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Abstract: The resource limitation of multi-access edge computing (MEC) is one of the major issues in
order to provide low-latency high-reliability computing services for Internet of Things (IoT) devices.
Moreover, with the steep rise of task requests from IoT devices, the requirement of computation tasks
needs dynamic scalability while using the potential of offloading tasks to mobile volunteer nodes
(MVNSs). We, therefore, propose a scalable vehicle-assisted MEC (SVMEC) paradigm, which cannot
only relieve the resource limitation of MEC but also enhance the scalability of computing services
for IoT devices and reduce the cost of using computing resources. In the SVMEC paradigm, a MEC
provider can execute its users’ tasks by choosing one of three ways: (i) Do itself on local MEC,
(ii) offload to the remote cloud, and (iii) offload to the MVNs. We formulate the problem of
joint node selection and resource allocation as a Mixed Integer Nonlinear Programming (MINLP)
problem, whose major objective is to minimize the total computation overhead in terms of the
weighted-sum of task completion time and monetary cost for using computing resources. In order
to solve it, we adopt alternative optimization techniques by decomposing the original problem into
two sub-problems: Resource allocation sub-problem and node selection sub-problem. Simulation
results demonstrate that our proposed scheme outperforms the existing schemes in terms of the total
computation overhead.

Keywords: task offloading; resource allocation; mobile cloud computing; multi-access edge
computing; vehicular cloud; Internet of Things

1. Introduction

During the last decade, we witnessed a striking rise in population of mobile Internet of Things
(IoT) devices, such as smart phones, tablets, wearable devices, and sensors. In addition, according
to Information Handling Services Markit company, the IoT market will grow from an installed base
of 15.4 billion devices in 2015 to 30.7 billion devices in 2020 and 75.4 billion in 2025 [1]. Together
with it, a new breed of applications and services for IoT devices is constantly emerging and attracting
great attentions. For example, the Internet of Medical Things (IoMT) [2] is an application of the IoT
for medical and health-care purposes, from remote monitoring to smart sensors and medical device
integration. The IoMT cannot only provide better treatment and assistant services to patients and
disabled people in daily routine, but also offer health-care providers with actual health data to identify
issues before they become critical [3,4]. Besides health-care systems, the IoT can also assist in the
integration of communications, control and information processing across various transportation
systems, which helps improve the efficiency and convenience of modern day transportation [5].
In particular, the IoT is used for smart road and traffic management as a means of reducing traffic
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congestions or redirecting traffic in response to an accident or other types of hazard by building
sensors into highways and surface streets [6]. Moreover, the IoT has driven the autonomous vehicle
revolution. Modern vehicles utilize a series of radar lasers, high-powered cameras, and smart sensors
that map out the vehicles” surrounding. Accordingly, many applications for autonomous vehicles
have emerged, and can be classified into safety applications (e.g., localization and navigation, obstacle
detection, accident avoidance, remote-sensing, etc.) [7-10] and non-safety applications (e.g., media
sharing, infotainment, file transfer, gaming, etc.) [11-13]. Not only that, the applications of the IoT can
be found in other areas, such as home automation [14], industrial manufacturing [15], environmental
monitoring [16], and so on. Therefore, along with the explosive growth of IoT devices, the potential of
next-generation IoT applications is boundless and they affect every aspects of human life.

However, these next-generation IoT applications usually require intensive computation capacity
and persistent data processing. Meanwhile, IoT devices typically have intrinsic limitations of
battery life, processing power, storage capacity, and network resources. To address this challenge,
mobile cloud computing (MCC) [17] has been introduced to assist IoT devices by enabling offloading
compute-intensive, resource-consuming tasks up to a powerful computing platform in cloud.
Nevertheless, because of the far distance between the cloud and IoT devices, traditional MCC has
the drawbacks of high transmission delay, poor reliability, heavy burden on network performance,
and degradation of quality of service (QoS).

Multi-access edge computing (MEC) [18] or formerly mobile edge computing, as a new
architecture and key technology for the coming 5G networks, has been proposed to tackle the above
issues. MEC promotes the idea of deploying cloud resources (e.g., MEC servers) at the edge of networks
in close proximity to IoT devices (e.g., WiFi access points and base stations). By this way, MEC can
provide low-latency high-reliability computing services for IoT devices. Similar concepts including fog
computing [19] and cloudlet [20] have been perceived as what is known as edge computing paradigm.
However, considering the economic and scalable deployment, the resources of MEC are often limited.
The rapid increase of task requests from IoT devices will cause the resource bottleneck of MEC servers,
and considerably affect the task execution delay.

To deal with the resource limitation of MEC, a solution is to integrate MEC and remote cloud to
extend the total resource capacity [21-24]. The benefit of scalability, on-demand and pay-as-you-go
services of the cloud can help the MEC fulfill the increasing demands of large-scale compute-intensive
offloading tasks if the resources of MEC are not sufficient. Moreover, thanks to the widespread
popularity of the passive optical networks (PONs) recently, the latency and reliability during the data
exchange with the centralized cloud via the wide area network (WAN) have been well improved [21].
Hence, cloud computing and MEC are complementary technologies.

