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Abstract: In this article, we study multiple attribute decision-making (MADM) problems with
picture fuzzy numbers (PFNs) information. Afterwards, we adopt a Muirhead mean (MM) operator,
a weighted MM (WMM) operator, a dual MM (DMM) operator, and a weighted DMM (WDMM)
operator to define some picture fuzzy aggregation operators, including the picture fuzzy MM (PFMM)
operator, the picture fuzzy WMM (PFWMM) operator, the picture fuzzy DMM (PFDMM) operator,
and the picture fuzzy WDMM (PFWDMM) operator. Of course, the precious merits of these defined
operators are investigated. Moreover, we have adopted the PFWMM and PFWDMM operators to
build a decision-making model to handle picture fuzzy MADM problems. In the end, we take a
concrete instance of appraising a financial investment risk to demonstrate our defined model and to
verify its accuracy and scientific merit.

Keywords: MADM; picture fuzzy set (PFS); PFMM operator; PFWMM operator; PFDMM operator;
PFWDMM operator; financial investment risk

1. Introduction

Atanassov [1] defined intuitionistic fuzzy sets (IFSs), which are an extension of fuzzy sets
(FSs) [2]. Atanassov and Gargov [3] and Atanassov [4] presented the definition of interval-valued
IFSs (IVIFS); since then, FSs, IFSs, and IVIFSs have attracted more and more scholars’ and researchers’
attention [5–16]. Recently, Cuong and Kreinovich [17] developed the picture fuzzy set (PFS),
and studied some basic operations, rules, and properties of PFS. Singh [18] explored the correlation
coefficients of PFS. Son etc. [19,20] presented several novel fuzzy clustering algorithms based on
PFSs. Thong and Son [21] defined a novel hybrid model between picture fuzzy clustering and
intuitionistic fuzzy recommender systems for medical diagnosis and application to health care support
systems. Wei [22] proposed the picture fuzzy cross-entropy method to deal with multiple attribute
decision-making (MADM) problems. Thong and Son [23] gave Automatic Picture Fuzzy Clustering
(AFC-PFS) for determining the most suitable number of clusters for FC-PFS. Wei [24] assigned some
cosine similarity measures of PFSs for strategic decision-making on the basis of traditional similarity
measures [25–29]. Wei [30] also defined some similarity measures for PFSs. Wei [31] defined some
aggregation operators for MADM problems with respect to PFSs based on traditional aggregation
operators [14,32–37]. Wei [38] proposed some picture fuzzy Hamacher aggregation operators with
traditional Hamacher operations [39–42]. Zhang et al. [43] provided some relative projection models
for PFSs. Wei [44] proposed the TODIM model for picture fuzzy MADM problems. Wang et al. [45]
formulated a hybrid fuzzy MADM framework with PFSs. Wei et al. [46] designed PFN projection
models to handle MADM problems. Wei [47] defined some picture 2-tuple linguistic Bonferroni mean
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operators in MADM. Wei et al. [48] proposed some picture 2-tuple linguistic operators. Wei [49]
defined some picture uncertain linguistic Bonferroni mean operators. Wang and Li [50] combined PFSs
and the hesitant fuzzy set [51–56] to propose the picture hesitant fuzzy set (PHFS) theory.

The Muirhead mean (MM) [57] is a useful decision-making tool that can identify the
inter-relationships among any number of information fusions, and some existing operators, such
as arithmetic and geometric operators (not considering the inter-relationships). Both the Bonferroni
mean (BM) operator [58–63] and the Maclaurin symmetric mean (MSM) operator [8,64] are special
issues in the MM operator. So, the MM can provide a flexible and robust mechanism to process
information fusion problems and more effectively solve MADM problems. However, in order to make
the original MM operator process PFSs, it needs to be constrained to take only numeric arguments.

Although the IFSs theory has been applied in different fields, there are some real-life cases where
IFSs are inappropriate. Voting can be a good example of this, because human voters can be divided
into four groups: those who vote for, those who vote against, those who abstain, and those who refuse
to vote. On the whole, PFSs [17] can handle human opinions that involve more answers, such as: yes,
abstain, no, and refusal. However, none of the above methods is suitable for fusing picture fuzzy
numbers (PFNs). Thus, the question of how to fuse PFN information is an interesting topic. In order to
handle this case, in this article, we will present some picture fuzzy aggregation operators based on the
traditional MM operators [57].

This research has four main purposes. The first is to develop a comprehensive MADM method
for appraising financial investment risk with PFNs. The second lies in exploring several picture fuzzy
aggregation operators based on the traditional MM operators. The third is to establish an integrated
outranking decision-making method by the PFWMM (PFWDMM) operators. The final purpose is to
demonstrate the application, practicality, and effectiveness of the proposed MADM method using a
case study about financial investment risk.

For the sake of clarity, the rest of this research is organized as follows. Some basic definitions,
operation rules, and score and accuracy functions of PFSs are introduced in the next section. Section 3
presents some picture fuzzy Muirhead mean aggregation operators, such as the PFMM operator;
the picture fuzzy weighted MM (PFWMM) operator; the picture fuzzy dual MM (PFDMM) operator;
and the picture fuzzy weighted dual (PFWDMM) operator. In Section 4, based on our defined
aggregation operators and the PFN information, we build decision-making models to solve MADM
problems. Section 5 gives a numerical example for evaluating a financial investment risk with picture
fuzzy information in order to verify the method proposed in this article. Finally, some remarks are
given to conclude this article.

2. Preliminaries

2.1. Picture Fuzzy Sets

Picture fuzzy sets (PFSs) [17], as the extension of intuitionistic fuzzy sets (IFSs) [1], have been
considered to be an effective tool to depict uncertain information in the application of MADM problems.
The basic definition and fundamental theory of PFSs are introduced as follows.

