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Abstract: Owing to the notion of a complex-valued metric space, we prove fixed point results,
which generalize some common fixed point results under contractive condition for rational expression
in the context of complex-valued metric spaces. In application, we present a homotopy result to apply
the results obtained herein.

Keywords: complex valued metric space; fuzzy mappings; fixed point; common fixed point;
cauchy sequence; contractive condition

MSC: 26A33; 34A08; 35B40

1. Introduction and Preliminaries

Fixed point theory has shown the importance of theoretical subjects, which are directly applicable
in different applied fields of science. In particular, it plays an important role in the investigation of
existence of solutions to differential and integral equations, which direct the behaviour of several
real life problems for which the existence of solution is critical. In 1922, Banach provided a general
iterative method to construct a fixed point result and proved its uniqueness under linear contraction in
complete metric spaces [1]. Researchers solved various types of concrete problems with the help of
Banach contraction principal (for instance, we refer the readers to [2–7]).

Nadler [8] generalized the Banach contraction technique to multivalued mappings, which are
further extended by researchers in the recent years (see [9,10]). Heilpern [11] introduced the concept of
fuzzy mappings to extend Banach fixed point technique in the setting of metric linear spaces.
Many researchers extended the work of Heilpern and obtained fuzzy fixed point results (for details,
we refer to [12–21]). Dass and Gupta [22] utilized the Banach’s fixed point technique for rational
contraction in metric spaces, which is further extended to different spaces by several researchers.
Meanwhile, researchers realized that, due to vectors’ decision, rational contraction is not meaningful
in cone metric spaces.
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Recently, Azam et al. [23] established a special class of cone metric space where they created
the possibility to utilize rational type contraction for vector division in the form of complex
numbers. The newly established class is known as a complex-valued metric space where they
obtained common fixed point results for rational contraction. Subsequently, Sintunavarat et al. [24,25],
Klien-eam et al. [26,27], Rozkard et al. [28], Sitthikul et al. [29] and Kutbi et al. [30] derived results of
common fixed points satisfying different types of rational contraction in complex-valued metric spaces.

In the recent years, Samet et al. [31] initiated the concept of α-admissible mappings. They proved
common fixed point results for such type of mappings. Asl [32] and Kutbi et al. [33] further
improved the notion of α-admissible mappings by introducing coupled α-admissible mappings and
α∗ − ψ-admissible mappings and obtained fixed point results for self mappings and multivalued
mappings, respectively.

Motivated by the above-mentioned work, in this paper, we study common fixed point for fuzzy
mappings by adopting the concept of coupled α∗-admissible mapping in complex-valued metric
spaces. Our work generalizes the results of [34] for fuzzy mappings.

We organize our paper as, in Section 1, we have provided some basic definitions and lemmas
upon which our results are based. In Section 2, we obtained our main results. As an application,
we derived common fixed point results for multivalued mappings, which generalize many results
already proved in literature. Also in this section, we have constructed an appropriate example to show
the validity of our main results. In Section 3, we have provided an application of one of our results by
proving a homotopy result. In Section 4, we have concluded our results.

Definition 1 ([23]). Assume C is the set of complex numbers. For ε1, ε2 ∈ C, we define a partial order - on C
as follows:

ε1 - ε2 iff Re(ε1) ≤ Re(ε2), and Im(ε1) ≤ Im(ε2).

It follows that
ε1 - ε2,

if one of the following conditions is satisfied:

(Ci) Re(ε1) < Re(ε2), Im(ε1) = Im(ε2),
(Cii) Re(ε1) = Re(ε2), Im(ε1) < Im(ε2),

(Ciii) Re(ε1) < Re(ε2), Im(ε1) < Im(ε2),
(Civ) Re(ε1) = Re(ε2), Im(ε1) = Im(ε2).

In particular, we write ε1 � ε2 if ε1 6= ε2 and one of (Ci), (Cii) and (Ciii) is satisfied, and ε1 = ε2 if and
only if (Civ) is satisfied. Note that

(i) 0 - ε1 � ε2 ⇒ |ε1| < |ε2|, ∀ ε1, ε2 ∈ C,
(ii) ε1 - ε2 and ε2 ≺ ε3 ⇒ ε1 ≺ ε3, ∀ ε1, ε2, ε3 ∈ C.

Definition 2 ([23]). Let S be a nonempty set and σ : S ×S → C be a mapping satisfying the following conditions:

(1) 0 - σ(z, w), for all z, w ∈ S and σ(z, w) = 0 if and only if z = w;
(2) σ(z, w) = σ(w, z), for all z, w ∈ S ;
(3) σ(z, w) - σ(z, z1) + σ(z1, w), for all z, z1, w ∈ S .

Then, (S , σ) is called a complex-valued metric space.

Definition 3 ([23]). A point z ∈ S is known as an interior point of a set Z ⊆ S , if we find 0 ≺ ε ∈ C
such that,

B(z, ε) = {w ∈ S : σ(z, w) ≺ ε} ⊆ Z.

A point z ∈ Z is known as the limit point of Z, if there exists an open ball B(z, ε) such that

B(z, ε) ∩
(
Z \ {z}

)
6= φ,
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where 0 ≺ ε ∈ C. A subset Z of S is said to be open if each point of Z is an interior point of Z. Furthermore,
Z is said to be closed if it contains all its limit points.

The family
B = {B(z, ε) : z ∈ S , 0 ≺ ε}

is a sub-basis for a Hausdorff topology T on S .

Now, recall some definitions from [9,26].
Let (S , σ) be a complex-valued metric space. Throughout this paper, we have denoted the

family of all nonempty closed bounded subsets of complex-valued metric space S by CB(S). For ν ∈ C,
we denote

s(ν) = {z ∈ C : ν � z} (1)

and, for w ∈ S and B ∈ CB(S),

s
(
w, B

)
= ∪b∈B s

(
σ(w, b)

)
= ∪b∈B

{
z ∈ C : σ(w, b) � z

}
.