On the other hand, vehicular cloud (VC) [25], the merging of MCC and Vehicular Ad hoc
Network (VANET), has also emerged as another extension of the MEC resources by leveraging the
on-board resources in participating vehicles. In [26], vehicle as a resource (VaaR) vision is introduced
and stimulated by the ubiquity of vehicles and the vehicular resources that are readily available.
To better perceive the VaaR potentialities, in 2015, Gartner estimated a quarter billion connected
vehicles on the road globally by 2020, making connected cars a key enabler for the revolution of
the IoT [27]. Thanks to the advances in automotive industry, vehicles are augmented with a variety
of resources (e.g., wireless communication, on-board storage, and computing units), and can be
regarded as “computers-on-wheels”. However, currently these resources are not exploited efficiently.
Their on-board resources are usually under-utilized for most of their time, during which can be used
for other task. Also, urban vehicular networks are recognized as a significant component of the
future intelligent transportation, supporting three types of communication: Between vehicles (V2V),
between vehicles and infrastructures (V2I and 12V), between vehicles and any neighboring object
(V2X) communications [28]. These features help vehicles become potential computing nodes in a
cloud computing network. For example, in [29,30], vehicles are employed to share the computation
tasks offloaded by MEC providers. By integrating various usable resources of volunteer vehicles,
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we can further relieve the resource limitation of MEC, enhance the scalability of computing services
for IoT devices and reduce the cost of using cloud resources. However, we note that most recent task
offloading studies to address the resource limitation problem of MEC have only taken the MEC and
remote cloud resources into consideration while ignoring the abundant resources that can be offered
by volunteer vehicles in the VC.

Therefore, in this paper, we propose to combine MEC with fixed remote cloud and vehicular cloud
to expand the currently available resources of MEC for task requests from IoT devices. In our scenario,
a MEC provideroffers computing services for IoT devices. After receiving the task requests from
IoT devices, the MEC provider makes a strategy to allocate these computation tasks to a computing
platform originated from the infrastructure of MEC, remote cloud, and vehicular cloud. The remote
cloud can help execute excessive offloading tasks of MEC. However, it is accompanied by monetary
cost charged to the MEC provider for using the cloud resources. Meanwhile, in the vehicular cloud,
we use buses in the VC as candidate mobile volunteer nodes (MVNSs) that share their idle computing
resources for tasks offloaded from the MEC provider. Incentives are offered to the owners of MVN5s
to encourage sharing their resources. Therefore, besides task completion time, the monetary cost for
using computing resource should be in consideration of the MEC provider.

The main contributions of this paper are summarized as follows.

e  We investigate an innovative framework of task offloading in a scalable vehicle-assisted MEC
(SVMEC), where the MEC capacity is extended by renting resources from a remote cloud and
vehicular cloud. We stand on the perspective of a MEC provider, whose objective is to minimize
the total computation overhead in terms of the weighted-sum of task completion time and
monetary cost for using computing resources.

o  We formulate the problem of joint node selection and resource allocation as a Mixed Integer
Nonlinear Programming (MINLP) problem that jointly optimizes the task offloading decisions
and computing resource allocation to the offloaded tasks, so as to minimize the total computation
overhead of the MEC provider.

e  We solve the problem by decomposing the original problem into two-subproblem (i) Resource
allocation (RA) problem with fixed task offloading decision and (ii) Node selection (NS) problem
that optimizes the optimal-value function based on the solution of RA problem.

o  We also justify the efficiency of our proposed scheme by extensive simulations. We compare the
performance in terms of total computation overhead between our proposed scheme and three
other strategies. The comparison is conducted under different situations, such as different number
of tasks and task’s profiles (i.e., compute-intensive and data-intensive tasks). In each situation, we
also analyze the trend of task distribution on MEC, remote cloud, and MVNs in order to explain
the achieved result of our proposal.

e Based on the experimental results, we can conclude that compared with other strategies,
our proposed scheme provides the MEC provider a better solution to optimize the total
computation overhead.

The remainder of this paper is organized as follows. In Section 2, we discuss some related works.
The system model and optimization problem are described in Section 3. We present our proposed
solution in Section 4. Simulation results are presented and discussed in Section 5, followed by our
conclusions in Section 6.

