. τσb , if limn→∞ σb(un, u) = σb(u, u),
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(ii) {un} is called Cauchy sequence in (U, σb) if limn,m→∞ σb(un, um) exists (it is finite),
(iii) (U, σb) is called complete b-metric-like space if, for every Cauchy sequence {un} in U, there exists u ∈ U

such that
lim

n,m→∞
σb(un, um) = lim

n→∞
σb(un, u) = σb(u, u). (3)

It can be noted that the limit of a sequence may not be unique in b-metric-like spaces.

Let us discuss the notion of b-convergence, b-Cauchy sequence, b-continuity and b-completeness
in b-metric-like spaces.

Definition 8 ([9]). Let (U, σb) be a b-metric-like space. Then, a sequence {un} in U is called

(a) b-convergent if there exists u ∈ U such that σb(un, u)→ 0 as n→ ∞. In this case, we write lim
n→∞

un = u,
(b) b-Cauchy if σb(un, um)→ 0 as n, m→ ∞.

Each b-convergent sequence is b-Cauchy with a unique limit in b-metric-like spaces. The following
lemma is necessary to prove main results.

Lemma 1 ([9]). Let (U, σb) be a b-metric-like space with coefficient s ≥ 1 and let {un} and {vn} be
b-convergent to points u, v ∈ U, respectively. Then,

1
s2 σb(u, v) ≤ lim inf

n→∞
σb(un, vn) ≤ lim sup

n→∞
σb(un, vn) ≤ s2σb(u, v).

In particular, if u = v, then lim
n→∞

σb(un, vn) = 0. Moreover, for each z ∈ U, we have

1
s

σb(u, z) ≤ lim inf
n→∞

σb(un, z) ≤ lim sup
n→∞

σb(un, z) ≤ sσb(u, z).

Remark 1 ([10]). Let (U; σb) be a b-metric-like space and let T : U → U be a continuous mapping. Then,

lim
n→+∞

σb(un, u) = σb(u, u)⇒ lim
n→+∞

σb(Tun, Tu) = σb(Tu, Tu).

Definition 9 ([10]). Let (U, σU) and (V, σV) be two b-metric-like spaces.

(1) The space (U, σU) is b-complete if every b-Cauchy sequence in U is b-converges.
(2) A function T : U → V is b-continuous at a point u ∈ U if it is b-sequentially continuous at u, that is,

whenever {un} is b-convergent to u, {Tun} is b-convergent to Tu.

Many papers related to fixed point results in b-metric-like spaces appear in literature, some of
them are [3,7,10–13] and references therein.

The idea of α-admissibility was studied by [4] for the first time. After that, Ref. [5] extended this
concept as α-admissibility type-S in the light of metric spaces and b-metric spaces, respectively.

Definition 10 ([4,5]). For a nonempty set U, let α : U ×U → [0, ∞) and f : U → U are mappings. Then,
∀u, v ∈ U,

(i) we say that the mapping T is α-admissible mapping if

α(u, v) ≥ 1⇒ α(Tu, Tv) ≥ 1

and is denoted by the symbol P(U, α).
(ii) we say that the mapping T is α-admissible mapping of type S if

α(u, v) ≥ s⇒ α(Tu, Tv) ≥ s
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and is denoted by the symbol Ps(U, α), where s ≥ 1.

Definition 11 ([5]). Let U be a nonempty set. Suppose that α : U×U → [0, ∞) and T : U → U are mappings.
Then, ∀u ∈ U.

(i) T is said to be a weak α-admissible mapping if

α(u, Tu) ≥ 1⇒ α(Tu, TTu) ≥ 1,

and is denoted byWP(U, α)
(ii) T is said to be a weak α-admissible mapping of type S if

α(u, Tu) ≥ s⇒ α(Tu, TTu) ≥ s,

and is denoted byWPs(U, α), where s ≥ 1.

Ref. [5] presented some examples to show that the class of [] α-admissible mappings and the class
of α-admissible mappings of type S are independent; that is, P(X, α) 6= Ps(U, α).

Remark 2 ([5]). It is easy to see that the following assertions hold:

(i) α-admissibility⇒ weak α-admissibility, that is,

P(U, α) ⊆ WP(U, α),

(ii) α-admissibility type S⇒ weak α-admissibility of type S, that is,

Ps(U, α) ⊆ WPs(U, α).

3. Results

In this section, we investigate some fixed point results for rational F-contractions mapping with
α-admissibility type-S and for the classes ofWPs(U, α) and Ps(U, α) :

Fix(T) := {u ∈ U|Tu = u}.

In addition, for each elements u and v in a b-metric-like space (U, σb) with coefficient s ≥ 1. Let

F(∆s(u, v)) =max


σb(u, v), σb(u, Tu), σb(v, Tv),

σb(u, Tv) + σb(v, Tu)
2s

,
σb(u, Tu)σb(v, Tv)

1 + s[σb(u, v) + σb(u, Tv) + σb(v, Tu)]
,

σb(u, Tv)σb(u, v)
1 + sσb(u, Tu) + s3[σb(v, Tu) + σb(v, Tv)]


, (4)

where T is a self-mapping on U, we write ∆(u, v) instead of ∆s(u, v) when s = 1, i.e.,

F(∆(u, v)) =max


σb(u, v), σb(u, Tu), σb(v, Tv),

σb(u, Tv) + σb(v, Tu)
2

,
σb(u, Tu)σb(v, Tv)

1 + σb(u, v) + σb(u, Tv) + σb(v, Tu)
,

σb(u, Tv)σb(u, v)
1 + σb(u, Tu) + σb(v, Tu) + σb(v, Tv)


. (5)
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Definition 12. Let (U, σb) be a b-metric-like space with coefficient s ≥ 1, let α : U ×U → [0, ∞) be given
mappings. Then, T : U → U is called rational F-contraction if the following condition holds:

u, v ∈ U with α(u, v) ≥ s and σb(Tu, Tv) > 0⇒ τ + F(s3σb(Tu, Tv)) ≤ F(∆s(u, v)). (6)

We denote by Θs(U, α, F) the collection of all rational F-contractions on a b-metric-like space (U, σb) with
coefficient s ≥ 1.