Definition 1 ([17,65]). A PFS A on the domain X is an object which denotes as:

A = {〈x, µA(x), ηA(x), νA(x)〉|x ∈ X } (1)

where µA(x) ∈ [0, 1] is known as the positive-membership degree function, ηA(x) ∈ [0, 1] is known as
the neutral-membership degree function, and νA(x) ∈ [0, 1] is known as the negative-membership degree
function. At the same time, for all ∀ x ∈ X, µA(x), ηA(x) and νA(x) meet the following requirements:
0 ≤ µA(x) + ηA(x) + νA(x) ≤ 1. Furthermore, the refusal-membership degree function is presented as
πA(x) = 1− (µA(x) + ηA(x) + νA(x)). For convenience, we call α = (µα, ηα, να) a PFN, where µα ∈
[0, 1], ηα ∈ [0, 1], να ∈ [0, 1], µα + ηα + να ≤ 1.
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Definition 2 ([31]). Assume that α = (µα, ηα, να) and β =
(
µβ, ηβ, νβ

)
are two PFNs. The score function

of α β can be denoted as S(α) = µα − να and S(β) = µβ − νβ. Meanwhile, the accuracy functions of α

and β are presented as H(α) = µα + ηα + να and H(β) = µβ + ηβ + νβ. Then, if S(α) < S(β), α < β;
if S(α) = S(β), then

(1) If H(a) = H(β), α = β;
(2) if H(a) < H(β), α < β.

Similar to the IFS [66,67], Wei [31] has proposed some operational rules for PFNs.

Definition 3 ([31]). Assume that α = (µα, ηα, να) and β =
(
µβ, ηβ, νβ

)
are two PFNs. Then,

α = α = (να, ηα, µα)

α ∧ β =
(
min

{
µα, µβ

}
, max

{
ηα, ηβ

}
, max

{
να, νβ

})
α ∨ β =

(
max

{
µα, µβ

}
, min

{
ηα, ηβ

}
, min

{
να, νβ

})
α⊕ β =

(
µα + µβ − µαµβ, ηαηβ, νανβ

)
;

α⊗ β =
(
µαµβ, ηα + ηβ − ηαηβ, να + νβ − νανβ

)
;

λα =
(

1− (1− µα)
λ, ηλ

α , νλ
α

)
αλ =

(
µλ

α , 1− (1− ηα)
λ, 1− (1− να)

λ
)

According to Definition 3, Wei [31] obtained the following properties.

Theorem 1. Assume that α = (µα, ηα, να) and β =
(
µβ, ηβ, νβ

)
are two PFNs, λ, λ1, λ2 > 0, then

(1) α⊕ β = β⊕ α;

(2) α⊗ β = β⊗ α;

(3) λ(α⊕ β) = λα⊕ λβ;

(4) (α⊗ β)λ = αλ ⊗ βλ;

(5) λ1α⊕ λ2α = (λ1 + λ2)α;

(6) αλ1 ⊗ αλ2 = α(λ1+λ2);

(7)
(
αλ1
)λ2 = αλ1λ2 .

2.2. MM Operators

Muirhead [57] proposed the Muirhead mean (MM) operator.

Definition 4 ([57]). Assume that aj(j = 1, 2, . . . , n) is a set of non-negative real numbers, and let P =

(p1, p2, . . . , pn) ∈ Rn be a vector of parameters. Then

MMP(a1, a2, . . . , an) =

(
1
n! ∑

σ∈Sn

n

∏
j=1

a
pj
σ(j)

) 1
∑n

j=1 pj
. (2)

Then, we call MMP the Muirhead mean (MM) operator, where σ(j) (j = 1, 2, . . . , n) is any permutation of
{1, 2, . . . , n}, and Sn is the set of all permutations of {1, 2, . . . , n}.

3. Picture Fuzzy Muirhead Mean Aggregation Operators

In this part, based on PFN information and the MM operator, we are going to propose some new
aggregation operators, including the PFMM operator and the PFWMM operator.
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3.1. The PFMM Operator

Definition 5. Assume that αj =
(

µαj , ηαj , ναj

)
(j = 1, 2, · · · , n) is a list of PFNs. The definition of the

PFMM operator is expressed as:

PFMMP(α1, α2, . . . , αn) =

(
1
n!

(
⊕

σ∈Sn

(
n
⊗

j=1
α

pj
σ(j)

))) 1
∑n

j=1 pj
. (3)

Theorem 2. Assume that αj =
(

µαj , ηαj , ναj

)
(j = 1, 2, · · · , n) is a set of PFNs. We can fuse all the PFN

information by utilizing the PFMM operator, and the fused results are shown as:

PFMMP(α1, α2, . . . , αn) =

(
1
n!

(
⊕

σ∈Sn

(
n
⊗

j=1
α

pj
σ(j)

))) 1
∑n

j=1 pj

=



1− ∏
σ∈Sn

(
1−

n
∏
j=1

µ
pj
ασ(j)

) 1
n!


1
∑n

j=1 pj

, 1−

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1− ηασ(j)

)pj

) 1
n!


1
∑n

j=1 pj

,

1−

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1− νασ(j)

)pj

) 1
n!


1
∑n

j=1 pj



(4)

Proof.
α

pj
σ(j) =

{
µ

pj
ασ(j)

, 1−
(

1− ηασ(j)

)pj
, 1−

(
1− νασ(j)

)pj
}

. (5)

Thus,
n
⊗

j=1
α

pj
σ(j) =

{
n

∏
j=1

µ
pj
ασ(j)

, 1−
n

∏
j=1

(
1− ηασ(j)

)pj
, 1−

n

∏
j=1

(
1− νασ(j)

)pj

}
. (6)

Thereafter,

⊕
σ∈Sn

(
n
⊗

j=1
α

pj
σ(j)

)
=


1− ∏

σ∈Sn

(
1−

n
∏
j=1

µ
pj
ασ(j)

)
, ∏

σ∈Sn

(
1−

n
∏
j=1

(
1− ηασ(j)

)pj

)
,

∏
σ∈Sn

(
1−

n
∏
j=1

(
1− νασ(j)

)pj

)
. (7)

Furthermore,

1
n!