2. Related Work

In recent year, there have been various studies that attempt to solve task offloading problem
in MEC. The cooperation of multi-level central/edge clouds introduces new challenges and
attracts relevant investigations on proper node selection and resource allocation for task offloading.
For example, Zhao et al. [24] proposed a cooperative scheduling scheme of MEC (so-called local cloud)
and central cloud to maximize the amount of the tasks served by the MEC while satisfying the delay
requirements of the offloaded tasks. The task offloading decision depends on the task priorities in
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terms of delay requirements, and the availability of MEC resources. Specifically, the offloaded tasks are
firstly delivered to the local scheduler within the MEC. The scheduler applies a threshold-based policy,
which defines several buffer thresholds for each priority level. When the computation load of the MEC
server exceeds the buffer threshold, the scheduler delegates the task to the central cloud. Meanwhile,
in [31], the minimization of the task execution delay is done by allocating computing resources of
a cluster of nearby MECs, while avoiding using the central cloud. The MEC cluster is formed by
means of a cooperative game approach such that the available computation resources are maximally
exploited while participating MECs receive incentives in a fair manner. Not only the execution delay,
the selection of computing nodes in [32] also considers power consumption of the computation nodes.
This paper proposes three different MEC clustering strategies to handle a single user’s request in order
to minimize execution delay, minimize overall power consumption of cluster and minimize the power
consumption of each MEC in the cluster, respectively. This work is extended to a multi-user scenario
in [33] where each user has assigned different cluster size depending on the applications and the user’s
requirements. Note that in most of these works, the objective is to minimize the execution delay of
the offloaded tasks and/or the power consumption of computing nodes while the cost for using the
resources is not considered. Moreover, the resources are fixed servers at the edge or central cloud,
while other mobile volunteer resources (e.g., vehicular cloud) are also not considered.

On the other hand, there are also existing researches on task offloading problem in vehicular cloud.
The vehicular cloud consists of both vehicles in movement and statically parked ones. The authors
in [34,35] propose to consider parked vehicles for task offloading and cooperative sensing. The parked
vehicles can be treated as static cloud nodes, which are stable resources and the corresponding task
offloading policy has been well examined [18]. Many other researches focus on utilizing vehicles in
movement. In [36,37], the centralized task offloading and resource allocation problem in vehicular
cloud are formulated based on a semi-Markov decision process (SDMP) approach in order to maximize
the total long-term expected reward of VC in terms of both the income and cost of VC as well as the
variability feature of available resources. However, centralized task scheduling requires large signaling
overheads for updating vehicular states, and the SMDP-based approach suffers from high complexity,
and thus cannot be applied in the scenarios of high density of vehicles. Alternatively, task offloading
can be in distributed manner, i.e., each users makes task offloading decisions individually [38].
However, in this case, it still requires exchanges of vehicular states or requires a learning-based
technique to obtain the performance of other vehicles [39]. To deal with the uncertainty of vehicle
movements and improve service reliability, task replication policies are also proposed, which allows
one task to be executed by several vehicles at the same time [40,41]. However, the drawback of the
task replication approach is the high resource cost. Moreover, it is noteworthy that the above works
focus on task offloading among vehicles in the VC by coordinating the resources of all participants in
the VC while the utilization of remote cloud resources is not considered explicitly. In fact, if there are
no sufficient available resources in the VC, the tasks will be simply offloaded to remote cloud.

Different from the mentioned papers, our paper focuses on the scenario that a MEC provider
can execute its computing tasks locally or offload them to remote cloud or mobile volunteer nodes
in the VC. In the literatures, few works consider offloading tasks from MEC to VC. For example,
in [29], the authors consider a roadside cloudlet system, in which public service vehicles, such as buses,
are leveraged as fog nodes to accomplish the tasks offloaded by the cloudlet. The authors propose an
offloading strategy based on genetic algorithm, which enables the roadside cloudlet to spend the least
incentive cost to motivate the bus and satisfy user experience. However, the paper does not consider
resources of MEC servers. In [30], a combination of vehicular cloud, fixed central cloud, and cloudlet
is proposed to expand the currently available resources. When infrastructure-based cloud does not
satisfy the offloading requirements, a reliable worker node in VC will be selected to accomplish the
offloading task. However, the authors consider offloading only one task and the cost for using the
cloud resources is neglected. Hence, in this paper, we will provide an efficient task offloading strategy
considering both the completion time of tasks and monetary cost for using the computing resources.
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3. System Model and Problem Formulation

3.1. Scenario Description

We consider a scalable vehicle-assisted multi-access edge computing (SVMEC) paradigm as shown
in Figure 1. SVMEC includes three parts: MEC provider, remote cloud, and vehicular cloud (VC).
The MEC provider includes two main components: MEC server and vehicular cloud controller (VCC),
which are deployed near the roadside base station. The MEC server virtualizes physical resources
and acts as a cloud computing node. The VCC stores the status information (e.g., real-time location,
available resources) of vehicles within the communication coverage of the MEC. IoT devices have
compute-intensive tasks that cannot be accomplished themselves. So they access the MEC provider
via access point and use the computing service of the MEC provider. Nevertheless, the computation
resources of MEC are limited. When many IoT devices have requests, the resources of MEC may
be insufficient.