Theorem 1. Let (U, σb) be a b-complete b-metric-like space with coefficient s ≥ 1, let α : U ×U → [0, ∞),
and T : U → U be given mappings. Suppose that the following conditions hold:

(S1) T ∈ Θs(U, α, F) ∩WSs(U, α),
(S2) there exists u0 ∈ U such that α(u0, Tu0) ≥ s,
(S3) α has a transitive property type S, that is, for u, v, w ∈ U,

α(u, v) ≥ s and α(v, w) ≥ s⇒ α(u, w) ≥ s.

(S4) T is b-continuous.

Then, Fix(T) 6= ∅.

Proof. By the given condition (S2), there exists u0 ∈ U such that

α(u0, Tu0) ≥ s.

Define the sequence {un} by un+1 = Tun. If there exists n0 ∈ N, such that un0 = un0+1, then
un0 ∈ Fix(T) and hence the proof is completed. Thus, we assume that un 6= un+1, for all n ∈ N.

It follows that
σb(un, un+1) > 0, ∀ n ∈ N.

Hence, we have
1
2s

σb(un, Tun) < σb(un, Tun), ∀ n ∈ N. (7)

Now, we need to prove that
lim

n→∞
σb(un, un+1) = 0. (8)

It follows from T ∈ WSs(U, α) and α(u0, Tu0) ≥ s that

α(u1, u2) = α(Tu0, TTu0) ≥ s. (9)

By induction, we obtain
α(un+1, un+2) ≥ s. (10)

As we have

F(σb(un+1, un+2)) = F(σb(Tun, Tun+1)) ≤ F(s3σb(Tun, un+1)), ∀ n ∈ N, (11)

it follows from T ∈ Θs(U, α, F) that the inequalities (6) and (11) imply that

τ + F(σb(Tun, Tun+1)) ≤ τ + F(s3σb(Tun, Tun+1)) ≤ F(∆s(un, un+1)) (12)
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for all n ∈ N. Note that, for each n ∈ N, we have

F(∆s(un, un+1))

= F

max



σb(un, Tun), σb(Tun, T2un),
σb(un, T2un) + σb(Tun, Tun)

2s
,

σb(un, Tun)σb(Tun, T2un)

1 + s[σb(un, Tun) + σb(un, T2un) + σb(Tun, Tun)]
,

σb(un, T2un)σb(un, Tun)

1 + sσb(un, Tun) + s3[σb(Tun, Tun) + σb(Tun, T2un)]





= F


max



σb(un, Tun), σb(Tun, T2un),
σb(un, Tun) + σb(Tun, T2un) + σb(Tun, un) + σb(un, Tun)

2s
,

σb(un, Tun)σb(Tun, T2un)

1 + s[σb(un, Tun) + σb(un, Tun) + σb(Tun, T2un) + σb(Tun, un) + σb(Tun, un)]
,

[σb(un, Tun) + σb(Tun, T2un)]σb(un, Tun)

1 + sσb(un, Tun) + s3[σb(Tun, un) + σb(un, Tun) + σb(Tun, T2un)]





= F


max



σb(un, Tun), σb(Tun, T2un),
3σb(un, Tun) + σb(Tun, T2un)

2s
,

σb(un, Tun)σb(Tun, T2un)

1 + s[4σb(un, Tun) + σb(Tun, T2un)]
,

[σb(un, Tun) + σb(Tun, T2un)]σb(un, Tun)

1 + sσb(un, Tun) + s3[2σb(un, Tun) + σb(Tun, T2un)]




< F

(
max

{
σb(un, Tun), σb(Tun, T2un)

})
.

(13)

If ∆s(un, Tun) = σb(Tun, T2un) for some n ∈ N, then inequality (12) implies that

τ + F(σb(Tun, T2un)) ≤ τ + F(s3σb(Tun, T2un)) < F(σb(Tun, T2un)),

which contradicts τ > 0. Hence,

∆s(un, un+1) = σb(un, Tun), ∀ n ∈ N.

From (12), we have

τ + F(σb(Tun, T2un)) ≤τ + F(s3σb(Tun, T2un))

<F(σb(un, Tun))
(14)

for all n ∈ N. Therefore, the above inequality becomes

F(σb(Tun, T2un)) < F(σb(un, Tun))− τ, (15)

which is equivalent to

F(σb(un+1, Tun+1)) < F(σb(un, Tun))− τ, ∀ n ∈ N.
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Iteratively, we find that

F(σb(un, Tun)) ≤ F(σb(un−1, Tun−1))− τ

≤ F(σb(un−2, Tun−2))− 2τ

≤ F(σb(un−3, Tun−3))− 3τ

...

≤ F(σb(u0, Tu0))− nτ.

