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Abstract: In the paper, a new numerical approach for the rotation form of the Oseen system in a
polygon Ω with an internal corner ω greater than 180◦ on its boundary is presented. The results
of computational simulations have shown that the convergence rate of the approximate solution
(velocity field) by weighted FEM to the exact solution does not depend on the value of the internal
corner ω and equals O(h) in the norm of a space W1

2,ν(Ω).
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1. Introduction

Many mathematical models of natural processes are described by the boundary value problems
for systems of partial differential equations with a singularity. The singularity of the solution to such
systems in the two-dimensional closed domain Ω may be due to the degeneration of initial data, to the
presence of reentrant corners on a boundary, or to internal features of the solution. The boundary
value problem has a strong singularity if its solution does not belong to the Sobolev space W1

2 (Ω).
In short, the Dirichlet integral from the solution diverges. In the case when the solution belongs to
the space W1

2 (Ω), but it does not belong to the W2
2 (Ω), a boundary value problem is called weakly

singular. The generalized solution of a boundary value problem in the two-dimension domain with
a boundary containing an initial angle ω belongs to the space W1+α−ε

2 (Ω), where 0.25 ≤ α < 1 for
π < ω ≤ 2π and ε is an arbitrary positive real number. Therefore, the approximate solution produced
by the classical finite difference or finite element methods converges to an exact one no faster than at
the O(hα) rate [1].

For the boundary value problem with singularity, there are various numerical approaches founded
on the separation of singular and regular components of the generalized solution, on mesh refinement
toward singularity points, and on the multiplicative identification of singularities. These methods
slow down the convergence rate of the approximate solution to an exact one or to the significant
complication of the finite element scheme, which in total influences the computational process speed
and accuracy of the result.

In reference [2], we suggested to define the solution of the boundary value problem with weak
or strong singularity as an Rν-generalized one in the weighted Sobolev space or set. Relying on this
approach, numerical methods were created with a convergence rate independent of the value (size) of a
singularity. In the papers [3–5] for the boundary value problems with a strong singularity, the weighted
finite element method (FEM) and the weighted edge-based FEM were built. The approximate solution
converges to an exact one with the second and first order rates (under the mesh step h) in the norms of
the weighted Lebesgue and Sobolev spaces, respectively. In references [6,7], a weighted FEM for the
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Lame system in a domain with the reentrant corner on the boundary was built. The rate of convergence
is equal to O(h) and independent of the size of a reentrant corner.

We study the incompressible Navier–Stokes equations in the two-dimensional polygonal domain
Ω with one internal corner greater than 180◦ on its boundary. The nonlinearity in this system can be
written in several equivalent forms. For one case, if we regard these equations in the velocity field and
kinematic pressure variables, then this leads to the convection form of nonlinear terms. For another
case, if we consider these equations in the velocity field and total pressure variables, then it gives
nonlinear terms in the rotation form. In order to meet the non-stationary incompressible system,
we must be able to find the solution of a steady linearized one. The stationary Navier–Stokes system
we can linearize in different manners. We use a scheme that is based on Picard’s iterative procedure
(see [8] and the references therein). Starting with an arbitrary vector as a velocity field, which satisfies
the law of conservation of mass, Picard’s iterative procedure forms the sequence of solutions of the
corresponding linear Oseen system. We note that linearizations of convection and rotation forms of
nonlinear terms tend to the systems of linear algebraic equations with various features. In the paper,
we study the Oseen system in the rotation form. The fact is that the rotation form allows us (using a
skew-symmetric of the resulting matrix) to construct a Schur complement preconditioner, which is
acceptable to all parameters of the Oseen problem and becomes more effective for large Reynolds
numbers (see [9] and the references therein). For the convection form of the Oseen problem, this is
not so.

As usual, to solve a fluid problem, the explorer has freedom and can construct a method in
different manners by selecting various discretization algorithms for the system of linear algebraic
equations. There are many opportunities to solve the considered system. The researcher can select
various finite difference, finite volume, or finite element methods. However, the chosen method is
effective if it gives the best result in terms of the convergence rate under certain restrictions on the
input data and geometric singularities of the domain Ω.