MEC provider
. D Y
— — — — — Offloading task | -~
| (30 5
| ﬂfl\"[ X
: Vehicular cloud | MEC server _
: controller -
- =1 I
. - ~< | X
S T '
§ _5 1 N | X
§ ] ’ @ : _\ . : loT devices
*l |____/_/_/__ AN
Remote cloud / \\
/ \
/ \
. v
Y/ Vehicular cloud
_____________ b (PR S g Sy b ———e e e ————-
Mobile volunteer node Mobile volunteer node

Figure 1. Illustration of scalable vehicle-assisted multi-access edge computing (SVMEC).

The resource capacity of MEC is extended by computing resources from a remote cloud.
The remote cloud has rich computation resources, but it takes time to transfer data to the cloud
node for task execution. Moreover, there is monetary cost charged to the MEC provider for the use of
cloud resources.

On the other hand, the SVMEC transforms the conventional VC model and aims at exploiting the
under-utilized resources of the vehicles in the VC. By this way, SVMEC can enhance its computing
scalability by enabling different number of volunteering vehicles. We use the word “mobile volunteer
node” (MVN) to indicate the vehicle that share its excess resource for the workload of the MEC.
Specifically, we consider buses as potential candidates. We distinguish buses and other vehicles
since buses have fixed mobility trajectories and strong periodicity, which are desirable for the MEC
provider to offload the computing tasks. In addition, buses are public facilities and hence the issues
of privacy and security are alleviated. The MEC provider offers some incentive to the bus owners to
encourage sharing their excess resources. It is also noteworthy that compared to the rural environment,
the SVMEC paradigm is better suited to the urban environment because of the following reasons. First,
the vehicular network infrastructure is more developed and the mobility of vehicles is reasonably low
in urban areas, so it enables a guaranteed and prolonged duration of the connection between vehicles
and the infrastructure. In addition, the greater traffic density in urban areas provides more MVNs for
task offloading.

The SVMEC works as a cyclical mechanism. In every cycle, the MEC provider has a number
of tasks to be accomplished and the information of each computing node (e.g, available resources,
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duration and data rate of connection with MEC). The MEC provider makes a strategy of node selection
and resource allocation including two parts: (i) In which node should each task be placed, i.e., either
MEC node, cloud node, or mobile volunteer node; and (ii) how much computing resource of the node
should be allocated to each task? The main objective of the MEC provider is to minimize the total
computation overhead in terms of the weighted-sum of task completion time and monetary cost for
using cloud resources.

3.2. Computing Node and Task Model

Let M = {1,2,3,..,M} denote the set of mobile volunteer nodes (MVNs) within the
communication coverage of the MEC in one cycle. Let 7 = {-1,0,1,2,3,..., M} denote the set
of all computing nodes in the SVMEC. A computing node is indexed by j € J, in which j = —1
indicates the MEC server, j = 0 indicates the remote cloud server, and j € {1,2, ..., M} indicates the jth
MVN. Here, M C J.

Let V' = {1,2,3, ..., N} denote the set of tasks of the MEC provider. Each computation task can
be described by a tuple of two parameters as T; = (d;, w;), Vi € N, where d; is the size of input
data for the computation (in bits), w; is the computation workload or intensity, i.e., the amount of
computation to accomplish the task (in CPU cycles). We assume that task T; is atomic and cannot
be divided. Each computation task is executed on only one computing node, i.e., either MEC server,
remote cloud server, or a MVN.

3.3. Local Computing on MEC

When task T; is executed locally on MEC (i.e., j = —1), we denote f; _; as the computational
resource (in CPU cycles per second) allocated to task T; by the MEC server. The completion time of
task T; on MEC can be calculated as

)

In this case, since the task is executed on the computing node owned by the MEC provider, there is
no monetary cost for using the resource.

3.4. Offloading to Remote Cloud

In the case that the MEC provider decides to offload its task T; to the remote cloud (i.e., j = 0),
the completion time of the task is composed of the transmission time of the input data to the remote
cloud, and the execution time of the task on the remote cloud. Since the size of the computation
outcome is much smaller than that of the input data, we omit the time cost for sending the computation
result from the remote cloud to the MEC [21,22,29]. Let f;y and Ry be the computational resource
allocated to task T; by the remote cloud and the uplink data rate of the wired link from the MEC to the
remote cloud, respectively. The completion time of task T; by offloading to the remote cloud can be
calculated as

g = o+ £ @

The MEC provider has to pay for cloud computing resource to accomplish its workload. Let (550"1”

be the unit cost of computation for using remote cloud resource. The monetary cost of task T; on the
remote cloud node is calculated as

cio =20y W (3)

3.5. Offloading to Mobile Volunteer Node

In this case, the selection of a MVN for task offloading depends on the node’s duration within the
communication range of MEC.
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We consider a two-dimensional space. Let (xp, 1) and D, be the coordinate and the maximum
communication radius of the base station, respectively. Since the MVNSs (i.e., buses in the VC) have
fixed mobility trajectories, the VCC can easily estimate the duration of each MVN m € M within
the communication coverage of MEC, denoted by At,,. Let I, = {(x1,y1), (x2,y2), ..., (X, yx) } be the
two-dimensional coordinate trajectory of the MVN m € M such that the distance between the base
station and the moving trajectory I, satisfies

dun, = \/ (i — %02 + (v — yo)2 < Dy,i = 1,2,3..,k @)