(16)

From (16), we obtain lim
n→∞

F(σb(un, Tun)) = −∞, which, together with (F2), gives

lim
n→∞

σb(un, Tun) = lim
n→∞

σb(un, un+1) = 0. (17)

Using the method of contradiction, let us prove that {un} is a b-Cauchy sequence in U. Assume
that there exists ε0 > 0 and sequences {up(k)} and {uq(k)} of {un} such that p(k) > q(k) ≥ k and

σb(up(k), uq(k)) ≥ ε0 (18)

and q(k) is the smallest number such that (18) holds:

σb(up(k), uq(k)−1) < ε0. (19)

By (σb3), (18) and (19), we get

ε0 ≤ σb(up(k), uq(k)) ≤ sσb(up(k), uq(k)−1) + sσb(uq(k)−1, uq(k))

< sε0 + sσb(uq(k)−1, uq(k)).
(20)

Owing to (17), there exists N1 ∈ N such that

σb(up(k)−1, Tup(k)−1) < ε0, σb(uq(k), Tuq(k)) < ε0, σb(up(k), Tup(k)) < ε0, ∀ k > N1, (21)

which together with (20) shows

σb(up(k), uq(k)) < 2sε0, ∀ k > N1, (22)

hence
F(σb(up(k), uq(k))) < F(2sε0), ∀ k > N1, (23)

From (17), (18) and (21), we get

1
2s

σb(up(k), Tup(k)) <
ε0

2s
< σb(up(k), uq(k)) ∀ k > N1. (24)

Using the triangular inequality, we deduce that

σb(up(k), uq(k)) ≤ sσb(up(k), up(k)+1) + s2[σb(up(k)+1, uq(k)+1) + σb(uq(k)+1, uq(k))]. (25)

Passing to the limit k→ +∞ in (25), by (16) yields

ε0

s2 ≤ lim sup
k→∞

σb(up(k)+1, uq(k)+1), (26)

hence there exists N2 ∈ N, such that σb(up(k)+1, uq(k)+1) > 0 for k > N2,
i.e., σb(Tup(k), Tuq(k)) > 0. Using the transitivity property type S of α, we get
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α(up(k), uq(k)) ≥ s.

Since T ∈ Θs(U, α, F), we have

τ + F(σb(up(k)+1, uq(k)+1)) ≤τ + F(s3σb(Tup(k), Tuq(k)))

≤F(∆s(up(k), uq(k))).
(27)

By (6), (21), (23), and (25), we obtain

F(∆s(up(k), uq(k)))

= F


max



σb(up(k), uq(k)), σb(up(k), Tup(k)), σb(uq(k), Tuq(k)),
σb(up(k), Tuq(k)) + σb(uq(k), Tup(k))

2s
,

σb(up(k), Tup(k))σb(uq(k), Tuq(k))

1 + s[σb(up(k), uq(k)) + σb(up(k), Tuq(k)) + σb(uq(k), Tup(k))]
,

σb(up(k), Tuq(k))σb(up(k), uq(k))

1 + sσb(up(k), Tup(k)) + s3[σb(uq(k), Tup(k)) + σb(uq(k), Tuq(k))]





≤ F


max



σb(up(k), uq(k)), σb(up(k), Tup(k)), σb(uq(k), Tuq(k)),
σb(up(k), uq(k)) + σb(uq(k), Tuq(k)) + σb(uq(k), up(k)) + σb(up(k), Tup(k))

2s
,

σb(up(k), Tup(k))σb(uq(k), Tuq(k))

1 + s[2σb(up(k), uq(k)) + σb(uq(k), Tuq(k)) + σb(uq(k), up(k)) + σb(up(k), Tup(k))]
,

σb(up(k), uq(k)+1)σb(up(k), uq(k))

1 + sσb(up(k), Tup(k)) + s3[σb(uq(k), up(k)) + σb(up(k), Tup(k)) + σb(uq(k), Tuq(k))]





≤ F

max



2sε0, σb(up(k), Tup(k)), σb(uq(k), Tuq(k)),
2sε0 + ε0 + 2sε0 + ε0

2s
,

σb(up(k), Tup(k))σb(uq(k), Tuq(k))

1 + s[2sε0 + 2sε0 + ε0 + 2sε0 + ε0]
,

(2sε0 + ε0)(2sε0)

1 + sσb(up(k), Tup(k)) + s3[2sε0 + σb(up(k), Tup(k)) + σb(uq(k), Tuq(k))]





(28)

for k > max{N1, N2}. Passing to the k→ +∞ in (28) and using (27), we obtain

τ + F(ε0) ≤ F(ε0), (29)

which contradicts τ > 0. Therefore, {un} is a b-Cauchy sequence in U. Now, (U, σb) is a b-completeness
b-metric-like space; there exists u∗ ∈ U such that

σb(u∗, u∗) = lim
n→∞

σb(un, u∗) = lim
n,m→∞

σb(un, um) = 0. (30)

By b-continuity of T, we get
lim

n→∞
σb(Tun, Tu∗) = 0.

From the triangle inequality, we have

σb(u∗, Tu∗) ≤ s[σb(u∗, Tun) + σb(Tun, Tu∗)] ∀ n ∈ N. (31)

Passing to the limit as n→ ∞ in the above inequality, we obtain

σb(u∗, Tu∗) = 0.

Then, Tu∗ = u∗. This shows that Fix(T) 6= ∅.