In the paper, we consider a special case, where Ω is a polygon with one internal corner greater
than 180◦ on its boundary. The flow of the viscous fluid in a δ-neighborhood of a reentrant angle
was studied in [10]. It is not a secret that the velocity field and pressure, as a weak solution of a
problem for the domain with corner singularity, do not belong to Sobolev spaces W2

2(Ω) and W1
2 (Ω),

respectively [11]. Therefore, the rate of convergence of the approximate solution to an exact one is equal
to O(hα), α < 1, in the norm of standard and weighted Sobolev spaces (see [12] and the references
therein) for different classical finite difference and finite element methods. Earlier, for the Stokes
problem, we defined the Rν-generalized solution; in [13], we formulated and proved the weighted
LBBinequality (inf-sup condition [14]); and in [15], we showed the advantage of our method over
classical approaches.

The aim of the paper is to present a new numerical approach for the rotation form of the Oseen
problem using (see [16]) a mass conservation space pair; to show that the rate of convergence of the
approximate solution to an exact one (the velocity field) is equal to O(h) for all considered sizes of the
internal corner greater than 180◦ on the boundary in the norm of the space W1

2,ν(Ωk); so that this rate
is much better than if using the classical finite difference or finite element methods.

The article consists of six sections. Section 2 is devoted to the definition of the Rν-generalized
solution for the rotation form of the Oseen system in a domain Ω with one internal corner greater
than 180◦ on its boundary. In Section 3, we construct the presented FEM. The iterative algorithm for
the resulting system of linear algebraic equations is built in Section 4. In Section 5, we discuss the
numerical results of computational experiments. Necessary conclusions are made in Section 6.

2. Rν-Generalized Solution of the Oseen Problem

Let x = (x1, x2) be an element of the Euclidean space R2, where ‖x‖ =
(

x2
1 + x2

2
)1/2 and dx =

dx1 dx2 are the norm and measure of x, respectively. Denote by Ω a bounded domain in R2. Let Γ and
Ω̄ be the boundary and closure of Ω, respectively, where Ω̄ = Ω ∪ Γ.
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At first, we write incompressible Navier–Stokes equations in such a form: find a velocity field
u(x, t) = (u1(x, t), u2(x, t)) and a kinematic pressure p(x, t) from:

∂u
∂t
− ν̄4u + (u · ∇)u +∇p = f and div u = 0 in Ω× (0, T], (1)

with given force field f = ( f1, f2) and viscosity ν̄ = 1
Re > 0. Let 4, div , and ∇ be the Laplace,

divergence, and gradient operators in R2, respectively. The equations in (1) are the convection form of
Navier–Stokes equations.

We supplement the system (1) with a boundary and initial conditions:

u = g on Γ× (0, T], u(x, 0) = u0(x) in Ω, (2)

where g = (g1, g2) is given vector function on Γ and u0(x) = (u0
1(x), u0

2(x)) — in Ω.
We introduce the following notation:

v · u =
2

∑
i=1

ui vi, curl u = −∂u1

∂x2
+

∂u2

∂x1
, a× u =

(
−au2

au1

)
.

We have a formal equality:

∇(u · v) + ( curl u)× v + ( curl v)× u = (u · ∇)v + (v · ∇)u. (3)

If u = v in (3), then we have a relation:

( curl v)× v +
1
2
∇v2 = (v · ∇)v. (4)

Let P = p +
1
2

u2, using (4), for vector function u; we get the rotation form of the Navier–Stokes
system for an incompressible flow:

∂u
∂t
− ν̄4u + ( curl u)× u +∇P = f and div u = 0 in Ω× (0, T]. (5)

We supplement the system (5) with the boundary and initial conditions (2). Using implicit time
integration of (5) compared to explicit methods reduces accuracy, stability, and flexibility in selecting
the step size for a time variable.

In our research, on each time level, we solve the following system of equations:

−ν̄4u + curl u× u + α u +∇P = f and div u = 0 in Ω, (6)

u = g on Γ, (7)

and parameter α is a known positive constant.
The system (6) and (7) is nonlinear due to the fact that there is a rotation term curl u× u in the

first Equation (6). This term and the system as a whole we linearized by Picard’s iterative procedure
(see [8] and the references therein).