For A, B ∈ CB(S), we denote

s
(

A, B
)
=
(
∩p∈A s

(
p, B

))
∩
(
∩q∈B s

(
q, A

))
.

Let τ be a multivalued mapping from S into CB(S). For z ∈ S and Q ∈ CB(S), we define

Wz(Q) =
{

σ(z, q) : q ∈ Q
}

.

Thus, for z, w ∈ S ,
Wz(τw) =

{
σ(z, u) : u ∈ τw

}
.

Lemma 1 ([5]). Let (S , σ) be complex-valued metric space:

(i) Let z, w ∈ C. If z � w, then s(z) ⊂ s(w).
(ii) Let z ∈ S and D ∈ N(S). If δ ∈ s(z, D), then z ∈ D.

(iii) Let w ∈ C, P, Q ∈ CB(S) and p ∈ P. If v ∈ s(P, Q), then z ∈ s(p, Q) for all p ∈ P or z ∈ s(P, q) for
all q ∈ Q.

Definition 4 ([23]). Let {wr} be a sequence in complex-valued metric space (S , σ) and w ∈ S ; then,

(i) w is said to be a limit point of {wr} if for each 0 ≺ ε ∈ C there exists an r0 ∈ N such that σ(wr, w) � ε

for all r � r0 and written as limr→∞ wr = w.
(ii) {wr} is a Cauchy sequence if for any 0 ≺ ε ∈ C there exists an r0 ∈ N such that σ(wr, wr+t) ≺ ε for all

r � r0 where t ∈ N.
(iii) We say that (S , σ) is complete complex-valued metric space if every Cauchy sequence in S converges to a

point in S .

Definition 5 ([12]). Let (V, σ) be a metric space. A fuzzy set A is characterized by its membership function
fA : V → [0, 1], which assigns a grade of membership to each element of A between 0 and 1. For simplicity,
we denote fA(u) by A(u). The α-level set of a fuzzy set A is denoted here by [A]α which is defined as follows:

[A]α = {u : A(u) ≥ α} if α ∈ (0, 1],

[A]0 = {u : A(u) > 0}.

Here, A denotes the closer of the set A.
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Definition 6 ([12]). Let L(S) be the family of all fuzzy sets in a metric space S . For G, H ∈ L(S), G ⊂ H
means G(z) ≤ H(z) for each z ∈ S .

Definition 7 ([11]). Suppose S is an arbitrary set, and Y is a metric space. If G : S → L(Y), then G is said
to be a fuzzy mapping. A fuzzy mapping G is a fuzzy subset on S × Y with a membership function G(w)(z).
The function G(w)(z) is the grade of membership of z in G(w).

Definition 8 ([20]). Assume that (S , σ) is a complex-valued metric space and G1,G2 : S → L(S) are fuzzy
mappings. A point w ∈ S is said to be a fuzzy fixed point of G1 if w ∈ [G1w]α for some α ∈ [0, 1] and w is said
to be a common fuzzy fixed point of G1,G2 if w ∈ [G1w]α ∩ [G2w]α. If α = 1, then w is known as a common
fixed point of fuzzy mappings.

Definition 9 ([20]). Let (S , σ) be a complex valued metric space. A multivalued mapping G : S → 2C is said
to be bounded from below if, for each w ∈ S , there exists zw ∈ C such that

zw � u

for all u ∈ Gw.

Definition 10 ([20]). Let (S , σ) be complex valued metric space. The fuzzy mapping G : S → L(S) is said to
have greatest lower bound property (glb) on (S , σ) if, for any w ∈ S associated with some α, the multivalued
mapping Fz : S → 2C defined by

Fz(w) = Wz([Gw])

is bounded from below that is, for any z, w ∈ S , there exists an element Iz([Sw]α ∈ S) such that Iz([Sw]α � u,
for all u ∈Wz([Gw]), where Iz([Sw]α is a lower bound of G associated with some (z, w).

Definition 11 ([20]). Let(S , σ) be complex-valued metric space and the fuzzy mapping G1 : S → L(S)
satisfies the greatest lower bound property (glb property) on (S , σ). Then, for any w ∈ S and α ∈ (0, 1],
the greatest lower bound of Ww([G1y]α) exists in C for all w, y ∈ S . Here, we have denoted σ(w, [G1y]α) by
the glb of Ww([G1y]α), i.e.,

σ
(
w, [G1y]α

)
= inf{σ(w, u) : u ∈ [G1y]α}.

Remark 1 ([26]). Let (S , σ) be a complex-valued metric space. If C = R, then (S , σ) is a metric space.
Furthermore, H(A, B) = inf s(A, B) is the Hausdorff distance induced by σ, where A, B ∈ CB(S).

Definition 12 ([34]). Let P, Q : S → CB(S), and let $ : S × S → [0,+∞). Then, we say that P, Q
are coupled $∗-admissible if $(u, v) ≥ 1 implies $∗(Pu, Qv) ≥ 1 for all u, n ∈ S , where $∗(Pu, Qv) =

inf{$(u, v) : u ∈ Pu, v ∈ Qv}.