(
⊕

σ∈Sn

(
n
⊗

j=1
α

pj
σ(j)

))
=



1− ∏
σ∈Sn

(
1−

n
∏
j=1

µ
pj
ασ(j)

) 1
n!
, ∏

σ∈Sn

(
1−

n
∏
j=1

(
1− ηασ(j)

)pj

) 1
n!

,

∏
σ∈Sn

(
1−

n
∏
j=1

(
1− νασ(j)

)pj

) 1
n!


. (8)

Therefore,
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PFMMP(α1, α2, . . . , αn) =

(
1
n!

(
⊕

σ∈Sn

(
n
⊗

j=1
α

pj
σ(j)

))) 1
∑n

j=1 pj

=



1− ∏
σ∈Sn

(
1−

n
∏
j=1

µ
pj
ασ(j)

) 1
n!


1
∑n

j=1 pj

, 1−

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1− ηασ(j)

)pj

) 1
n!


1
∑n

j=1 pj

,

1−

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1− νασ(j)

)pj

) 1
n!


1
∑n

j=1 pj



(9)

Hence, (4) is kept. �

Example 1. Let (0.43, 0.36, 0.19), (0.79, 0.02, 0.10), (0.44, 0.45, 0.08) be three PFNs, and P = (0.2,0.3,0.5),
3
∑

j=1
pj = 1. Then, according to (4), we have

PFMM(0.2,0.3,0.5)((0.43, 0.36, 0.19), (0.79, 0.02, 0.10), (0.44, 0.45, 0.08))

=



1−


(
1− 0.430.2 × 0.790.3 × 0.440.5)× (1− 0.430.2 × 0.440.3 × 0.790.5)
×
(
1− 0.790.2 × 0.430.3 × 0.440.5)× (1− 0.790.2 × 0.440.3 × 0.430.5)

×
(
1− 0.440.2 × 0.430.3 × 0.790.5)× (1− 0.440.2 × 0.790.3 × 0.430.5)


1
3!


1
1

,

1−

1−


(

1− (1− 0.36)0.2 × (1− 0.02)0.3 × (1− 0.45)0.5
)
×
(

1− (1− 0.36)0.2 × (1− 0.45)0.3 × (1− 0.02)0.5
)

×
(

1− (1− 0.02)0.2 × (1− 0.36)0.3 × (1− 0.45)0.5
)
×
(

1− (1− 0.02)0.2 × (1− 0.45)0.3 × (1− 0.36)0.5
)

×
(

1− (1− 0.45)0.2 × (1− 0.36)0.3 × (1− 0.02)0.5
)
×
(

1− (1− 0.45)0.2 × (1− 0.02)0.3 × (1− 0.36)0.5
)


1
3!



1
1

,

1−

1−


(

1− (1− 0.19)0.2 × (1− 0.10)0.3 × (1− 0.08)0.5
)
×
(

1− (1− 0.19)0.2 × (1− 0.08)0.3 × (1− 0.10)0.5
)

×
(

1− (1− 0.10)0.2 × (1− 0.19)0.3 × (1− 0.08)0.5
)
×
(

1− (1− 0.10)0.2 × (1− 0.08)0.3 × (1− 0.19)0.5
)

×
(

1− (1− 0.08)0.2 × (1− 0.19)0.3 × (1− 0.10)0.5
)
×
(

1− (1− 0.08)0.2 × (1− 0.10)0.3 × (1− 0.19)0.5
)


1
3!



1
1


= (0.5340, 0.2935, 0.0942)

It is clear that the PFMM operator satisfies the following three properties.

Theorem 3 (Idempotency). If all αj (j = 1, 2, · · · , n) are equal, i.e., αj = α for all j, then

PFMMP(α1, α2, · · · , αn) = α (10)

Theorem 4 (Boundedness). Assume that αj (j = 1, 2, · · · , n) is a group of PFNs. If

α− = min
j

αj, α+ = max
j

αj

Then
α− ≤ PFMMP(α1, α2, · · · , αn) ≤ α+ (11)

Theorem 5 (Monotonicity). Assume that αj (j = 1, 2, · · · , n) and α′ j (j = 1, 2, · · · , n) are two lists of PFNs.
Let αj ≤ α′ j for all j. Then,

PFMMP(α1, α2, · · · , αn) ≤ PFMMP(α′1, α′2, · · · , α′n
)
. (12)
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3.2. The PFWMM Operator

To take an attribute’s weight into account, the picture fuzzy weighted MM (PFWMM) operator
can be defined as follows.

Definition 6. Assume that αj =
(

µαj , ηαj , ναj

)
(j = 1, 2, · · · , n) is a list of PFNs. The PFWMM operator can

be defined as:

PFWMMP
nw(α1, α2, . . . , αn) =

(
1
n!

(
⊕

σ∈Sn

(
n
⊗

j=1

(
nwσ(j)ασ(j)

)pj

))) 1
∑n

j=1 pj
(13)

Theorem 6. Assume that αj =
(

µαj , ηαj , ναj

)
(j = 1, 2, · · · , n) is a group of PFNs. We can fuse all the PFN

information by utilizing the PFWMM operator, and the fused results are shown as:

PFWMMP
nw =

(
1
n!