At each coordinate (x;, y;), the transmission rate can be obtained by

Pyt

where W, is the channel bandwidth, P, is transmission power of base station, « is the path loss

exponent, while 02 and I denote the addictive Gaussian noise and inter-cell interference, respectively.
The average transmission rate of the MEC to MVN m is as follows.

k
21 Rm,-
_ =
R ==L ©)

Since the limited computing resource and transient nature of MVNs, we assume that each MVN
can receive at most one computation task at a given time. Let f,; be the computational capacity of the
MVN m. The completion time of task T; on MVN m can be calculated as

tm—$+%, Vm € M %)

In this case, the completion time of the task T; must not exceed the duration of MVN m within the
communication range of MEC. Hence, t; ,, < Aty,, Vm € M.

If the MVN m accomplishes the offloaded task, it will receive some incentives offered by the MEC
provider to encourage the willingness of MVNss to participate in sharing their resources. Let 5, be
the incentive unit cost of computation for using resources of the MVN 1. We assume that 8y, '+ < 560mp
since it motivates the MEC provider to utilize MVN’s resources in order to reduce the cost of cloud

resources. The incentive cost of task T; on the MVN m can be obtained by

comp

Cim = Om ' Wj, Ym e M 8)

3.6. Problem Formulation

The focus of our work is on the perspective of the MEC provider, who aims to minimize the
total computation overhead in terms of the weighted-sum of task completion time and monetary cost
for using cloud resources. We define the node selection profile as X = {x;;li € N,j € J}, in which
x;; = 1 means that task i is placed on node j, and x;; = 0 otherwise. We denote the resource allocation
profileas F = {f;|i € N/,j € J}. The objective function is defined as follows.

G(X,F)=Y Y xj(Altij+Afcij), ©)
ieN jeJ

where AL, AS € {0,1}, and A + AS = 1 are the weighted parameters of the completion time and
resource cost of task T;, respectively. They represent the MEC provider’s preference on task completion
time and resource cost, respectively.
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For a given node selection profile X, and resource allocation profile F, the optimization problem
of joint node selection and resource allocation (JNSRA) can be expressed as follows.

11)1(1? G(X,F) (10)
s.t.
x;€{0,1}, VieN,jeJ, (10a)
Y xj=1, VieN, (10b)
j€es
Z X <1, V] eM, (10¢)
ieN
Y xitij <A, VieEM, 10d)
ieN
fij >0, VieN;jeJ, (10e)
Y, fij <, vied. (10f)
ieN;

The constraint in (10a) denotes X is a binary vector. The constraint in (10b) ensures that each
computation task is executed on only one computing node, i.e., either MEC server, remote cloud server,
or a MVN. The constraint in (10c) and (10d) state that each MVN can receive at most one task at a given
time, and the selected MVN accomplishes its assigned task within its duration of connection with MEC.
The constraint in (10e) states that each computing node must allocate a positive computing resource
to each task assigned to it, where N; = {i € N|x;; = 1} denotes the set of tasks assigned to the
computing node. The constraint in (10f) makes sure that the total computing resources of a computing
node allocated to its assigned tasks does not exceed its maximum capacity, denoted by f;"**.

4. Joint Node Selection and Resource Allocation Solution

The JNSRA is considered as a Mixed Integer Nonlinear Programming (MINLP) problem since
the node selection profile X is a binary vector and the resource allocation profile F is a continuous
vector. Hence, the JNSRA problem is NP-hard [42]. In this section, we give the solution to the above
problem, which is related with both aspects of node selection and resource allocation. Here, we adopt
alternative optimization techniques and consider two sub-problems as follows.

(i)  Computing resource allocation problem: When the strategy of node selection is given, i.e,, X = X°,
the original problem in (10) is a convex problem with respect to F. Then we can obtain the optimal
solution F* by using the Karush-Kuhn-Tucker (KKT) conditions.

(i) Node selection problem: Based on the solution F*, the sub-problem G(X, F*) is transferred to 0-1
integer programming problem with respect to X. By adopting branch-and-bound algorithm,
the optimal solution X* can be obtained.

4.1. Computing Resource Allocation Problem

Theorem 1. Given X = XU, the original optimization problem in (10) with respect to F is a convex
optimization problem.
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Proof of Theorem 1. Given X = X?, the objective function becomes function of F. After omitting the
terms of the objective function that are independent with F, we can rewrite the JNSRA problem in (10)
as follows.

Ma
min. y y S (11)

JET iEN; fij
s.t.(10e), (10f).

Notice that the feasible solution set of the above problem is convex. The remaining task is to show
the convexity of the objective function. Denote the objective function in (11) as ¥ (F), we calculate the
second-order derivatives or Hessian matrix V2¥ (F), whose elements are as follows.