2. Main Results

Theorem 1. Let (S , σ) be complete complex valued metric space and P, Q : S → L(S) be coupled
$∗-admissible mappings, which satisfy the glb property. Assume that, for P and Q, the following condition holds

ξσ(u, v) +
ζσ(u, [Pu]α)σ(v, [Qv]α) + ησ(v, [Pu]α)σ(u, [Qv]α)

1 + σ(u, v)

+
ρσ(u, [Pu]α)σ(u, [Qv]α) + δσ(v, [Pu]α)σ(v, [Qv]α)

1 + σ(u, v)
∈ $∗

(
[Pu]α, [Qv]α

)
s
(
[Pu]α, [Qv]α

)
(2)
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for all v, u ∈ B(u0, t), where u0 ∈ S and 0 ≺ t ∈ C, with

(1− Z)t ∈ s(u0, [Pu0]α), (3)

where ζ, η and ξ are nonnegative real numbers such that Z = ξ+ρ
1−ζ−ρ < 1. Suppose $(u0, u1) ≥ 1, for some

u1 ∈ B(u0, t) and for each v, u ∈ S . Let [Pu]α, [Qv]α be nonempty closed, bounded subsets of S associated
with some α ∈ (0, 1]. If {uq} is a sequence in B(u0, t) with $(uq, uq+1) ≥ 1 and uq → z as q → +∞,
then $(uq, z) ≥ 1 for all q.

Then, there exists a point u∗ ∈ B(u0, t) such that u∗ ∈ [Pu∗]α ∩ [Qu∗]α.

Proof. Take arbitrary point u0 ∈ S since

(1− Z)t ∈ s(u0, [Pu0]α) ⇒ (1− Z)t ∈
⋃

u1∈[Pu0]α

s
(
σ(u0, u1)

)
.

Since [Pu0]α is a nonempty, closed and bounded; therefore, for some u1 ∈ [Pu0]α, one can write

(1− Z)t ∈ s(σ(u0, u1)).

By definition, we obtain
σ(u0, u1)) � (1− Z)t,

which yields
|σ(u0, u1))| ≤ (1− Z)|t|. (4)

Hence, u1 ∈ B(u0, t). As we have supposed that $(u0, u1) ≥ 1, and {P, Q} is coupled
$∗-admissible, thus $∗([Pu0]α, [Qu1]α) > 1. Using (2), we have

ξσ(u0, u1) +
ζσ(u0, [Pu0]α)σ(u1, [Qu1]α) + ησ(u1, [Pu0]α)σ(u0, [Qu1]α)

1 + σ(u0, u1)

+
ρσ(u0, [Pu0]α)σ(u0, [Qu1]α) + δσ(u1, [Pu0]α)σ(u1, [Qu1]α)

1 + σ(u0, u1)

∈ $∗
(
[Pu0]α, [Qu1]α

)
s
(
[Pu0]α, [Qu1]α

)
.

Using Lemma 1 (iii), we obtain

ξσ(u0, u1) +
ζσ(u0, [Pu0]α)σ(u1, [Qu1]α) + ησ(u1, [Pu0]α)σ(u0, [Qu1]α)

1 + σ(u0, u1)

+
ρσ(u0, [Pu0]α)σ(u0, [Qu1]α) + δσ(u1, [Pu0]α)σ(u1, [Qu1]α)

1 + σ(u0, u1)

∈ $∗
(
[Pu0]α, [Qu1]α

)
s
(
u1, [Qu1]α

)
.

By definition, there is some u2 ∈ [Qu1]α such that

ξσ(u0, u1) +
ζσ(u0, [Pu0]α)σ(u1, [Qu1]α) + ησ(u1, [Pu0]α)σ(u0, [Qu1]α)

1 + σ(u0, u1)

+
ρσ(u0, [Pu0]α)σ(u0, [Qu1]α) + δσ(u1, [Pu0]α)σ(u1, [Qu1]α)

1 + σ(u0, u1)

∈ $∗
(
[Pu0]α, [Qu1]α

)
s
(
σ(u1, u2)

)
.
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Using Definition 1, we conclude that

$∗
(
[Pu0]α, [Qu1]α

)(
σ(u1, u2)

)
� ξσ(u0, u1)

+
ζσ(u0, [Pu0]α)σ(u1, [Qu1]α) + ησ(u1, [Pu0]α)σ(u0, [Qu1]α)

1 + σ(u0, u1)

+
ρσ(u0, [Pu0]α)σ(u0, [Qu1]α) + δσ(u1, [Pu0]α)σ(u1, [Qu1]α)

1 + σ(u0, u1)
.

Utilizing the glb property of P and Q, we obtain

$∗
(
[Pu0]α, [Qu1]α

)(
σ(u1, u2)

)
� ξσ(u0, u1)

+
ζσ(u0, u1)σ(u1, u2) + ησ(u1, u1)σ(u0, u2)

1 + σ(u0, u1)

+
ρσ(u0, u1)σ(u0, u2) + δσ(u1, u1)σ(u1, u2)

1 + σ(u0, u1)
,

which implies that

σ(u1, u2
)
≺ $∗

(
[Pu0]α, [Qu1]α

)(
σ(u1, u2)

)
� ξσ(u0, u1) +

ζσ(u0, u1)σ(u1, u2)

1 + σ(u0, u1)
+

ρσ(u0, u1)σ(u0, u2)

1 + σ(u0, u1)
.

Thus,

|σ(u1, u2
)
| ≤ ξ|σ(u0, u1)|+

ζ|σ(u0, u1)||σ(u1, u2)|
1 + |σ(u0, u1)|

+
ρ|σ(u0, u1)|[|σ(u0, u1)|+ |σ(u1, u2)|]

1 + |σ(u0, u1)|
≤ ξ|σ(u0, u1)|+ ζ|σ(u1, u2)|+ ρ|σ(u0, u1)|+ ρ|σ(u1, u2)|,

which yields

|σ(u1, u2
)
| ≤ ξ + ρ

1− ζ − ρ
|σ(u0, u1)|

= Z|σ(u0, u1)|.

From (4), we get

|σ(u1, u2
)
| ≤ Z(1− Z)t.

Now, consider

|σ(u0, u2)| ≤ σ|u0, u1|+ σ|u1, u2| ≤ (1− Z)|t|+ Z(1− Z)|t| = (1− Z)(1 + Z)|t| = (1− Z2)|t|.