(
⊕

σ∈Sn

(
n
⊗

j=1

(
nwσ(j)ασ(j)

)pj

))) 1
∑n

j=1 pj

=



1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
1− µασ(j)

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj

,

1−

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
ηασ(j)

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj

,

1−

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
νασ(j)

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj



(14)

Proof.
nwσ(j)ασ(j) =

{
1−

(
1− µασ(j)

)nwσ(j)
,
(

ηασ(j)

)nwσ(j)
,
(

νασ(j)

)nwσ(j)
}

(15)

Thus,(
nwσ(j)ασ(j)

)pj
=

{(
1−

(
1− µασ(j)

)nwσ(j)
)pj

, 1−
(

1−
(

ηασ(j)

)nwσ(j)
)pj

, 1−
(

1−
(

νασ(j)

)nwσ(j)
)pj
}

. (16)

Therefore,

n
⊗

j=1

(
nwσ(j)ασ(j)

)pj
=


n
∏
j=1

(
1−

(
1− µασ(j)

)nwσ(j)
)pj

, 1−
n
∏
j=1

(
1−

(
ηασ(j)

)nwσ(j)
)pj

,

1−
n
∏
j=1

(
1−

(
νασ(j)

)nwσ(j)
)pj

. (17)



Symmetry 2019, 11, 6 7 of 20

Thereafter,

⊕
σ∈Sn

(
n
⊗

j=1

(
nwσ(j)ασ(j)

)pj

)

=


1− ∏

σ∈Sn

(
1−

n
∏
j=1

(
1−

(
1− µασ(j)

)nwσ(j)
)pj

)
, ∏

σ∈Sn

(
1−

n
∏
j=1

(
1−

(
ηασ(j)

)nwσ(j)
)pj

)
,

∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
νασ(j)

)nwσ(j)
)pj

)


(18)

Furthermore,

1
n!

(
⊕

σ∈Sn

(
n
⊗

j=1

(
nwσ(j)ασ(j)

)pj

))

=


1− ∏

σ∈Sn

(
1−

n
∏
j=1

(
1−

(
1− µασ(j)

)nwσ(j)
)pj

) 1
n!

, ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
ηασ(j)

)nwσ(j)
)pj

) 1
n!

,

∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
νασ(j)

)nwσ(j)
)pj

) 1
n!


(19)

Therefore,

PFWMMP
nw =

(
1
n!

(
⊕

σ∈Sn

(
n
⊗

j=1

(
nwσ(j)ασ(j)

)pj

))) 1
∑n

j=1 pj

=



1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
1− µασ(j)

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj

,

1−

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
ηασ(j)

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj

,

1−

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
νασ(j)

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj



(20)

Hence, (14) is kept. �

Example 2. Let (0.43, 0.36, 0.19), (0.79, 0.02, 0.10), (0.44, 0.45, 0.08) be three PFNs, and P = (0.2,0.3,0.5),
3
∑

j=1
pj = 1 and w= (0.4,0.3,0.3). Then, according to (4), we have
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PFWMM(0.2,0.3,0.5)
(0.4,0.3,0.3)((0.43, 0.36, 0.19), (0.79, 0.02, 0.10), (0.44, 0.45, 0.08))

=





1−



(
1−

(
1− (1− 0.43)1.2

)0.2
×
(

1− (1− 0.79)0.9
)0.3
×
(

1− (1− 0.44)0.9
)0.5

)
×
(

1−
(

1− (1− 0.43)1.2
)0.2
×
(

1− (1− 0.44)0.9
)0.3
×
(

1− (1− 0.79)0.9
)0.5

)
×
(

1−
(

1− (1− 0.79)0.9
)0.2
×
(

1− (1− 0.43)1.2
)0.3
×
(

1− (1− 0.44)0.9
)0.5

)
×
(

1−
(

1− (1− 0.79)0.9
)0.2
×
(

1− (1− 0.44)0.9
)0.3
×
(

1− (1− 0.43)1.2
)0.5

)
×
(

1−
(

1− (1− 0.44)0.9
)0.2
×
(

1− (1− 0.43)1.2
)0.3
×
(

1− (1− 0.79)0.9
)0.5

)
×
(

1−
(

1− (1− 0.44)0.9
)0.2
×
(

1− (1− 0.79)0.9
)0.3
×
(

1− (1− 0.43)1.2
)0.5

)



1
3!


1
1

,

1−


1−



(
1−

(
1− 0.361.2)0.2 ×

(
1− 0.020.9)0.3 ×

(
1− 0.450.9)0.5

)
×
(

1−
(
1− 0.361.2)0.2 ×

(
1− 0.450.9)0.3 ×

(
1− 0.020.9)0.5

)
×
(

1−
(
1− 0.020.9)0.2 ×

(
1− 0.361.2)0.3 ×

(
1− 0.450.9)0.5

)
×
(

1−
(
1− 0.020.9)0.2 ×

(
1− 0.450.9)0.3 ×

(
1− 0.361.2)0.5

)
×
(

1−
(
1− 0.450.9)0.2 ×

(
1− 0.361.2)0.3 ×

(
1− 0.020.9)0.5

)
×
(

1−
(
1− 0.450.9)0.2 ×

(
1− 0.020.9)0.3 ×

(
1− 0.361.2)0.5

)



1
3!


1
1

,

1−


1−



(
1−

(
1− 0.191.2)0.2 ×

(
1− 0.100.9)0.3 ×

(
1− 0.080.9)0.5

)
×
(

1−
(
1− 0.191.2)0.2 ×

(
1− 0.080.9)0.3 ×

(
1− 0.100.9)0.5

)
×
(

1−
(
1− 0.100.9)0.2 ×

(
1− 0.191.2)0.3 ×

(
1− 0.080.9)0.5

)
×
(

1−
(
1− 0.100.9)0.2 ×

(
1− 0.080.9)0.3 ×

(
1− 0.191.2)0.5

)
×
(

1−
(
1− 0.080.9)0.2 ×

(
1− 0.191.2)0.3 ×

(
1− 0.100.9)0.5

)
×
(

1−
(
1− 0.080.9)0.2 ×

(
1− 0.100.9)0.3 ×

(
1− 0.191.2)0.5

)



1
3!


1
1


= (0.5347, 0.2885, 0.0853)

It is clear that the PFWMM operator satisfies the following two properties.

Theorem 7 (Boundedness). Assume that αj (j = 1, 2, · · · , n) is a group of PFNs. If

α− = min
j

αj, α+ = max
j

αj

Then
α− ≤ PFWMMP

nw(α1, α2, · · · , αn) ≤ α+. (21)

Theorem 8 (Monotonicity). Assume that αj (j = 1, 2, · · · , n) and α′ j (j = 1, 2, · · · , n) are two groups of
PFNs. Let αj ≤ α′ j for all j. Then,

PFWMMP
nw(α1, α2, · · · , αn) ≤ PFWMMP

nw
(
α′1, α′2, · · · , α′n

)
. (22)
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3.3. The PFDMM Operator

Qin and Liu [68] proposed the dual MM (DMM) as follows.