0¥ (F)  2Mw;

Y i) NieN,jed (12)
ij ij

%¥(F) .

m =0,V(i,j) # (m,n) (13)

It is easy to check that V2¥(F) > 0. Hence, the Hessian matrix is a positive semidefinite matrix.
We conclude that this problem is a convex optimization problem. [

Since the problem in (11) is a convex problem, the optimal solution can be obtained by using KKT
conditions. Let v = {v;} ;e 7 be the Lagrange multiplier vector associated with the second constraint.
The Lagrange function is as follows.

)\twi max
LFEv)=3, ), ——+ Y vi() fij—f") (14)

JET iEN; fij  je7 iEN;

From the KKT conditions, we have

VL(F,v) =0 (15)
Y fij— [ =0 (16)
ieN;

i
By setting the first-order derivative of the Lagrange function with respect to f; ; equal to zero as
in (15), we can obtain the optimal fi*j as follows.

Alw;
ko (e
fii = " 17)
)
Substituting (17) into (16), we can obtain the optimal 1/;‘ as follows.
2
Yy /Alw;
g (18)
Vi = | ——
j max
fi

Finally, substituting (18) back to (17), the optimal computing resource allocation i),kj is given by

frex [k,

fij = W (19)
bw:
ieN; o
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4.2. Node Selection Problem

According to the above discussion, we have obtained the optimal resource allocation F*. Based on
this, the original problem in (10) is rewritten as follows.

min. Yo ) xij (At +Afci)) (20)
ieN jeJ

s.t.(10a), (10b), (10¢), (10d).

where t; j and ¢; ; can be given as

w; £
i ifj=-1
d; j e
tij = Ro %, ifj=0 (21)
d; i s
R—j_—i—%, ifj=12,.M
0, ifj=-1
cij=1 0w, ifj=0 (22)

5]?0"”’wi, ifj=1,2,..M

The above problem is a 0-1 integer programming problem with respect to X. Hence, the problem
can be solved by using the branch-and-bound algorithm. The optimal result represents node selection
and resource allocation strategy of the MEC provider.

5. Performance Evaluation

5.1. Simulation Settings

In this simulation, we evaluate the performance of our proposed scheme, which includes MEC,
remote cloud, and MVNs to collaboratively execute compute-intensive or data-intensive tasks.

For MVNs, we use the Seattle bus trace [43], which was also adopted in some other recent
researches [29,44,45]. The Seattle bus trace includes the actual movement of approximately 1200 city
buses on their normal routes in Seattle, Washington metropolitan area, USA for several weeks. For our
experiment, we choose a sampled map from 23:30 p.m. to 23:40 p.m. of date 30 October in the dataset.
Each record includes the bus route ID and the location in terms of the x-coordinate and y-coordinate
along with time. The MEC base station is assumed to be located at the center of the map of the sampled
dataset and the communication coverage is assumed to be 2 km. Due to the fixed trajectories of the
buses, the number and duration of the buses within the communication range of the MEC in the
cycle time can be estimated. The average data rate of each bus can also be calculated as in Section 3.5.
Among these buses, the MEC provider can choose a number of MVNss for task offloading.

We use the following simulation settings for all experiments. For the computation task T;,
we adopt the face recognition application in [46,47], where the input data size is d; = 2000 KB, and the
required number of CPU cycles is w; = 1000 Megacycles. For the computing nodes, the computational
capacity of the MEC server and remote cloud server are set as 4 GHz and 10 GHz, respectively.
The computational capacity f;; of the MVN m € M is randomly assigned from the set {0.5, 0.8, 1.0}
GHz. The uplink data rate from MEC to remote cloud is Ry = 100 Mbps. For wireless communication
from MEC to MVNs, we consider the system using orthogonal frequency-division multiple access
(OFDMA) scheme [48]. We assume that there are 20 equal sub-bands. Each MVN is assigned to one
sub-band. Thus, there are at most 20 MVNs connected to MEC at the same time. The transmission
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power of the base station is P, = 46 dBm and the channel bandwidth is W = 10 MHz. In addition,
there is no interference, we assume the path loss exponent is « = 4, and the background noise power
is 02 = —100 dBm [21]. From the dataset, the duration of connection with MEC of each MVN ranges
from 20 s to 300 s, and the achieved average data rate from MEC to each MVN ranges from 5 Mbps
to 12 Mbps. The unit cost of computation for using cloud resources and MVNs’ resources are set as
0.9 $/gigacycles and 0.5 $/gigacycles, respectively. The weighted parameters of the task completion
time and monetary cost for using computing resources are both 0.5, i.e., Al = A = 0.5,Vi € V.
Unless otherwise stated, the default number of tasks and MVNs are set as N = 40 and M = 10,
respectively.