Therefore, u2 ∈ B(u0, t). Since $(u0, u1) ≥ 1 and {P, Q} are coupled $∗-admissible,
$∗([Pu0]α, [Qu1]α) ≥ 1. Following (2), we have

ξσ(u1, u2) +
ζσ(u1, [Pu1]α)σ(u2, [Qu2]α) + ησ(u2, [Pu1]α)σ(u1, [Qu2]α)

1 + σ(u1, u2)

+
ρσ(u1, [Pu1]α) σ(u1, [Qu2]α) + δσ(u2, [Pu1]α)σ(u2, [Qu2]α)

1 + σ(u1, u2)

∈ $∗
(
[Pu1]α, [Qu2]α

)
s
(
[Pu1]α, [Qu2]α

)
.
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Using Lemma 1 (iii), we obtain

ξσ(u1, u2) +
ζσ(u1, [Pu1]α)σ(u2, [Qu2]α) + ησ(u2, [Pu1]α)σ(u1, [Qu2]α)

1 + σ(u1, u2)

+
ρσ(u1, [Pu1]α) σ(u1, [Qu2]α) + δσ(u2, [Pu1]α)σ(u2, [Qu2]α)

1 + σ(u1, u2)

∈ $∗
(
[Pu1]α, [Qu2]α

)
s
(
u2, [Qu2]α

)
.

By definition, there is some u3 ∈ [Qu2]α such that

ξσ(u1, u2) +
ζσ(u1, [Pu1]α)σ(u2, [Qu2]α) + ησ(u2, [Pu1]α)σ(u1, [Qu2]α)

1 + σ(u1, u2)

+
ρσ(u1, [Pu1]α) σ(u1, [Qu2]α) + δσ(u2, [Pu1]α)σ(u2, [Qu2]α)

1 + σ(u1, u2)

∈ $∗
(
[Pu1]α, [Qu2]α

)
s
(
σ(u2, u3)

)
.

By Definition 1, we get

$∗
(
[Pu1]α, [Qu2]α

)(
σ(u2, u3)

)
� ξσ(u1, u2)

+
ζσ(u1, [Pu1]α)σ(u2, [Qu2]α) + ησ(u2, [Pu1]α)σ(u1, [Qu2]α)

1 + σ(u1, u2)

+
ρσ(u1, [Pu1]α)σ(u1, [Qu2]α) + δσ(u2, [Pu1]α)σ(u2, [Qu2]α)

1 + σ(u1, u2)
.

Utilizing the the glb property of P and Q, we conclude that

$∗
(
[Pu1]α, [Qu2]α

)(
σ(u2, u3)

)
� ξσ(u1, u2)

+
ζσ(u1, u2) σ(u2, u3) + ησ(u2, u2) σ(u1, u3)

1 + σ(u1, u2)

+
ρσ(u1, u2)σ(u1, u3) + δσ(u2, u2)σ(u2, u3)

1 + σ(u1, u2)
,

which implies that

σ(u2, u3
)
≺ $∗

(
[Pu1]α, [Qu2]α

)(
σ(u2, u3)

)
� ξσ(u1, u2) +

ζσ(u1, u2)σ(u2, u3)

1 + σ(u1, u2)

+
ρσ(u1, u2)[σ(u1, u2) + σ(u2, u3)]

1 + σ(u1, u2)
.

Hence,

|σ(u2, u3
)
| ≤ ξ|σ(u1, u2)|+

ζ|σ(u1, u2)||σ(u2, u3)|
1 + |σ(u1, u2)|

+
ρ|σ(u1, u2)|[|σ(u1, u2)|+ |σ(u2, u3)|]

1 + |σ(u1, u2)|
≤ ξ|σ(u1, u2)|+ ζ|σ(u2, u3)|+ ρ|σ(u1, u2)|+ ρ|σ(u2, u3)|.

Therefore,

|σ(u2, u3
)
| ≤ ξ + ρ

1− ζ − ρ
|σ(u1, u2)|

= Z|σ(u1, u2)|,

where Z < 1. From (4), we get
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|σ(u2, u3
)
| ≤ Z2(1− Z)t.

Since

|σ(u0, u3)| ≤ |σ(u0, u1)|+ σ|u1, u2|+ σ|u2, u3| ≤ (1− Z) + Z(1− Z|t|+ Z2(1− Z)|t| = (1− Z3)|t|,

which show that u3 ∈ B(u0, t). By continuing the process, one can construct a sequence {up} in B(u0, t)
with p = 0, 1, 2, 3, ...

$(u2p, u2p+1) ≥ 1 and $(u2p+1u2p+2) ≥ 1

such that

$(u2p, u2p+1) ≤ Z2p|σ(u0, u1)| and $(u2p+1, u2p+2) ≤ Z2p+1|σ(u0, u1)|,

where
u2p+1 ∈ [Pu2p]α and u2p ∈ [Qu2p−1]α.

By induction, we can construct a sequence in S such that for p = 0, 1, 2, ..

$(up, up+1) ≥ 1 and |σ(up, up+1)| ≤ Zp|σ(u0, u1)|. (5)

Suppose q > p, then, utilizing (5) and triangular inequality, we obtain

|σ(up, uq)| ≤ |σ(up, up+1)|+ |σ(up+1, up+2)|+ · · ·+ |σ(uq−1, uq)|
≤ [Zp + Zp+1 + · · ·+ Zq−1]|σ(u0, u1)|

≤ Zp

1− Z
|σ(u0, u1)| → 0, when Z→ ∞.