Considering different cases of condition (6) in Theorem 1, we have the following
contraction results.
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(I) Take F(α) = ln α (α > 0 ) and τ = ln( 1
λ ) where λ ∈ (0, 1), then

∀ u, v ∈ U with α(u, v) ≥ s and σb(Tu, Tv) > 0⇒ s3σb(Tu, Tv)

≤ λ∆s(u, v).
(32)

(II) Taking F(α) = ln α + α (α > 0 ) and τ = ln( 1
λ ) where λ ∈ (0, 1), then

∀ u, v ∈ U with α(u, v) ≥ s and σb(Tu, Tv) > 0⇒ s3σb(Tu, Tv))es3σb(Tu,Tv)−∆s(u,v)

≤ λ∆s(u, v).
(33)

(III) Take F(α) = − 1√
α

(α > 0 ) and τ = λ where λ > 0, then

∀ u, v ∈ U with α(u, v) ≥ s and σb(Tu, Tv) > 0⇒ s3σb(Tu, Tv))

≤ 1
(1 + λ

√
∆s(u, v))2

∆s(u, v).
(34)

(IV) Taking F(α) = ln(α2 + α) (α > 0 ) and τ = ln( 1
λ ) where λ > 0, then

∀ u, v ∈ U with α(u, v) ≥ s and

σb(Tu, Tv) > 0⇒ s3σb(Tu, Tv))[s3σb(Tu, Tv) + 1]

≤ λ∆s(u, v)[∆s(u, v) + 1].

(35)

Now, we verify Theorem 1 by the two following examples:

Example 1. Let U = [0, 1] and σb : U ×U → [0, ∞) be defined by

σb(u, v) = (max{u, v})2 , ∀ u, v ∈ U.

Then, (U, σb) is a b-complete b-metric-like space with constant s = 2. Define mappings T : U → U and
α : U ×U → [0, ∞) by

α(u, v) =

{
1 + eu+v, u, v ∈ [0, 1],

ln(2u + 3), otherwise,
and T(u) =


u
8

, u, v ∈ [0, 1),
1

32
, if u = 1.

Now, we need to show that T ∈ Θs(U, α, F).

Proof. Supposing that u, v ∈ U, so that α(u, v) ≥ s = 2. Defining the function F(α) = ln(α) for
α ∈ R+, then we get

τ + F(s3σb(Tu, Tv)) ≤ F(∆s(u, v))⇔ ln
∆s(u, v)

8σb(Tu, Tv)
≥ τ. (36)

We distinguish it into four cases:
Case I: For u = 1 and v ∈ [0, 1], we have

8σb(Tu, Tv) = 8σb

(
1

32
, Tv

)
= 8


1

1024
, v ∈ [0,

1
4
]

v2

64
, v ∈ (

1
4

, 1)
1

1024
, v = 1

=


1

128
, v ∈ [0,

1
4
]

v2

8
, v ∈ (

1
4

, 1)
1

128
, v = 1
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and

∆s(u, v) = max


σb(u, v), σb(v, f v), σb(u, Tu),

σb(u, Tv) + σb(v, Tu)
2s

,
σb(u, Tu)σb(v, Tv)

1 + s[σb(u, v) + σb(u, Tv) + σb(v, Tu)]
,

σb(u, Tv)σb(u, v)
1 + sσb(u, Tu) + s3[σb(v, Tu) + σb(v, Tv)]



= max



u2, v2, u2,
(max{u, Tv})2 + (max{v, Tu})2

4
,

u2v2

1 + 2[u2 + (max{u, Tv})2 + (max{v, Tx})2]
,

(max{u, Tv})2u2

1 + 2u2 + 8[(max{v, Tu})2 + v2]


= 1.

(37)

Therefore, from (37), we get

∆s(u, v)
8σb(Tu, Tv)

=


128, v ∈ [0,

1
4
]

8
v2 , v ∈ (

1
4

, 1)

128, v = 1.

(38)

Case II: For u < 1 and v = 1, we have

8σb(Tu, Tv) = 8σb

(
Tu,

1
32

)
= 8


1

1024
, u ∈ [0,

1
4
]

u2

64
, u ∈ (

1
4

, 1)
1

1024
, u = 1

=


1

128
, u ∈ [0,

1
4
]

u2

8
, u ∈ (

1
4

, 1)
1

128
, u = 1

and
∆s(u, v) = 1.

Hence, we get

∆s(u, v)
8σb(Tu, Tv)

=


128, u ∈ [0,

1
4
]

8
u2 , u ∈ (

1
4

, 1)

128, u = 1.

(39)

Case III: For u < v < 1, we have

8σb(Tu, Tv) = 8σb

(u
8

,
v
8

)
= 8

{
v2

64

}
=

v2

8
, and ∆s(u, v) = v2.

Hence, we get
∆s(u, v)

8σb(Tu, Tv)
= 8. (40)

Case VI: For v ≤ u < 1, we have

8σb(Tu, Tv) = 8σb

(u
8

,
v
8

)
= 8

{
u2

64

}
=

u2

8
, and ∆s(u, v) = u2.

Hence, we get
∆s(u, v)

8σb(Tu, Tv)
= 8, (41)
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if 0 < τ ≤ ln 8 and from the Equations (38)–(41), we obtain ln
∆s(u, v)

8σb(Tu, Tv)
≥ τ. This implies that (6)

holds and thus T ∈ Θs(U, α, F). It is easy to see that T ∈ WSs(U, α). Indeed, if u ∈ U is such that

α(u, Tu) ≥ s = 2,

then u, Tu ∈ [0, 1). This implies that TTu ∈ [0, 1) and hence

α(Tu, TTu) ≥ s.