5.2. Simulation Results

In the following experiments, we evaluate the offloading performance in terms of total
computation overhead, which is the weighted sum of task completion time and monetary cost for
using computing resources. The proposed scheme is compared with other strategies as follows.

e  MEC only scheme: The system includes only MEC server and all computation tasks are executed
locally on MEC server. In this case, there is no monetary cost for using computing resources.
The total computation overhead considers only the completion time of tasks. The resource
allocation strategy in Section 4.1 is applied.

e  MEC + Cloud scheme: The system combines MEC server and remote cloud server. The proposed
joint node selection and resource allocation strategy is applied to allocate each computation task to
the MEC server or the remote cloud server in order to achieve optimal total computation overhead.

e Random offloading in MEC + Cloud + MVNs scheme (RO_ECM): The system includes MEC
server, remote cloud server, and MVNs. Each computation task is randomly assigned to only
one computing node, i.e., either the MEC server, the remote cloud server or a MVN with equal
probability such that the resource constraint and duration constraint of the selected computing
node are satisfied. The resource allocation is given by the strategy in Section 4.1.

In Figure 2, we vary the number of tasks from 10 to 100 and evaluate the offloading performance.
Figure 2a compares the performances of our proposed approach and three other schemes. It is shown
that when the number of tasks increases, the total computation overhead of all schemes increases,
especially in MEC only scheme. Due to the resource bottleneck of the MEC server, the completion time
of tasks of MEC only scheme significantly increases and its effect dominates the total computation
overhead. Hence, the performance of MEC only scheme is the worst in most cases (except in case the
number of tasks is small enough for MEC to handle, e.g., N = 10). In MEC + Cloud scheme, although
there is monetary cost for using the cloud resources, the remote cloud can help the overloaded MEC
to execute the increasing number of tasks so that the completion time of tasks can be significantly
reduced. Hence, the performance of MEC + Cloud scheme becomes much better than that of MEC
only scheme when the number of tasks gets larger. In RO_ECM scheme, besides MEC and remote
cloud, the MEC provider can also utilize MVNs. However, in this case, randomly assigning tasks to
computing nodes with equal probability will not provide a stable and optimal solution. From Figure 2a,
when the number of tasks is N = 10, the performance of RO_ECM scheme is even worse than that of
MEC only scheme. Meanwhile, our proposed scheme can always achieve the best total computation
overhead because it comprehensively considers both the completion time and monetary cost for using
computing resources on MEC, remote cloud and MVNs. Figure 2b shows the task distribution on
MEC, remote cloud and MVNs of the proposed scheme under different number of tasks. It can be
observed that when the number of task is small (N = 10), the percentage of tasks allocated to MVN5s
is equal to 0. It means that the tasks can be executed optimally by using MEC and remote cloud and
without using MVNs. It is the reason why the performance of our proposed scheme is the same as that
of MEC + Cloud scheme in case N = 10 as shown in Figure 2a. When the number of tasks increases
from 10 to 40 tasks, the percentage of tasks allocated to MVNs increases until the maximum number
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of MVNs (M = 10) is utilized (at N = 40 tasks). Meanwhile, the percentages of tasks allocated to
MEC and remote cloud decrease. When the number of tasks is greater than 40 tasks, the percentage
of tasks allocated to MVNs decreases while the percentages of tasks allocated to MEC and remote
cloud increase. It is because there are no more MVNs that can receive the offloaded tasks and the tasks
will be executed on MEC or remote cloud. Moreover, it can also be seen that the percentage of tasks
allocated to remote cloud is greater than the percentage of tasks allocated to MEC when the number of
tasks increases.

1.0
1400 o —&— MEC only ::__Z\:Al\ésj
1200_§100 —&— MEC+Cloud MEC
% s —A— RO_ECM 0.8 'Q'
2 —&— Proposed
1000+£ 5
600 g » 0.64
19
°
=}
2 10 20 30 40

600 0.44

Number of tasks

400

0.2+

Total computation overhead
Percentage of allocated tasks

200

— T 1 T T T T T T T T T 1 0oF——T—T 77T T T T
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Number of tasks Number of tasks
(a) (b)

Figure 2. Performance evaluation under different number of tasks. (a) Comparison of our proposed

scheme and three other schemes; (b) Task distribution of the proposed scheme.