This shows that {up} is a Cauchy sequence in B(u0, t). Since S is complete and B(u0, t) is a closed
subspace of S , therefore, there is z ∈ B(u0, t) such that up → z when p→ ∞. Finally, we are to show
that z ∈ [Pz]α and z ∈ [Qz]α. As $(up, z) ≥ 1 and {P, Q} are $∗-admissible, so $∗([Pup]α, [Qz]α) ≥ 1
for all p. In the light of Equation (2), we obtain

ξσ(u2p, z) +
ζσ(u2p, [Pu2p]α)σ(z, [Qz]α) + ησ(z, [Pu2p]α)σ(u2p, [Qz]α)

1 + σ(u2p, z)

+ +
ρσ(u2p, [Pu2p]α)σ(u2p, [Qz]α) + δσ(z, [Pu2p]α)σ(z, [Qz]α)

1 + σ(u2p, z)

∈ $∗
(
[Pu2p]α, [Qz]α

)
s
(
[Pu2p]α, [Qz]α

)
.

Using Lemma 1 (iii), we obtain

ξσ(u2p, z) +
ζσ(u2p, [Pu2p]α)σ(z, [Qz]α) + ησ(z, [Pu2p]α)σ(u2p, [Qz]α)

1 + σ(u2p, z)

+ +
ρσ(u2p, [Pu2p]α)σ(u2p, [Qz]α) + δσ(z, [Pu2p]α)σ(z, [Qz]α)

1 + σ(u2p, z)

∈ $∗
(
[Pu2p]α, [Qz]α

)
s
(
u2p+1, [Qz]α

)
.
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By the definition, there is some up ∈ [Qz]α, such that

ξσ(u2p, z) +
ζσ(u2p, [Pu2p]α)σ(z, [Qz]α) + ησ(z, [Pu2p]α)σ(u2p, [Qz]α)

1 + σ(u2p, z)

+ +
ρσ(u2p, [Pu2p]α)σ(u2p, [Qz]α) + δσ(z, [Pu2p]α)σ(z, [Qz]α)

1 + σ(u2p, z)

∈ $∗
(
[Pu2p]α, [Qz]α

)
s
(
σ(u2p+1, up)

)
.

By Definition 1, we get

$∗
(
[Pu2p]α, [Qz]α

)(
σ(u2p+1, up)

)
� ξσ(u2p, z)

+
ζσ(u2p, [Pu2p]α)σ(z, [Qz]α) + ησ(z, [Pu2p]α)σ(u2p, [Qz]α)

1 + σ(u2p, z)

+
ρσ(u2p, [Pu2p]α)σ(u2p, [Qz]α) + δσ(z, [Pu2p]α)σ(z, [Qz]α)

1 + σ(u2p, z)
.

Utilizing the the glb property of P and Q, we obtain

$∗
(
[Pu2p]α, [Qz]α

)(
σ(u2p+1, up)

)
� ξσ(u2p, z)

+
ζσ(u2p, u2p+1)σ(z, up) + ησ(z, u2p+1)σ(u2p, up)

1 + σ(u2p, z)

+
ρσ(u2p, u2p+1)σ(u2p, up) + δσ(z, u2p+1)σ(z, up)

1 + σ(u2p, z)
,

which implies that

σ(u2p+1, up
)
≺ $∗

(
[Pu2p]α, [Qz]α

)(
σ(u2p+1, up)

)
� ξσ(u2p, z)

+
ζσ(u2p, u2p+1)σ(z, up) + ησ(z, u2p+1)σ(u2p, up)

1 + σ(u2p, z)

+
ρσ(u2p, u2p+1)σ(u2p, up) + δσ(z, u2p+1)σ(z, up)

1 + σ(u2p, z)
,

so we conclude that

σ(u2p+1, up
)
� ξσ(u2p, z) +

ζσ(u2p, u2p+1)σ(z, up) + ησ(z, u2p+1)σ(u2p, up)

1 + σ(u2p, z)

+
ρσ(u2p, u2p+1)σ(u2p, up) + δσ(z, u2p+1)σ(z, up)

1 + σ(u2p, z)
(6)

since
σ(z, up) � σ(z, up+1) + σ(up+1, up).

Therefore, following (6), we have

σ(z, up) � σ(z, up+1) + ξσ(u2p, z) +
ζσ(u2p, u2p+1)σ(z, up) + ησ(z, u2p+1)σ(u2p, up)

1 + σ(u2p, z)

+
ρσ(u2p, u2p+1)σ(u2p, up) + δσ(z, u2p+1)σ(z, up)

1 + σ(u2p, z)
,

which implies that
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|σ(z, up)| ≤ |σ(z, up+1)|+ ξ|σ(u2p, z)|+
ζ|σ(u2p, u2p+1)||σ(z, up)|+ η|σ(z, u2p+1)||σ(u2p, up)|

1 + |σ(u2p, z)|

+
ρ|σ(u2p, u2p+1)||σ(u2p, up)|+ δ|σ(z, u2p+1)|σ(z, up)|

1 + |σ(u2p, z)| .

If we take limit as p→ ∞, then we obtain |σ(z, up)| → 0, that is, up → z when p→ ∞. Since [Pz]α
is closed therefore, z ∈ [Pz]α. In the same way, we can obtain that z ∈ [Qz]α. Hence, P and Q have a
common fuzzy fixed point.

Theorem 2. Let (S , σ) be complete complex-valued metric space and P : S → L(S) be coupled $∗-admissible
mapping such that glb property holds. If P satisfies

ξσ(u, v) +
ζσ(u, [Pu]α)σ(v, [Pv]α) + ησ(v, [Pu]α)σ(u, [Pv]α)

1 + σ(u, v)

+
ρσ(u, [Pu]α)σ(u, [Pv]α) + δσ(v, [Pu]α)σ(v, [Pv]α)

1 + σ(u, v)
∈ $∗

(
[Pu]α, [Pv]α

)
s
(
[Pu]α, [Pv]α

)
for all v, u ∈ B(u0, t), where u0 ∈ S and 0 ≺ t ∈ C, then

(1− Z)t ∈ s(u0, [Pu0]α),

where ζ, η and ξ are nonnegative real numbers such that Z = ξ+ρ
1−ζ−ρ < 1. Suppose $(u0, u1) ≥ 1 for some

u1 ∈ B(u0, t) and, for each v, u ∈ S associated with some α ∈ (0, 1], there exists [Pu]α that is a nonempty
closed, bounded subset of S . If {uq} is a sequence in B(u0, t) with $(uq, uq+1) ≥ 1 and uq → z as q→ +∞,
then $(uq, z) ≥ 1 for all q. Then, there exists a point u∗ ∈ B(u0, t) such that u∗ ∈ [Pu∗]α ∩ [Qu∗]α.