Definition 7 ([68]). Assume that ai (i = 1, 2, . . . , n) is a set of non-negative real numbers, and let P =

(p1, p2, . . . , pn) ∈ Rn be a vector of parameters. Then,

DMMP(a1, a2, . . . , an) =
1

∑n
j=1 pj

(
∏

σ∈Sn

n

∑
j=1

pjaσ(j)

) 1
n!

. (23)

Then, we call DMMP the dual MM (DMM) operator, where σ(j) (j = 1, 2, . . . , n) is any permutation of
{1, 2, . . . , n}, and Sn is the set of all permutations of {1, 2, . . . , n}.

Combining the PFN information and the DMM operator, the definition of the PFDMM operator
can be developed as follows.

Definition 8. Assume that αj =
(

µαj , ηαj , ναj

)
(j = 1, 2, · · · , n) is a group of PFNs, and let P =

(p1, p2, . . . , pn) ∈ Rn be a vector of parameters. Then,

PFDMMP(α1, α2, . . . , αj) =
1

∑n
j=1 pj

(
⊗

σ∈Sn

(
n
⊕

j=1

(
pjασ(j)

))) 1
n!

. (24)

Then, we call PFDMMP the picture fuzzy DMM (PFDMM) operator, where σ(j) (j = 1, 2, . . . , n)
is any permutation of {1, 2, . . . , n}, and Sn is the set of all permutations of {1, 2, . . . , n}.

Theorem 9. Assume that αj =
(

µαj , ηαj , ναj

)
(j = 1, 2, · · · , n) is a list of PFNs. We can fuse all the PFN

information by utilizing the PFDMM operator, and the fused results are shown as:

PFDMMP(α1, α2, . . . , αn) =
1

∑n
j=1 pj

(
⊗

σ∈Sn

(
n
⊕

j=1

(
pjασ(j)

))) 1
n!

=



1−

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1− µαj

)pj

) 1
n!


1
∑n

j=1 pj

,

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
ηαj

)pj

) 1
n!


1
∑n

j=1 pj

,

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
ναj

)pj

) 1
n!


1
∑n

j=1 pj



(25)

Proof.
pjασ(j) =

{
1−

(
1− µαj

)pj
,
(

ηαj

)pj
,
(

ναj

)pj
}

(26)

Thus,
n
⊕

j=1

(
pjασ(j)

)
=

{
1−

n

∏
j=1

(
1− µαj

)pj
,

n

∏
j=1

(
ηαj

)pj
,

n

∏
j=1

(
ναj

)pj

}
. (27)

Therefore,
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⊗
σ∈Sn

(
n
⊕

j=1

(
pjασ(j)

))
=


∏

σ∈Sn

(
1−

n
∏
j=1

(
1− µαj

)pj

)
, 1− ∏

σ∈Sn

(
1−

n
∏
j=1

(
ηαj

)pj

)
,

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
ναj

)pj

)
. (28)

Furthermore, (
⊗

σ∈Sn

(
n
⊕

j=1

(
pjασ(j)

))) 1
n!

=


∏

σ∈Sn

(
1−

n
∏
j=1

(
1− µαj

)pj

) 1
n!

, 1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
ηαj

)pj

) 1
n!

,

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
ναj

)pj

) 1
n!


(29)

Therefore,

PFDMMP(α1, α2, . . . , αn) =
1

∑n
j=1 pj

(
⊗

σ∈Sn

(
n
⊕

j=1

(
pjασ(j)

))) 1
n!

=



1−

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1− µαj

)pj

) 1
n!


1
∑n

j=1 pj

,

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
ηαj

)pj

) 1
n!


1
∑n

j=1 pj

,

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
ναj

)pj

) 1
n!


1
∑n

j=1 pj



(30)

Hence, (25) is kept. �

Example 3. Let (0.43, 0.36, 0.19), (0.79, 0.02, 0.10), (0.44, 0.45, 0.08) be three PFNs, and P = (0.2,0.3,0.5),
3
∑

j=1
pj = 1. Then, according to (25), we have

PFDMM(0.2,0.3,0.5)((0.43, 0.36, 0.19), (0.79, 0.02, 0.10), (0.44, 0.45, 0.08))

=



1−

1−


(

1− (1− 0.43)0.2 × (1− 0.79)0.3 × (1− 0.44)0.5
)
×
(

1− (1− 0.43)0.2 × (1− 0.44)0.3 × (1− 0.79)0.5
)

×
(

1− (1− 0.02)0.2 × (1− 0.43)0.3 × (1− 0.44)0.5
)
×
(

1− (1− 0.79)0.2 × (1− 0.44)0.3 × (1− 0.43)0.5
)

×
(

1− (1− 0.44)0.2 × (1− 0.43)0.3 × (1− 0.79)0.5
)
×
(

1− (1− 0.44)0.2 × (1− 0.79)0.3 × (1− 0.43)0.5
)


1
3!


1−


(
1− 0.360.2 × 0.020.3 × 0.450.5)× (1− 0.360.2 × 0.450.3 × 0.020.5)
×
(
1− 0.020.2 × 0.360.3 × 0.450.5)× (1− 0.020.2 × 0.450.3 × 0.360.5)

×
(
1− 0.450.2 × 0.360.3 × 0.020.5)× (1− 0.450.2 × 0.020.3 × 0.360.5)


1
3!


1
1

,

1−


(
1− 0.190.2 × 0.100.3 × 0.080.5)× (1− 0.190.2 × 0.080.3 × 0.100.5)
×
(
1− 0.100.2 × 0.190.3 × 0.080.5)× (1− 0.100.2 × 0.080.3 × 0.190.5)

×
(
1− 0.080.2 × 0.190.3 × 0.100.5)× (1− 0.450.2 × 0.100.3 × 0.190.5)


1
3!