At each iteration, we need to solve the following problem:

−ν̄4u + w× u + α u +∇P = f, and div u = 0 in Ω, (8)

u = g on Γ, (9)
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which is called the Oseen system in a rotation form, where w = curl U and U is some approximation
to u.

The linearization of convection and rotation forms of nonlinear terms tends to the systems of
linear algebraic equations with various features. In the paper, we study the Oseen system in the
rotation form. The fact is that the rotation form allows us (using a skew-symmetric of the resulting
matrix) to construct the Schur complement preconditioner, which is acceptable to all parameters of the
Oseen problem and becomes more effective when ν̄→ 0 (see [9] and the references therein). For the
convection form of the Oseen problem, this is not so.

We note that for the linearized system (8) and (9), the laws of the conservation of momentum and
mass remain valid.

In the paper, we consider a special case, where Ω is a bounded non-convex polygonal domain
with one internal corner greater than 180◦ on Γ. Let its vertex be located at the origin. We define
an Rν-generalized solution of the Oseen problem (8) and (9) with a corner singularity and construct
the weighted FEM. We demonstrate the advantage of the proposed approach over the classical finite
element methods for all sizes of the reentrant corner.

Let Ω
′
δ = {x ∈ Ω̄ : ‖x‖ ≤ δ, δ ∈ (0, 1)} be a part of a δ-neighborhood, with a vertex located at the

origin, which is in Ω̄. Denote by ρ(x) a weight function: ρ(x) =

{
‖x‖, x ∈ Ω

′
δ,

δ , x ∈ Ω̄ \Ω
′
δ.

Let Dmv(x) = ∂|m| v(x)
∂x

m1
1 ∂xm2

2
be the mth order generalized derivatives of a function v(x) in Ω,

where |m| = m1 + m2, mi, nonnegative integers. For the function v(x), we define the following
inequalities: ∫

Ω\Ω′δ

ρ2αv2dx ≥ C1 > 0, (10)

|Dmv(x)| ≤ C2

( δ

ρ(x)

)α+m
for x ∈ Ω

′
δ and m = 0, 1, (11)

where α > 0 and constant C2 > 0 do not depend on m and α.
Denote by L2,α(Ω) a space of functions v(x), such that:

‖v‖L2,α(Ω) =
(∫

Ω

ρ2α v2dx
)1/2

< ∞.

If w = (w1, w2) is a vector function, then we define the weighted vector function space L2,α(Ω)

with a norm ‖w‖L2,α(Ω) =
(
‖w1‖2

L2,α(Ω) + ‖w2‖2
L2,α(Ω)

)1/2
.

Further, denote by L2,α(Ω, δ), α > 0, a set of elements v(x) from the L2,α(Ω) space for which
Inequalities (10) and (11) (the case m = 0) are valid with a bounded L2,α(Ω) norm. Let L0

2,α(Ω, δ) be a
subset of functions v(x), such that L0

2,α(Ω, δ) = {v ∈ L2,α(Ω, δ) :
∫
Ω

ρα vdx = 0}. If w = (w1, w2) is a

vector function, then we define a set L2,α(Ω, δ) = {w : wi ∈ L2,α(Ω, δ)} with a bounded L2,α(Ω) norm.
Let W1

2,α(Ω) be a weighted space of functions v(x), such that:

‖v‖W1
2,α(Ω) =

(
∑
|m|≤1

‖ρα |Dmv|‖2
L2(Ω)

)1/2
< ∞.

If w = (w1, w2) is a vector function, then we denote by W1
2,α(Ω) the weighted vector function

space with a norm ‖w‖W1
2,α(Ω) =

(
‖w1‖2

W1
2,α(Ω)

+ ‖w2‖2
W1

2,α(Ω)

)1/2
.
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Let W1
2,α(Ω, δ), α > 0, be a set of functions v(x) from the space W1

2,α(Ω), that meet the conditions

(10) and (11) with a bounded W1
2,α(Ω) norm. We denote by

o
W1

2,α (Ω, δ)(
o

W1
2,α (Ω, δ) ⊂ W1

2,α(Ω, δ))

a closure, with respect to the W1
2,α(Ω) norm, of the set of infinitely-differentiable functions with

compact support in Ω that meet the inequalities (10) and (11). Then, we denote by W1/2
2,α (Γ, δ) the

set of functions θ(x) on Γ : θ(x) ∈ W1/2
2,α (Γ, δ), if there exists a function Θ(x) from the set W1

2,α(Ω, δ),
such that Θ(x)|Γ = θ(x) and ‖θ‖W1/2

2,α (Γ,δ) = inf
Θ|Γ=θ

‖Θ‖W1
2,α(Ω,δ).