In addition, we can see that T is b-continuous and there is u0 = 1 such that

α(u0, Tu0) = α(1, T(1)) = α(1,
1

32
)

= 1 + e

(
1+

1
32

)
≥ 2 = s.

Hence, all the conditions of Theorem 1 are fulfilled and Fix(T) 6= ∅. This example is verified that
0 ∈ Fix(T).

Example 2. Consider U = {0, 1, 2}. Let σb : U ×U → [0, ∞) be defined by

σb(0, 0) = 0, σb(1, 1) =
1
4

, σb(2, 2) =
5
2

, σb(0, 1) = σb(1, 0) =
1
2

,

σb(0, 2) = σb(2, 0) =
9
2

, σb(1, 2) = σb(2, 1) = 5.

It is clear that (U, σb) is a b-complete b-metric like space with constant s = 17
8 . The mappings T : U → U

and α : U ×U → [0, ∞) defined by

T0 = 0, T1 = 0, T2 = 1,

and

α(u, v) =

{
sinh(u + v) + euv + 5

4 , u,∈ [0, 1]
ln(5u + 3), otherwise.

Now, we need to prove that T ∈ Θs(U, α, F).

Proof. Supposing that u, v ∈ U, so that α(u, v) ≥ s = 17
4 . Define the function F(α) = −1

α + α for
α ∈ R+, and τ = 1

10 .
Now, σb(T0, T0) = σb(T0, T1) = 0, so it can be distinguished in three cases:

Case I: For u = 0 and v = 2,

F(∆s(0, 2)) = F


max



σb(0, 2), σb(2, T2), σb(0, T0),
σb(0, T2) + σb(2, T0)

2s
,

σb(0, T0)σb(2, T2)
1 + 17

8 [σb(0, 2) + σb(0, T2) + σb(2, T0)]
,

σb(0, T2)σb(0, 2)

1 + 17
8 σb(0, T0) +

(
17
8

)3
[σb(2, T0) + σb(2, T2)]




= F

(
max

{
9
2

, 5, 0,
5
4

, 0, 0.02
})

= 4.8

(42)
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and

τ + F(s3σb(Tu, Tv)) =
1

10
+ F

((
17
8

)3
σb(T0, T2)

)
= 4.58.

(43)

Therefore, from (42) and (43), inequality (6) was satisfied.
In addition, it has been observed that u = 1 and v = 2 was similar to case I, since σb(T0, T2) =

σb(T1, T2) = σb(0, 1).
Case II: For u = 2 and v = 2,

F(∆s(2, 2)) = F


max



σb(2, 2), σb(2, T2), σb(2, T2),
σb(2, T2) + σb(2, T2)

2s
,

σb(2, T2)σb(2, T2)
1 + 17

8 [σb(2, 2) + σb(2, T2) + σb(2, T2)]
,

σb(2, T2)σb(2, 2)

1 + 17
8 σb(2, T2) +

(
17
8

)3
[σb(2, T2) + σb(2, T2)]




= F

(
max

{
5
2

, 5, 5,
5
2

,
9

29
,

29
250

})
= 4.8

(44)

and

τ + F(s3σb(Tu, Tv)) =
1

10
+ F

((
17
8

)3
σb(T2, T2)

)
= 2.07.

(45)

Therefore, from (44) and (45), inequality (6) was satisfied.
Case III: For u = 2 and v ∈ (0, 1), it is obvious.

(a) For u = 2 and v = 0, it follows as Case I.
(b) For u = 2 and v = 1, it follows as Case II.

This implies that (6) holds for all the cases—thus f ∈ Θs(U, α, F). It is easy to see that f ∈
WSs(U, α). Indeed, if u ∈ U is such that

α(u, Tu) ≥ s =
17
8

,

then u, Tu ∈ [0, 1). This implies that TTu ∈ [0, 1) and hence

α(Tu, TTu) ≥ s.

In addition, we can see that T is b-continuous and there is u0 = 1 such that

α(u0, Tu0) = α(1, T1) = α(1, 0)

= sinh(1 + 0) + e0 +
5
4

≥ 17
8

= s.

All the requirements of Theorem 1 are satisfied. Hence, it can be concluded that Fix(T) 6= ∅.
In this example, it shows that that 0 ∈ Fix(T).

In the following theorem, we derive fixed point results by replacing assumption (S4) of Theorem 1
by αs-regularity of U.
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Theorem 2. Let (U, σb) be a b-complete b-metric-like space with coefficient s ≥ 1, let α : U ×U → [0, ∞),
and T : U → U be a rational F contraction mapping with α-admissibility type-S. Again, assume the
following conditions:

(S1) T ∈ Θs(U, α, F) ∩WSs(U, α),
(S2) there exists u0 ∈ U such that α(u0, Tu0) ≥ s,
(S3) α has a transitive property type S,
(S4) U is αs-regular, that is if {un} is a sequence in U such that

α(un, un+1) ≥ s,

for all n ∈ N and un → u ∈ U as n→ ∞, then α(un, u) ≥ s, for all n ∈ N.

Then, Fix(T) 6= ∅.