Proof. By letting P = Q in Theorem 1, we obtain the above corollary.

Example 1. Let X1 = {w ∈ C : Im(w) ≥ 0 and Re(w) = 0} and X2 = {w ∈ C : Re(w) ≥ 0 and Im(w) = 0}
and let X = X1 ∪ X2. Consider a metric d : X× X → C as follows:

d(w1, w2) =



1
4
|y1 − y2|+

ι̇

2
|y1 − y2| if w1, w2 ∈ X1,

1
2
|x1 − x2|+

ι̇

3
|x1 − x2| if w1, w2 ∈ X2,

2
9
|x2 + y1|+

ι̇

6
|x2 + y1| if w1 ∈ X1, w2 ∈ X2,

1
3
|x1 + y2|+

2ι̇

9
|x1 + y2| if w1 ∈ X2, w2 ∈ X1,

where w1 = x1 + ι̇y1, w1 = x2 + ι̇y2 ∈ X. Then, (X, d)is a complex valued metric space. Take w0 = 0 + 1
2 ι̇

and t = 1
2 + 1

3 ι̇. Then,

B(w0, t) = {w ∈ X1 : 0 ≤ Im(w) ≤ 1} ∪ {w ∈ X2 : 0 ≤ Re(w) ≤ 1}

and

$(w1, w2) =

1, if w1, w2 ∈ B(w0, t),
4
3

, otherwise.
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Define P, Q : X → L(X) by

P(z)(w)



0.5 if z =
y
4
+ 0ι̇ ∈ X1 with 0 ≤ Im(w) ≤ 1, Re(w) = 0,

0.7 if z = 0 +
7y
8

ι̇ ∈ X1 with Im(w) > 1, Re(w) = 0,

0.4 if z = 0 +
x
5

ι̇ ∈ X2 with 0 ≤ Re(w) ≤ 1, Im(w) = 0,

0.2 if z =
6x
7

+ 0ι̇ ∈ X2 with Re(w) > 1, Im(w) = 0,

Q(z)(w)



0.5 if z =
y
6
+ 0ι̇ ∈ X1 with 0 ≤ Im(w) ≤ 1, Re(w) = 0,

0.7 if z = 0 +
6y
7

ι̇ ∈ X1 with Im(w) > 1, Re(w) = 0,

0.4 if z = 0 +
x
7

ι̇ ∈ X2 with 0 ≤ Re(w) ≤ 1, Im(w) = 0,

0.2 if z =
7x
8

+ 0ι̇ ∈ X2 with Re(w) > 1, Im(w) = 0.

Then,

[Pw]0.7 = {0 + 7y
8

ι̇}, [Pw]0.5 = {y
4
+ 0ι̇, 0 +

7y
8

ι̇},

[Pw]0.4 = {y
4
+ 0ι̇, 0 +

7y
8

ι̇, 0 +
x
5

ι̇}, [Pw]0.2 = {y
4
+ 0ι̇, 0 +

7y
8

ι̇, 0 +
x
5

ι̇,
6x
7

+ 0ι̇},

and
[Qw]0.7 = {0 + 6y

7
ι̇}, [Qw]0.5 = {y

6
+ 0ι̇, 0 +

6y
7

ι̇},

[Qw]0.4 = { x
6
+ 0ι̇, 0 +

6y
7

ι̇, 0 +
y
7

ι̇}, [Qw]0.2 = {y
6
+ 0ι̇,

7x
8

+ 0ι̇, 0 +
x
7

ι̇, 0 +
6y
7

ι̇},

by a routine calculation, one can verify that the mappings P and Q satisfy the conditions (2) and (3) of Theorem 1
with ξ = 1

9 , ζ = 1
24 , η = 1

2 , ρ = 1
36 and δ = 1

37 . Hence, P and Q are contractions on B(w0, r).
It is interesting to notice that P and Q are not contractions on the whole space X for w1 = w2 = 0 + 4

3 ι̇ 6∈
B(w0, r) and for α = 0.7, as

$∗
(
[Pw1]α, [Qw2]α

)
σ([Pw1]α, [Qw2]α)

=
4
3

(
1

168
+

1
84

ι̇

)
� 7, 235

1, 342, 656
+

5, 788
1, 342, 656

ι̇

= ξσ(w1, w2) +
ζσ(w1, [Pw1]α)σ(w2, [Qw2]α) + ησ(w2, [Pw1]α)σ(w1, [Qu2]α)

1 + σ(w1, w2)

+
ρσ(w1, [Pw1]α)σ(w1, [Qw2]α) + δσ(w2, [Pw1]α)σ(w2, [Qu2]α)

1 + σ(w1, w2)
.