If w = (w1, w2) is a vector function, then we define a set W1
2,α(Ω, δ) = {w : wi ∈ W1

2,α(Ω, δ)}

with a norm of space W1
2,α(Ω). Similarly, we define the set

o
W1

2,α (Ω, δ) of vector functions in Ω and
W1/2

2,α (Γ, δ), on Γ.
Let known functions w, f = ( f1, f2) and g = (g1, g2) in (8) and (9) meet the following conditions:

w ∈ L2,γ(Ω, δ), f ∈ L2,γ(Ω, δ), g ∈ W1/2
2,γ (Γ, δ), γ ≥ 0. (12)

Bilinear and linear forms are as follows:

a(uν, v) =
∫
Ω

[
ν̄∇uν · ∇(ρ2νv) + ρ2ν(w× uν) · v + αρ2νuν · v

]
dx,

b(v, Pν) = −
∫
Ω

Pν div (ρ2νv)dx, c(uν, q) = −
∫
Ω

ρ2ν q div uν dx, l(v) =
∫
Ω

ρ2ν f · vdx.

Definition 1. The pair (uν(x), Pν(x)) ∈ W1
2,ν(Ω, δ)× L0

2,ν(Ω, δ) is called the Rν-generalized solution for an

Oseen system in the rotation form (8) and (9) such that for all pairs (v(x), q(x)) ∈
o

W1
2,ν (Ω, δ)× L0

2,ν(Ω, δ),
the equalities:

a(uν, v) + b(v, Pν) = l(v),

c(uν, q) = 0

hold, where functions w, f and g satisfy the conditions (12) and ν ≥ γ.

Note that the bilinear and linear forms in the definition of an Rν-generalized solution include
a weight function ρ(x). The introduction of the weight function into integral identities suppresses
the influence of the singularity in the solution and ensures that uν and Pν belong to the weighted sets
W2

2,ν(Ω, δ) and W1
2,ν(Ω, δ), respectively. This property of the Rν-generalized solution allows one to

construct a finite element scheme with a O(h) rate. This rate is significantly higher than in the classical
finite element method for the Oseen problem in a polygonal domain with the internal corner greater
than 180◦ on the boundary.

3. The Weighted Finite Element Scheme

Now, we construct a finite element scheme for an Oseen problem in the rotation form (8) and (9)
based on the definition of an Rν-generalized solution.

We would like to use the finite element space pair, which satisfies the law of mass conservation
not in the weak (like the well-known Taylor–Hood (TH) element pair [14]), but in the strong sense.
The fact is that the implementation of the mass conservation law in a weak sense combines pressure
and velocity field errors and does not eliminate possible instabilities [17]. In the paper, we apply
the Scott–Vogelius (SV) element pair [16] that will help us to obtain strong mass conservation of the
approximate solution.
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First, we divide Ω into a finite quantity of triangles Li, which we call macro-elements. The set
of elements Li represents a quasi-uniform (see [1]) triangulation Th of Ω. Then, we divide each
macro-element Li ∈ Th into three triangles Kij using the barycenter of Li. Thus, we construct a
triangulation Υh, which is based on a barycenter refinement of a triangulation Th. Denote by Ωh the
set of resulting triangles (which are called finite elements) with sides of order h, i.e., Ωh =

⋃
Kij
∈Υh

Kij =

⋃
Li∈Th

( 3⋃
j=1

Kij

)
=

⋃
Li∈Th

Li.