Proof. Following the proof in Theorem 1, we obtain that {un} is a b-Cauchy sequence in the b-complete
b-metric-like space (U, σb). By b-completeness of U, there exists u ∈ U such that

lim
n→∞

σb(un, u) = 0, (46)

that is, un → u as n→ ∞. By αs-regularity of U, we have

α(un, u) ≥ s,

for all n ∈ N. It follows from T ∈ Θs(U, α, F) that

τ + F(σb(Tun, Tu)) ≤ τ + F(s3σb(Tun, Tu)) ≤ F(∆s(un, u)), (47)

where

∆s(un, u) = max


σb(un, u), σb(un, Tun), σb(u, Tu),

σb(un, Tu) + σb(Tun, u)
4k

,
σb(un, Tun)σb(u, Tu)

1 + σb(un, u)
,

σb(un, Tun)σb(u, Tu)
1 + σb(Tun, Tu)

1 + σb(u, Tun)

1 + σb(un, Tu)
σb(u, Tun)


. (48)

Taking the limit supremum as n→ ∞ in (48) and using Lemma (1), we get

τ + F(σb(u, Tu)) ≤ τ + F(s2σb(u, Tu))

= τ + F
(

s3 1
s

σb(u, Tu)
)

≤ τ + F
(

s3 lim sup
n→∞

σb(un+1, Tu)
)

≤ F
(

lim sup
n→∞

∆s(un, u)
)

≤ F(σb(u, Tu)),

which is a contradiction since τ > 0, which is possible only if F(σb(u, Tu)) = 0. It follows that
σb(u, Tu) = 0, equivalently, u = Tu and thus Fix(T) 6= ∅. This completes the proof.

Next, we use Remark 2 to establish the following results for the class Ss(U, α).

Corollary 1. Supposing all the conditions of Theorem 1 are fulfilled, except the condition (S1), i.e.,
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(Ŝ1) T ∈ Θs(U, α, F) ∩ Ss(U, α),
(S2) there exists u0 ∈ U such that α(u0, Tu0) ≥ s,
(S3) α has a transitive property type S,
(S4) T is b-continuous.

Then, Fix(T) 6= ∅.

Corollary 2. Suppose all the conditions of Corollary 1 are satisfied, apart from the condition (S4), i.e.,

(Ŝ1) T ∈ Θs(U, α, F) ∩ Ss(U, α),
(S2) there exists u0 ∈ U such that α(u0, Tu0) ≥ s,
(S3) α has a transitive property type S,
(Ŝ4) U is αs-regular.

Then, Fix(T) 6= ∅.

4. Periodic Point Results

Now, we discuss periodic point theorems for self-mappings on a b-metric-like space for which the
following definition is required.

Definition 13 ([14]). A mapping T : U → U is said to have the property-(P) if Fix(Tn)= Fix(T),
for every n ∈ N.

Theorem 3. Let (U, σb) be a b-complete b-metric-like space with coefficient s ≥ 1, let α : U ×U → [0, ∞),
and T : U → U be given mappings. Suppose that the following conditions hold:

(S1) T ∈ Θs(U, α, F) ∩WSs(U, α);
(S2) there exists u0 ∈ U such that α(u0, Tu0) ≥ s;
(S3) α has a transitive property type S,
(S4) T is b-continuous;
(S5) If z ∈ Fix(Tn) and z /∈ Fix(T), then α(Tn−1z, Tnz) ≥ s.

Then, Fix(T) has propertv-(P).

Proof. Following Theorem 1, we have Tu∗ = u∗. This shows that Fix(Tn)=Fix(T) for n = 1. Let n > 1
and assume, by contradiction, that z ∈ Fix(Tn) and z /∈ Fix(T), such that σb(z, Tz) ≥ 0. Now, applying
(S5) and (11), we have

F(σb(z, Tz)) ≤ F(σb(T(Tn−1z), T2(Tn−1z)))

≤ F(s3σb(T(Tn−1z), T2(Tn−1z)))

≤ F(∆s(Tn−1z, Tnz))

(49)

and, by using the inequality (12) and (49), we get

τ + F(σb(z, Tz)) ≤ τ + F(σb(T(Tn−1z), T2(Tn−1z)))

≤ τ + F(s3σb(T(Tn−1z), T2(Tn−1z)))

≤ F(∆s(Tn−1z, Tnz))

≤ F(σb(Tn−1z, Tnz)).

(50)

Hence, the above inequality turns into

F(σb(z, Tz)) < F(σb(Tn−1z, Tnz))− τ. (51)
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Iteratively, we find that

F(σb(z, Tz)) ≤ F(σb(Tn−1z, Tnz))− τ

≤ F(σb(Tn−2z, Tn−1z))− 2τ

≤ F(σb(Tn−3z, Tn−2z))− 3τ

...

≤ F(σb(z, Tz))− nτ.

(52)

From (52), we obtain lim
n→∞

F(σb(z, Tz)) = −∞, which together with (F2) gives

lim
n→∞

σb(z, Tz) = 0, (53)

which implies that σb(z, Tz) = 0. Hence, Fix(Tn) = Fix(T),

5. Application to First-Order Periodic Boundary Value Problem

Consider the first-order periodic boundary value problem{
u′(t) = T(t, u(t)), t ∈ I = [0, T],
u(0) = u(T),

(54)

where T > 0 and T : I ×R → R is a continuous function. We prove an existence theorem for the
solution of (54) as an application of Theorem 1. Consider the space

F = C(I,R) := {u : I → R | u is continuous on I}.