Therefore,

ξσ(w1, w2) +
ζσ(w1, [Pw1]α)σ(w2, [Qw2]α) + ησ(w2, [Pw1]α)σ(w1, [Qu2]α)

1 + σ(w1, w2)
+

ρσ(w1, [Pw1]α)σ(w1, [Qw2]α) + δσ(w2, [Pw1]α)σ(w2, [Qu2]α)

1 + σ(w1, w2)
6∈ $∗

(
[Pw1]α, [Qw2]α

)
s
(
[Pw1]α, [Qw2]α

)
.
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Theorem 3. Let (S , σ) be complete complex valued metric space and A1, A2 : S → CB(S) be coupled
$∗-admissible mappings such that glb property holds. If A1 and A2 satisfy

ξσ(u, v) +
ζσ(u, A1u)σ(v, A2v) + ησ(v, A1u)σ(u, A2v)

1 + σ(u, v)

+
ρσ(u, A1u)σ(u, A2v) + δσ(v, A1u)σ(v, A2v)

1 + σ(u, v)
∈ $∗

(
A1u, A2v

)
s
(

A1u, A2v
)

for all v, u ∈ B(u0, t), where u0 ∈ S and 0 ≺ t ∈ C, then

(1− Z)t ∈ s(u0, A1u0),

where ζ, η and ξ are nonnegative real numbers such that Z = ξ+ρ
1−ζ−ρ < 1. Suppose $(u0, u1) ≥ 1 for

some u1 ∈ B(u0, t). If {uq} is a sequence in B(u0, t) with $(uq, uq+1) ≥ 1 and uq → z as q → +∞,
then $(uq, z) ≥ 1 for all q. Then, there exists a point u∗ ∈ B(u0, t) such that u∗ ∈ A1u∗ ∩ A2u∗.

Proof. Let P, Q : S → S(S), i = 1, 2 be fuzzy mappings defined as

P(u) =

{
∝, i f u ∈ A1u,

0, i f u 6∈ A1u,

Q(u) =

{
∝, i f u ∈ A2u,

0, i f u 6∈ A2u.

Then, for any α ∈ (0, 1], [Pu]α = A1u and [Pu]α = A2u.
Since for every u, v ∈ S , s([Pu]α, [Qv]α) = s(A1u, A2v), therefore, one can apply Theorem 1 to

obtain some u ∈ S such that u ∈ A1(u) ∩ A2(u).

Corollary 1. Let (S , σ) be complete complex valued metric space and A : S → CB(S) be coupled $∗-admissible
mapping such that glb property holds. If A satisfies

ξσ(u, v) +
ζσ(u, Au)σ(v, Av) + ησ(v, Au)σ(u, Av)

1 + σ(u, v)

+
ρσ(u, Au)σ(u, Av) + δσ(v, Au)σ(v, Av)

1 + σ(u, v)
∈ $∗

(
Au, Av

)
s
(

Au, Av
)

for all v, u ∈ B(u0, t), where u0 ∈ S and 0 ≺ t ∈ C, then

(1− Z)t ∈ s(u0, Au0),

where ζ, η and ξ are nonnegative real numbers such that Z = ξ+ρ
1−ζ−ρ < 1. Suppose $(u0, u1) ≥ 1 for

some u1 ∈ B(u0, t). If {uq} is a sequence in B(u0, t) with $(uq, uq+1) ≥ 1 and uq → z as q → +∞,
then $(uq, z) ≥ 1 for all q. Then, there exists a point u∗ ∈ B(u0, t) such that u∗ ∈ Au∗ ∩ Au∗.

Proof. Proof is immediate by setting A1 = A2 = A in Corollary 3.
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Remark 2. (1) In Theorem 1, if condition (3) is replaced by

(1− Z)t ∈ s(u0, Qu0),

then the result remains the same.
(2) By setting ρ = δ = 0 in Theorem 3, we get Theorem 2.9 of [34].
(3) By setting ρ = δ = 0 in Corollary 1, we get Theorem 2.12 of [34].
(4) By setting η = ρ = δ = 0 in Theorem 3, we get Corollary 2.11 of [34].
(5) By setting ζ = η = ρ = δ = 0 in Theorem 3, we get Corollary 2.13 of [34].

3. Application

Theorem 4. Let (S , σ) be a complete complex valued metric space and let U be an open subset of S . Let F :
[0, 1]× U → CB(S) be multivalued mapping with the glb property. Suppose that there exist ηo ∈ S and
0 ≺ ε ∈ C such that

(a) η 6∈ [F(r, η)] for all η ∈ ∂U and r ∈ [0, 1];
(b) F(r, .) : U → CB(S) is a multivalued mapping satisfying

ξσ(η, η′) +
ζσ(η, F(r, η))σ(η′, F(r′, η′)) + $σ(η′, F(r, η))σ(η, F(r′, η′))

1 + σ(η, η′)

+
ρσ(η, F(r, η))σ(η, F(r′, η′)) + δσ(η′, F(r, η))σ(η′, F(r′, η′))

1 + σ(η, η′)

∈ s
(

F(r, η), F(r′, η′)
)
,

(1− Z)ε ∈ s(ηo, F(ro, ηo)),

where ζ, η and ξ are nonnegative real numbers such that Z = ξ+ρ
1−ζ−ρ < 1.

(c) there exists a continuous increasing function Φ : (0, 1]→ K ∪ {0} such that

Φ(s)−Φ(r) ∈ s
(

F(s, η), F(r, η′)
)
, Φ(s) ∈ Φ(r)

for all s, r ∈ [0, 1] and η ∈ U where K = {w ∈ C : 0 ≺ w}.

Then, F(0, .) has a fixed point if and only if F(1, .) has a fixed point.

Proof. Let F(0, .) have a fixed point w, so w ∈ F(0, w).
With the help of assumption a), we can define the following set:

X = {(r, η) ∈ [0, 1]×U : η ∈ F(r, η)}.

Clearly, X 6= φ. One can define partial ordering � as below

(r, η) � (s, η′) if r ≤ s,

σ(η, η′) � 2
1− Z

(
Φ(s)−Φ(r)

)
.