1
1


= (0.5887,0.1598,0.0563)

It is clear that the PFDMM operator satisfies the following three properties.



Symmetry 2019, 11, 6 11 of 20

Theorem 10 (Idempotency). Let αj(j = 1, 2, · · · , n) be equal, i.e., αj = α for all j. Then,

PFDMMP(α1, α2, · · · , αn) = α. (31)

Theorem 11 (Boundedness). Assume that αj(j = 1, 2, · · · , n) is a list of PFNs. If

α− = min
j

αj, α+ = max
j

αj

Then
α− ≤ PFDMMP(α1, α2, · · · , αn) ≤ α+. (32)

Theorem 12 (Monotonicity). Assume that αj(j = 1, 2, · · · , n) and α′ j(j = 1, 2, · · · , n) are two groups of
PFNs, and let αj ≤ α′ j for all j. Then,

PFDMMP(α1, α2, · · · , αn) ≤ PFDMMP(α′1, α′2, · · · , α′n
)
. (33)

3.4. The PFWDMM Operator

To take an attribute’s weight into account, the picture fuzzy weighted DMM (PFWDMM) operator
can be defined as follows.

Definition 9. Assume that αj =
(

µαj , ηαj , ναj

)
(j = 1, 2, · · · , n) is a set of PFNs. The definition of the

PFWDMM operator can be expressed as:

PFWDMMP
nw(α1, α2, · · · , αn) =

1
∑n

j=1 pj

(
⊗

σ∈Sn

(
n
⊕

j=1

(
pjα

nwσ(j)
σ(j)

))) 1
n!

. (34)

Theorem 13. Assume that αj =
(

µαj , ηαj , ναj

)
(j = 1, 2, · · · , n) is a group of PFNs. We can fuse all the PFN

information by utilizing the PFWDMM operator, and the fused results are shown as:

PFWDMMP
nw(α1, α2, · · · , αn)

= 1
∑n

j=1 pj
⊗

σ∈Sn

(
n
⊕

j=1

(
pjα

nwσ(j)
σ(j)

)) 1
n!

=



1−

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
µαj

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj

,

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
1− ηαj

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj

,

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
1− ναj

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj



(35)

Proof.
α

nwσ(j)
σ(j) =

{(
µαj

)nwσ(j)
, 1−

(
1− ηαj

)nwσ(j)
, 1−

(
1− ναj

)nwσ(j)
}

(36)
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Then,

pjα
nwσ(j)
σ(j) =

{
1−

(
1−

(
µαj

)nwσ(j)
)pj

,
(

1−
(

1− ηαj

)nwσ(j)
)pj

,
(

1−
(

1− ναj

)nwσ(j)
)pj
}

. (37)

Thus,

n
⊕

j=1

(
pjα

nwσ(j)
σ(j)

)
=


1−

n
∏
j=1

(
1−

(
µαj

)nwσ(j)
)pj

,
n
∏
j=1

(
1−

(
1− ηαj

)nwσ(j)
)pj

,

n
∏
j=1

(
1−

(
1− ναj

)nwσ(j)
)pj

. (38)

Therefore,

⊗
σ∈Sn

(
n
⊕

j=1

(
pjα

nwσ(j)
σ(j)

))

=


∏

σ∈Sn

(
1−

n
∏
j=1

(
1−

(
µαj

)nwσ(j)
)pj

)
, 1− ∏

σ∈Sn

(
1−

n
∏
j=1

(
1−

(
1− ηαj

)nwσ(j)
)pj

)
,

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
1− ναj

)nwσ(j)
)pj

)


(39)

Furthermore,

⊗
σ∈Sn

(
n
⊕

j=1

(
pjα

nwσ(j)
σ(j)

)) 1
n!

=


∏

σ∈Sn

(
1−

n
∏
j=1

(
1−

(
µαj

)nwσ(j)
)pj

) 1
n!

, 1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
1− ηαj

)nwσ(j)
)pj

) 1
n!

,

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
1− ναj

)nwσ(j)
)pj

) 1
n!


(40)

Therefore,
PFWDMMP

nw(α1, α2, · · · , αn)

= 1
∑n

j=1 pj
⊗

σ∈Sn

(
n
⊕

j=1

(
pjα

nwσ(j)
σ(j)

)) 1
n!

=



1−

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
µαj

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj

,

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
1− ηαj

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj

,

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
1− ναj

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj



(41)

Hence, (35) is kept. �
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Example 4. Let (0.43, 0.36, 0.19), (0.79, 0.02, 0.10), (0.44, 0.45, 0.08) be three PFNs, and P = (0.2,0.3,0.5),
3
∑

j=1
pj = 1 and w= (0.4,0.3,0.3). Then, according to (35), we have

PFWDMM(0.2,0.3,0.5)
(0.4,0.3,0.3)((0.43, 0.36, 0.19), (0.79, 0.02, 0.10), (0.44, 0.45, 0.08))

=



1−


1−



(
1−

(
1− 0.431.2)0.2 ×

(
1− 0.790.9)0.3 ×

(
1− 0.440.9)0.5

)
×
(

1−
(
1− 0.431.2)0.2 ×

(
1− 0.440.9)0.3 ×

(
1− 0.790.9)0.5

)
×
(

1−
(
1− 0.790.9)0.2 ×

(
1− 0.431.2)0.3 ×

(
1− 0.440.9)0.5

)
×
(

1−
(
1− 0.790.9)0.2 ×

(
1− 0.440.9)0.3 ×

(
1− 0.431.2)0.5

)
×
(

1−
(
1− 0.440.9)0.2 ×

(
1− 0.431.2)0.3 ×

(
1− 0.790.9)0.5

)
×
(

1−
(
1− 0.440.9)0.2 ×

(
1− 0.790.9)0.3 ×

(
1− 0.431.2)0.5

)



1
3!