Define σb : U ×U → R+ by

σb(u, v) = sup
t∈[0,τ]

(|u(t)|+ |v(t)|)2 ∀ u, v ∈ F . (55)

Obviously, (F , σb, 2) is a b-complete b-metric like space. Then, (F , σb, 2) is a b-complete b-metric
like space. This problem (54) is equivalent to the integral equation

u(t) =
∫ T

0
G(t, s)[T(s, u(s)) + λu(s)] ds, for all t ∈ [0, T], (56)

where G(t, s) is the Green function given by

G(t, s) =

{
eλ(T+s−t)

eλT−1 , 0 ≤ s < t ≤ T,
eλ(s−t)

eλT−1 , 0 ≤ t < s ≤ T.

Define the mapping T : C(I,R)→ C(I,R) by

Tu(t) =
∫ T

0
G(t, s)[T(s, u(s)) + λu(s)] ds, for all t ∈ I. (57)

Note that, if u∗ ∈ C1(I,R) is a fixed point of T, then u∗ ∈ C1(I,R) is a solution of (54). Next, we
give the following notions which are required to complete this section.

Definition 14.

1. A solution to (54) is a function u ∈ C1(I,R) satisfying conditions in (54).
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2. A lower solution for (54) is a function γ ∈ C1(I,R) such that{
γ′(t) ≤ T(t, γ(t)), for t ∈ I,
γ(0) ≤ γ(T).

3. An upper solution for (54) is a function β ∈ C1(I,R) such that{
β′(t) ≥ T(t, β(t)), for t ∈ I,
β(0) ≥ β(T).

Theorem 4. Assuming that the following assertions hold

(H1) T : I ×R→ R is continuous,
(H2) A nondecreasing function ξ(k, ·), ∀ k ∈ [0, τ], i.e.,

u, v ∈ R, u ≤ v ⇒ ξ(r, u) ≤ ξ(r, v);

(H3) there exists u0 ∈ U such that ξ(u0(t), Tu0(t)) ≥ s for all t ∈ I,
(H4) for each t ∈ I and (u, v) ∈ U, ξ(u(t), v(t)) ≥ s

implies that ξ(Tu(t), Tv(t)) ≥ s,
(H5) for each t ∈ I, if {un} is a sequence in U such that un → u in U and ξ(un(t), un+1(t)) ≥ 0, for all

n ∈ N, then
ξ(un(t), u(t)) ≥ 0, ∀n ∈ N,

(H6) there exist λ > 0, such that for (u, v) ∈ U and t ∈ I with ξ(u, v) ≥ 0,

0 ≤ |T(t, u) + λu(t)|+ |T(t, v) + λv(t)| ≤ 3λ

4
∆s(u, v),

where

∆s(u, v) =max



(|u|+ |v|)2, (|u|+ |Tu|)2, (|v|+ |Tv|)2,
(|u|+ |Tv|)2 + (|v|+ |Tu|)2

2s
,

(|u|+ |Tu|)2(|v|+ |Tv|)2

1 + s[(|u|+ |v|)2 + (|u|+ |Tv|)2 + (|v|+ |Tu|)2]
,

(|u|+ |Tv|)2(|u|+ |v|)2

1 + s(|u|+ |Tu|)2 + s3[(|v|+ |Tu|)2 + (|v|+ |Tv|)2]



1
2

,

(H7) there exist β ∈ U, a lower solution of (54) such that for all t ∈ I,

ξ(β(t), Tβ(t)) ≥ 0.

Then, the existence of a lower solution for (54) implies the existence of a unique solution of (54). Then,
u∗ ∈ C(I,R) is a solution of the integral Equation (56).

Proof. From (H1)-(H2), it follows that f is continuous and non-decreasing mapping. In addition, for
(57), there exists u0 ∈ f such that u0 ≤ f u0. For all t ∈ [0, τ], and conditions (H6) and (56), we get
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σb(T(u), T(v))

= sup
p∈[0,τ]

(|T(u)|+ |T(v)|)2

= sup
t∈[0,τ]

(∣∣∣∣∫ τ

0
G(t, s)(T(t, u) + λu(t))dr

∣∣∣∣+ ∣∣∣∣∫ τ

0
G(t, s)(T(t, v) + λv(t))dr

∣∣∣∣)2

≤ sup
t∈[0,τ]

(∫ τ

0
G(t, s)|(T(t, u) + λu(t))|dr +

∫ τ

0
G(t, s) |(T(t, v) + λv(t))| dr

)2

= sup
t∈[0,τ]

(∫ τ

0
G(t, s)(|(T(t, u) + λu(t))|+ |(T(t, v) + λv(t))|)dr

)2

≤ sup
t∈[0,τ]

(∫ τ

0
G(t, s)(∆s(u, v))dr

)2

≤ sup
t∈[0,τ]

( ∫ τ

0
G(t, s)dr

)2

×


3λ

4
max



(|u|+ |v|)2, (|u|+ |Tu|)2, (|v|+ |Tv|)2,
(|u|+ |Tv|)2 + (|v|+ |Tu|)2

2s
,

(|u|+ |Tu|)2(|v|+ |Tv|)2

1 + s[(|u|+ |v|)2 + (|u|+ |Tv|)2 + (|v|+ |Tu|)2]
,

(|u|+|Tv|)2(|u|+|v|)2

1+s(|u|+|Tu|)2+s3[(|v|+|Tu|)2+(|v|+|Tv|)2]



1
2


2

≤
(

sup
t∈[0,τ]

1
eλT−1

([
1
λ

eλ(T+s−t)
]t

0
+

[
1
λ

eλ(s−t)
]T

t

))2

× 9λ

16


max



(|u|+ |v|)2, (|u|+ |Tu|)2, (|v|+ |Tv|)2,
(|u|+ |Tv|)2 + (|v|+ |Tu|)2

2s
,

(|u|+ |Tu|)2(|v|+ |Tv|)2

1 + s[(|u|+ |v|)2 + (|u|+ |Tv|)2 + (|v|+ |Tu|)2]
,

(|u|+ |Tv|)2(|u|+ |v|)2

1 + s(|u|+ |Tu|)2 + s3[(|v|+ |Tu|)2 + (|v|+ |Tv|)2]



1
2


2

.