Assume that M is a totaly ordered subset of X and ro = sup{r : (r, η) ∈ M}.
Consider {(rk, ηk)k≥0} to be a sequence in M such that (rk, ηk) � (rk+1, ηk+1) and rk → ro as k → ∞.
Then, for any k ≥ 1 with l > k, we obtain

σ(ηl , ηk) �
2

1− Z

(
Φ(rl)−Φ(rk)

)
→ 0
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as k, l → ∞, which yields that {ηk} is a Cauchy sequence. Since (S , σ) is a complete complex valued
metric space, there exists ηo ∈ S such that ηk → ηo. From (a), let k0 ∈ N such that, for all k ≥ k0,

ξσ(ηk, ηo) +
ζσ(ηk, F(rk, ηk))σ(η

o, F(ro, ηo)) + $σ(ηo, F(rk, ηk))σ(ηk, F(ro, ηo))

1 + σ(ηk, ηo)

+
ρσ(ηk, F(rk, ηk))σ(ηk, F(ro, ηo)) + δσ(ηo, F(rk, ηk))σ(η

o, F(ro, ηo))

1 + σ(ηk, ηo)

∈ s
(

F(rk, ηk), F(ro, ηo)
)
,

ξσ(ηk, ηo) +
ζσ(ηk, F(rk, ηk))σ(η

o, F(ro, ηo)) + $σ(ηo, F(rk, ηk))σ(ηk, F(ro, ηo))

1 + σ(ηk, ηo)

+
ρσ(ηk, F(rk, ηk))σ(ηk, F(ro, ηo)) + δσ(ηo, F(rk, ηk))σ(η

o, F(ro, ηo))

1 + σ(ηk, ηo)

∈ s
(
ηk, F(ro, ηo)

)
.

Since ηk ∈ F(rk, ηk), there exists ηn ∈ F(ro, ηo) such that

σ
(
ηk, ηn

)
� ξσ(ηk, ηo) +

ζσ(ηk, F(rk, ηk))σ(η
o, F(ro, ηo)) + $σ(ηo, F(rk, ηk))σ(ηk, F(ro, ηo))

1 + σ(ηk, ηo)

+
ρσ(ηk, F(rk, ηk))σ(ηk, F(ro, ηo)) + δσ(ηo, F(rk, ηk))σ(η

o, F(ro, ηo))

1 + σ(ηk, ηo)
.

Utilizing glb property of F, we obtain

σ
(
ηk, ηn

)
� ξσ(ηk, ηo) +

$σ(ηo, ηk)σ(ηk, ηn)

1 + σ(ηk, ηo)

+
δσ(ηo, ηk)σ(η

o, ηn)

1 + σ(ηk, ηo)
,

which implies that

∣∣σ(ηk, ηn
)∣∣ ≤ ξ

∣∣σ(ηk, ηo)
∣∣+ $

∣∣∣∣ σ(ηo, ηk)

1 + σ(ηk, ηo)

∣∣∣∣σ(ηk, ηn)
∣∣

+ δ

∣∣∣∣ σ(ηo, ηk)

1 + σ(ηk, ηo)

∣∣∣∣∣∣σ(ηo, ηn)
∣∣,

which yields ∣∣σ(ηk, ηn
)∣∣ ≤ ξ

∣∣σ(ηk, ηo)
∣∣+ ρ

∣∣σ(ηk, ηn)
∣∣+ δ

∣∣σ(ηo, ηn)
∣∣,

≤ ξ
∣∣σ(ηk, ηo)

∣∣+ ρ
∣∣σ(ηk, ηn)

∣∣+ δ
[∣∣σ(ηo, ηk)

∣∣+ ∣∣σ(ηk, ηn)
∣∣],

≤ ξ + δ

1− ρ− δ

∣∣σ(ηo, ηk)
∣∣.

Consider ∣∣σ(ηo, ηn)
∣∣ ≤ ∣∣σ(ηo, ηk)

∣∣+ ∣∣σ(ηk, ηn)
∣∣

≤
∣∣σ(ηo, ηk)

∣∣+ ξ + δ

1− ρ− δ

∣∣σ(ηo, ηk)
∣∣→ 0

for all k > k0. Hence, ηn → ηo ∈ F(ro, ηo) and therefore ηo ∈ U implies that (ro, ηo) ∈ X . Thus, (r, η) �
(ro, ηo) for all (r, η) ∈ M; this shows that (ro, ηo) is an upper bound of M. Therefore, by utilizing
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Zorn’s Lemma, we obtain that (ro, ηo) is the maximal element of X . Now, we are going to show that
ro = 1. Suppose, on the contrary, that ro ≤ 1, let 0 ≺ ε ∈ C and ro ≤ r with

B(ηo, ε) ⊂ U where ε =
2

1− Z
(Φ(r)−Φ(ro)).

In the light of the condition c), we get

(Φ(r)−Φ(ro)) ∈ s
(

F(r, η), F(ro, ηo)
)

(Φ(r)−Φ(ro)) ∈ s
(

F(r, η), ηo) for all ηo ∈ F(ro, ηo).

Therefore, there exists some η ∈ F(r, η), such that

(Φ(r)−Φ(ro)) ∈ s
(
σ(η, ηo)

)
,

which implies that

σ(η, ηo) � (Φ(r)−Φ(ro)) � (1− Z)ε

2
≺ (1− Z)ε,

so that ∣∣σ(η, ηo)
∣∣ ≤ (1− Z)|ε|.

Using the condition b), we obtained that the mapping F(r, .) : B(ηo, ε) → CB(S) enjoys all the
conditions of Corollary 1. Thus, there exists η ∈ B(ηo, ε) such that η ∈ F(r, η); therefore, (η, r) ∈ X . As

σ(η, ηo) ≺ ε =
2

1− Z
(Φ(r)−Φ(ro)),

this yields that (ro, ηo) � (r, η), which is a contradiction; hence, r = 1. Thus, F(., 1) has a common
fixed point. Conversely, by following the same techniques, we can prove that, if F(1, .) has a fixed
point, then F(0, .) has a fixed point.

4. Conclusions

We have successfully derived common fixed point results for fuzzy mappings by using the
concept of coupled α∗-admissible mapping in complex-valued metric spaces. We have generalized
many results in the existing literature by providing the application of our main result to multivalued
mappings and a homotopy result.
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