,



1−



(
1−

(
1− (1− 0.36)1.2

)0.2
×
(

1− (1− 0.02)0.9
)0.3
×
(

1− (1− 0.45)0.9
)0.5

)
×
(

1−
(

1− (1− 0.36)1.2
)0.2
×
(

1− (1− 0.45)0.9
)0.3
×
(

1− (1− 0.02)0.9
)0.5

)
×
(

1−
(

1− (1− 0.02)0.9
)0.2
×
(

1− (1− 0.36)1.2
)0.3
×
(

1− (1− 0.45)0.9
)0.5

)
×
(

1−
(

1− (1− 0.02)0.9
)0.2
×
(

1− (1− 0.45)0.9
)0.3
×
(

1− (1− 0.36)1.2
)0.5

)
×
(

1−
(

1− (1− 0.45)0.9
)0.2
×
(

1− (1− 0.36)1.2
)0.3
×
(

1− (1− 0.02)0.9
)0.5

)
×
(

1−
(

1− (1− 0.45)0.9
)0.2
×
(

1− (1− 0.02)0.9
)0.3
×
(

1− (1− 0.36)1.2
)0.5

)



1
3!


1
1

,



1−



(
1−

(
1− (1− 0.19)1.2

)0.2
×
(

1− (1− 0.10)0.9
)0.3
×
(

1− (1− 0.08)0.9
)0.5

)
×
(

1−
(

1− (1− 0.19)1.2
)0.2
×
(

1− (1− 0.08)0.9
)0.3
×
(

1− (1− 0.10)0.9
)0.5

)
×
(

1−
(

1− (1− 0.10)0.9
)0.2
×
(

1− (1− 0.19)1.2
)0.3
×
(

1− (1− 0.08)0.9
)0.5

)
×
(

1−
(

1− (1− 0.10)0.9
)0.2
×
(

1− (1− 0.08)0.9
)0.3
×
(

1− (1− 0.19)1.2
)0.5

)
×
(

1−
(

1− (1− 0.08)0.9
)0.2
×
(

1− (1− 0.19)1.2
)0.3
×
(

1− (1− 0.10)0.9
)0.5

)
×
(

1−
(

1− (1− 0.08)0.9
)0.2
×
(

1− (1− 0.10)0.9
)0.3
×
(

1− (1− 0.19)1.2
)0.5

)



1
3!


1
1


= (0.5946,0.1586,0.0560)

It is clear that the PFWDMM operator satisfies the following two properties.

Theorem 14 (Boundedness). Assume that αj(j = 1, 2, · · · , n) is a group of PFNs. If

α− = min
j

αj, α+ = max
j

αj

Then
α− ≤ PFDWMMP

nw(α1, α2, · · · , αn) ≤ α+. (42)
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Theorem 15 (Monotonicity). Assume that αj(j = 1, 2, · · · , n) and α′ j(j = 1, 2, · · · , n) are two groups of
PFNs, and let αj ≤ α′ j for all j. Then,

PFWDMMP
nw(α1, α2, · · · , αn) ≤ PFWDMMP

nw
(
α′1, α′2, · · · , α′n

)
. (43)

4. Models for MADM with PFNs

According to the PFWMM (PFWDMM) operators, an MADM model with PFNs is briefly
introduced in this part. Assume there are m alternatives A = {A1, A2, · · · , Am}, and n attributes

G = {G1, G2, · · · , Gn} with a weighting vector ω = (ω1, ω2, · · · , ωn), where ωj ∈ [0, 1],
n
∑

j=1
ωj = 1.

Construct the picture fuzzy decision matrix R̃ =
(
r̃ij
)

m×n =
(
µij, ηij, νij

)
m×n, where µij means

the positive-membership degree function that the alternative Ai meets the attribute Gj, ηij is the
neutral-membership degree function that the alternative Ai does not meet the attribute Gj, νij denotes
the negative-membership degree function that the alternative Ai does not meet the attribute Gj,
µij ∈ [0, 1], ηij ∈ [0, 1] νij ∈ [0, 1], µij + ηij + νij ≤ 1, πij = 1 −

(
µij + ηij + νij

)
i = 1, 2, · · · , m,

j = 1, 2, · · · , n.
Afterwards, we utilize the PFWMM (PFDWMM) operator to solve MADM problems with

PFN information.

Step 1. We fuse the PFN information given in matrix R̃ by using the PFWMM operator

αi = PFWMMP
nw(r̃i1, r̃i2, · · · , r̃in)

=

(
1
n!

(
⊕

σ∈Sn

(
n
⊗

j=1

(
nwσ(j) r̃ij

)pj

))) 1
∑n

j=1 pj

=



1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
1− µαij

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj

,

1−

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
ηαij

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj

,

1−

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
ναij

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj



, i = 1, 2, · · · , m.

(44)

Or the PFWDMM operator

PFWDMMP
nw(α1, α2, · · · , αn)

= 1
∑n

j=1 pj
⊗

σ∈Sn

(
n
⊕

j=1

(
pjα

nwσ(j)
σ(j)

)) 1
n!

=



1−

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
µαj

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj

,

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
1− ηαj

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj

,

1− ∏
σ∈Sn

(
1−

n
∏
j=1

(
1−

(
1− ναj

)nwσ(j)
)pj

) 1
n!


1
∑n

j=1 pj



, i = 1, 2, · · · , m.

(45)
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to obtain the overall preference results αi(i = 1, 2, · · · , m) of the alternative Ai.

Step 2. Compute the score values S(αi) (i = 1, 2, · · · , m) of the overall PFNs αi(i = 1, 2, · · · , m) to
order all the alternatives Ai(i = 1, 2, · · · , m). If two scores S(αi) and S

(
αj
)

are equal, we can compute
the accuracy values H(αi) of the overall PFNs αi, and then order the all the alternatives Ai.

Step 3. Order all the alternatives Ai(i = 1, 2, · · · , m) and select the best choice by S(αi)

(i = 1, 2, · · · , m).