This implies that

σb(T(u), T(v))

≤ 1
16
× 9λ

16


max



(|u|+ |v|)2, (|u|+ |Tu|)2, (|v|+ |Tv|)2,
(|u|+ |Tv|)2 + (|v|+ |Tu|)2

2s
,

(|u|+ |Tu|)2(|v|+ |Tv|)2

1 + s[(|u|+ |v|)2 + (|u|+ |Tv|)2 + (|v|+ |Tu|)2]
,

(|u|+ |Tv|)2(|u|+ |v|)2

1 + s(|u|+ |Tu|)2 + s3[(|v|+ |Tu|)2 + (|v|+ |Tv|)2]



1
2


2

.

Now, by considering the F-contraction function T : [0,+∞) into itself defined by:

F(α) =
−1
α

+ α, for t ≥ 0,
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we get

τ + F(s3σb(Tu, Tv))

≤ F

max


σb(u, v), σb(u, Tu), σb(v, Tv),

σb(u, Tv) + σb(v, Tu)
2s

,
σb(u, Tu)σb(v, Tv)

1 + s[σb(u, v) + σb(u, Tv) + σb(v, Tu)]
,

σb(u, Tv)σb(u, v)
1 + sσb(u, Tu) + s3[σb(v, Tu) + σb(v, Tv)]



 .

Now, we define the function α : U ×U → [0, ∞) by

α(u, v) =

{
1 + eu+v, if ξ(u(t), v(t)) ≥ 0, for (u, v) ∈ U, for all t ∈ [0, 1],
ln(2u + 3), otherwise .

(58)

From (6), we have

α(u, v) ≥ s and σb(Tu, Tv) > 0⇒ τ + F(s3σb(Tu, Tv)) ≤ F(∆s(u, v)), (59)

with coefficient s ≥ 1 and for each (u, v) ∈ U. From condition (H3) and (57), there exists u0 ∈ U such
that (u0, Tu0) ∈ U with α(u0, Tu0) ≥ s.

Again, by using (58) and condition (H2), the following assertions hold ∀ (u, v) ∈ U:

α(u, v) ≥ s =⇒ ξ(u(t), v(t)) ≥ s, ∀ t ∈ [0, 1]

=⇒ ξ(Tu(t), Tv(t)) ≥ s, ∀ t ∈ [0, 1]

=⇒ α(Tu, Tv) ≥ s, for (u, v) ∈ U.

Therefore, T is a α-admissibility of type -S. Next, from (57) and condition (H5), we get easily that{
for any sequence {un} in U if α(un, un+1) ≥ s,
∀ n ∈ N and un → u ∈ U as n→ ∞, then α(un, u) ≥ s, ∀ n ∈ N.

Finally, let β(t) be a lower solution for (54). We claim that β ≤ Tβ.
In fact,

β′(t) + λβ(t) ≤ T(t, β(t)) + λβ(t), t ∈ I.

Multiplying by eλt,
(β(t)eλt)′ ≤ [T(t, β(t)) + λβ(t)]eλt, t ∈ I,

and this gives us

β(t)eλt ≤ β(0) +
∫ t

0
[T(s, β(s)) + λβ(s)]eλs ds, t ∈ I. (60)

As β(0) ≤ β(T), the last inequality gives us

β(0)eλT ≤ β(T)eλT ≤ β(0) +
∫ T

0
[T(s, β(s)) + λβ(s)]eλsds,

and so

β(0) ≤
∫ T

0

eλs

eλT − 1
[T(s, β(s)) + λβ(s)] ds. (61)

The above equation and (60) give us

β(t)eλt ≤
∫ t

0

eλ(T+s)

eλT − 1
[T(s, β(s)) + λβ(s)] ds +

∫ T

t

eλs

eλT − 1
[T(s, β(s)) + λβ(s)] ds,
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and, consequently,

β(t) ≤
( ∫ t

0

eλ(T+s−t)

eλT − 1
ds +

∫ T

t

eλ(s−t)

eλT − 1

)
[T(s, β(s)) + λβ(s)] ds

=
∫ T

0
G(t, s)[T(s, β(s)) + λβ(s)] ds

= Tβ(t), for t ∈ I.

Therefore, from (57) and condition (H7), we get α(β, Tβ) > s. Finally, Theorem 1 gives that T has
a unique fixed point. Hence, the problem (54) has a unique solution.

Remark 3. Similarly, we can get the upper solution of (54) if we prove the upper condition in place of
a lower condition.

6. Conclusions

The notion of rational F-contractions using α-admissibility of type-S is considered in b-metric-like
spaces and the new fixed point and periodic point results are studied for such mappings. Some new
theorems have been established on existence of solutions for rational F-contractions mapping with
α-admissibility type-S, for the classesWPs(X, α) and Ps(X, α). Numerical examples are illustrated
in order to check the effectiveness and applicability of results. Furthermore, as an application to our
results, the solution of first-order periodic boundary value problem is discussed.
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