In Figures 3 and 4, we evaluate the offloading performance with respect to the computation
task’s profiles in terms of input data size d;’s and computation intensity w;’s, respectively. Figure 3a
shows that when the input data size d; increases, the total computation overhead of MEC only scheme
remains unchanged since there is no offloading. However, the performance of MEC only scheme
is the worst due to the high completion time of tasks on MEC. RO_ECM scheme performs better
than MEC + Cloud scheme when the input data size d; is small (e.g., in case d; = 1 MB and d; = 2
MB), however, the performance of RO_ECM scheme significantly decreases and becomes worse than
that of MEC + Cloud scheme when the input data size increases. Meanwhile, our proposed scheme
performs the best when the input data size is small. When the input data size d; is large enough (9 MB
in this case), the total computation overhead of our proposed scheme can reach that of MEC + Cloud
scheme. It is caused by the gradual decrease to 0 of the percentage of tasks allocated to MVNs when
the input data size increases as seen in Figure 3b. The reason for this is that by increasing the input
data size, the transmission time of input data to MVNs significantly increases. Due to the unstable
connection with MEC of MVNs, a computation task with small data size is more preferable to be
offloaded to MVNs than one with high data size. Instead of being offloaded to MVNSs, the tasks with
high data size can be executed by using MEC and remote cloud. From Figure 4a, we can observe that
the total computation overhead of all schemes increases with the number of CPU cycles w; required to
accomplish the tasks. Similarly, the performance of MEC only scheme is the worst due to the resource
bottleneck of the MEC server. In general, RO_ECM performs better than MEC + Cloud scheme since the
MVN:Ss can help alleviate the workload of MEC and remote cloud as the computation intensity of tasks
increases. Meanwhile, our proposed scheme can always achieve lower total computation overhead
than both MEC + cloud scheme and RO_ECM scheme by performing optimal task distribution on
MEC, remote cloud and MVNSs as can be seen in Figure 4b. It shows that the proposed scheme utilizes
the maximal number of MVNss (i.e.,, M = 10) when the computation intensity of task increases.



Symmetry 2019, 11, 58 13 of 17

240 1.0+

—&— MVNSs
—o6— Cloud
200 —o—0o—90o—90—0o oo 0g] E—MEC
—e— MEC only
160 1 —*— MEC+Cloud P
—A—RO_ECM 0.6 —_e/e/é/é—e/e_e_H
120 —&— Proposed d

I
N
1

o
N
1

Total computation overhead
Percentage of allocated tasks

0 —7r 1 r - r 11T " T1° 0.0 — T T T T T T T T T T T 7 T ]
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Input data size (MB) Input data size (MB)

(@ (b)

Figure 3. Performance evaluation under different tasks” input data sizes. (a) Comparison of our
proposed scheme and three other schemes; (b) Task distribution of the proposed scheme.
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Figure 4. Performance evaluation under different tasks” computation intensities. (a) Comparison of
our proposed scheme and three other schemes; (b) Task distribution of the proposed scheme.

We now conduct an experiment to examine the effect of the number of MVNs M on the total
computation overhead of our proposed scheme. Figure 5 shows that the total computation overhead
declines with the increase of number of MVNS. It is because the increasing number of MVNs brings
more options for the MEC provider to offload the computation tasks to MVNs. When the number of
MVNs M increases from 2 to 10, the total computation overhead decreases dramatically. After that,
it slightly reduces to a stable value.

Finally, by varying the weighted parameter of the completion time A! from 0.1 to 0.9 with a step
deviation of 0.1 and setting the weighted parameter of resource cost as AS = 1 — A, we can also analyze
the effect of the weighted parameters on the completion time of all tasks and monetary cost for using
computing resources. It can be seen from Figure 6 that the changing trends in terms of the completion
time and resource cost are the same in both cases where the number of tasks is N = 40 and N = 50.
It is that the completion time of tasks decreases with the increase of monetary cost for using computing
resources when A! increases. In addition, when N = 50, the completion time of tasks and monetary
cost is higher than in the case when N = 40. It is also highly noticeable that the completion time of
tasks and the monetary cost significantly decreases and increases, respectively, when the value of A!



Symmetry 2019, 11, 58 14 of 17

changes from 0.1 to 0.2. Therefore, selection of the weighted parameters plays an important role in the
achieved completion time of tasks and monetary cost for using computing resources.

70
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(o2}
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o

/
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Figure 5. Effect of the number of mobile volunteer nodes (MVNs) on the total computation overhead.
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Figure 6. Effect of the weighted parameters on the completion time of tasks and monetary cost for
using computing resources.

6. Conclusions

In this paper, we have proposed an SVMEC paradigm, in which the MEC capacity is expanded
by renting resources from a remote cloud and vehicular cloud (VC) so as to efficiently handle the
steep rise of task requests from IoT devices. In our scenario, we use buses in the VC as candidate
mobile volunteer nodes that share their under-utilized resources for tasks offloaded from the MEC
provider. The MEC provider makes a strategy to select proper computing nodes and amount of
computing resources for the task requests of IoT devices. We present the joint node selection and
resource allocation problem with the aim of minimizing the total computation overhead in terms of the
weighted-sum of task completion time and monetary cost for using computing resources. We formulate
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the problem as a MINLP and give the solution by alternative optimization techniques. Finally, a lot
of simulations have been conducted and their results prove that our proposed scheme can achieve
better performances than the existing schemes. In future work, we will extend our model considering
the various QoS requirements of task requests. Moreover, it is noteworthy that in addition to buses,
the MVNs can also be extended to other types of vehicle (e.g., cars, trucks, etc.), however, further
investigation should be conducted in order to deal with various mobility trajectories of vehicles.
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