Step 4. End.

5. Numerical Example and Comparative Analysis

5.1. A Numerical Example

As a transitional state, China has implemented reform and an opening-up policy for more than
30 years. During this period, China’s economy has made marvelous achievements, and so did reform
in financial circles. However, people still worry about the accumulation of financial risks and other
factors that make a financial system unstable. China did successfully bear the impact of the global
financial crisis in 2008; however, this does not mean that our financial system has the ability to resist
any risk. In fact, there are many potential factors that can make our financial system unstable. Thus,
in this section, we shall present a numerical example for evaluating financial investment risk with
IVPULNs in order to illustrate the method proposed in this paper. The project’s aim is to evaluate
the best financial investment alternatives from the different financial investment alternatives in an
enterprise financial risk environment. In order to select most desirable enterprise, the desirability
levels of five possible financial investment alternatives Ai(i = 1, 2, 3, 4, 5) are evaluated. The team
of experts must make a decision according to the following four attributes: 1© G1 is the market risk;
2© G2 is the enterprise’s operation and management risk; 3© G3 is the enterprise’s assets structure

risk; and 4© G4 is the environmental risk. The experts use the above attributes to evaluate the five
possible financial investment alternatives Ai(i = 1, 2, · · · , 5) by using the PFNs by the decision-makers
under the above four attributes (whose weighting vector is ω = (0.3, 0.2, 0.4, 0.1)), and construct the
following matrix R̃ =

(
r̃ij
)

5×4 as shown in Table 1.

Table 1. The picture fuzzy number (PFN) information decision matrix.

A1 A2 A3 A4 A5

G1 (0.43,0.36,0.19) (0.43,0.32,0.18) (0.71,0.23,0.01) (0.25,0.49,0.15) (0.50,0.45,0.03)
G2 (0.79,0.02,0.01) (0.73,0.04,0.11) (0.87,0.02,0.03) (0.64,0.12,0.13) (0.78,0.03,0.11)
G3 (0.43,0.45,0.08) (0.03,0.62,0.33) (0.04,0.55,0.30) (0.01,0.69,0.25) (0.03,0.57,0.26)
G4 (0.18,0.39,0.04) (0.53,0.25,0.18) (0.48,0.26,0.16) (0.02,0.54,0.26) (0.13,0.65,0.19)

To select the most desirable financial investment alternative, we use the PFWMM (PFWDMM)
operator to solve the MADM model with PFNs. The computing steps are listed as follows.

• Step 1. Based on Table 1, fuse all PFNs r̃ij(j = 1, 2, · · · , n) by utilizing the PFWMM (PFWDMM)
operator to obtain the overall PFNs αi(i = 1, 2, 3, 4, 5) of the financial investment alternative Ai.
The fused values are listed in Table 2.

• Step 2. Based on the fused values shown in Table 2, the score values of the financial investment
alternatives are given in Table 3.

• Step 3. Based on the score values of the overall alternatives (Table 4), we can rank all the
alternatives, and the ranking of the financial investment alternatives is slightly different.
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Table 2. The fused values of the financial investment alternatives by the picture fuzzy weighted
Muirhead mean (PFWMM) operator and the picture fuzzy weighted dual Muirhead mean
(PFWDMM) operator.

PFWMM PFWDMM

A1 (0.4056,0.3604,0.1213) (0.5234,0.2365,0.0555)
A2 (0.3036,0.3700,0.2605) (0.5571,0.2222,0.1703)
A3 (0.3719,0.3239,0.1844) (0.6637,0.1880,0.0666)
A4 (0.0965,0.5274,0.2694) (0.2934,0.3709,0.1701)
A5 (0.2166,0.4819,0.2210) (0.4738,0.3379,0.1087)

Table 3. The score functions of the financial investment alternatives.

PFWMM PFWDMM

A1 0.2843 0.4679
A2 0.0431 0.3867
A3 0.1874 0.5971
A4 −0.1730 0.1233
A5 −0.0044 0.3651

Table 4. Ordering of the financial investment alternatives.

Ordering

PFWMM A1 > A3 > A2 > A5 > A4
PFWDMM A3 > A1 > A2 > A5 > A4

5.2. Comparative Analysis

In addition, a comparative analysis was made between the PFWMM(PFWDMM) operator and
the PFWA and PFWG operators defined by Wei [31]. The comparative results are given in Table 5.

Table 5. Ranking of the financial investment alternatives.

Ordering

PFWA A3 > A1 > A5 > A2 > A4
PFWG A1 > A3 > A5 > A2 > A4

From above, we can see that the fused values are slightly different in the ordering of the
alternatives to show the accuracy and scientific merit of the proposed approaches. However, the PFWA
and PFWG operators have the limitation of not considering the relationships between the attributes in
the fused information. Our defined PFWMM and PFWDMM operators have the advantage of taking
the interaction relationships among any number of attributes into account, and can be more effective
and accurate.

6. Conclusions

Aggregation operators have become a hot issue and an important tool in the decision-making
fields in recent years. However, they still have some limitations in practical applications. For example,
some aggregation operators suppose that the attributes are independent of each other. However,
the MM operator and the dual MM operator have a prominent characteristic: they can consider
the interaction relationships among any number of attributes by a parameter vector λ. According
to the MM operator and the dual MM operator, in this article, we defined some new MM and
DMM aggregation operators to deal with MADM problems under a PFN environment, including
the PFMM operator, the PFWMM operator, the PFDMM operator and the PFWDMM operator.
Of course, the precious merits of these defined operators are investigated. Moreover, we have adopted
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PFWMM and PFWDMM operators to build some decision-making models to handle picture fuzzy
MADM problems. In the end, we take a concrete instance of appraising a financial investment risk
to demonstrate our defined model and to verify its accuracy and scientific merit. In the future,
we can apply our defined PFN aggregation operators into other decision-making fields, such as the
decision-making, risk analysis, and other fields that operate in an uncertain environment [54,69–80].
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