Let Am and Bl be vertices and midpoints of the finite element sides Kij ∈ Υh, respectively. Then,
for the components of a velocity field and pressure, we define sets of nodes G and H, respectively,
such that G = GΩ

⋃
GΓ = {Am ∪ Bl}, where GΩ is a totality of Υh nodes in Ω, GΓ, on Γ, and H = {Ck},

where Ck coincide with a node Am on the appropriate element Kij ∈ Υh (see Figure 1).
Now, we define spaces of the SV element pair. The space Xh, for the components of the velocity

field, coincides with the corresponding space of degree two of the THelement pair, i.e., Xh = {wh ∈
C(Ω) : wh|Kij

∈ P2(Kij), ∀Kij ∈ Υh} and for a velocity field Xh = Xh × Xh. The space Yh, for the

pressure, differs from the corresponding space degree one of the TH element pair by the fact that it is
discontinuous in Ω, i.e., Yh = {yh ∈ L2(Ω) : yh|Kij

∈ P1(Kij), ∀Kij ∈ Υh,
∫
Ω

yhdx = 0}.

Figure 1. The macro-element Li: squares and dots are the velocity and pressure nodes on Kij ,
j = 1, 2, 3, respectively.

The SV element pair has an important property, namely div Xh ⊂ Yh. This means that there exists
a function yh ∈ Yh equal to div wh such that: from the condition for performing mass conservation
in a weak sense, i.e.,

∫
Ω

div whψhdx = 0 ∀ψh ∈ Yh, we get a pointwise mass conservation, i.e.,

‖ div wh‖L2(Ω) = 0. Moreover, in [18], it was established that spaces of the SV element pair before us
satisfy the Ladyzhenskaya–Babus̆ka–Brezzi condition. Note, that approximations obtained using the
TH element, pair unlike the SV element pair, in general, do not achieve pointwise mass conservation.

Then, we define the weighted basis functions and describe a special finite element method for
the Oseen system in the rotation form (8) and (9). For components of the velocity field, for each node
Mk ∈ GΩ, we will match a function:

Φk(x) = ρν�(x) · ϕk(x), k = 0, 1, . . . ,

where ϕk(x) ∈ Xh, ϕk(Mj) =

{
1, k = j,

0, k 6= j,
k, j = 0, 1, . . . ; ν� is a parameter.

We define a set Vh, for components of the velocity field, such that for any velocity field vh =

(vh
1, vh

2), vh
i ∈ Vh, we have:

vh
1(x) = ∑

k
d2k Φk(x), vh

2(x) = ∑
k

d2k+1 Φk(x), (13)

where dl = ρ−ν�(M[l/2]) d̃l .
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Let Vh
0 be a subset in Vh such that Vh

0 = {wh ∈ Vh : wh(Mk)|Mk∈GΓ = 0}. Moreover, we define
velocity field sets Vh = Vh ×Vh and Vh

0 = Vh
0 ×Vh

0 .
For the pressure, for each node Nl ∈ H, we will match a function:

Θm(x) = ρµ�(x) · θm(x), m = 0, 1, . . . ,

where θm(x) ∈ Yh, θm(Nj) =

{
1, m = j,

0, m 6= j,
m, j = 0, 1, . . . ; µ� is a parameter.

Then, we define a set Qh, for the pressure, such that for any qh ∈ Qh, we have:

qh(x) = ∑
m

em Θm(x), (14)

where em = ρ−µ�(Nm) ẽm.

Remark 1. The coefficients dj and ei in (13) and (14) are defined as a solution of a system (17) (see below).

Remark 2. The following embedding of sets is valid:

Vh ⊂ W1
2,ν(Ωh, δ), Vh

0 ⊂
o

W1
2,ν (Ωh, δ), Qh ⊂ L0

2,ν(Ωh, δ).

Definition 2. The pair (uh
ν(x), Ph

ν (x)) ∈ Vh × Qh is called an approximate Rν-generalized solution for an
Oseen system in the rotation form (8) and (9) obtained by the weighted FEM if the equalities:

a(uh
ν, vh) + b(vh, Ph

ν ) = l(vh), (15)

c(uh
ν, qh) = 0 (16)

hold for any pair (vh(x), qh(x)) ∈ Vh
0 ×Qh, where uh

ν = (uh
ν,1, uh

ν,2) and ω ∈ L2,γ(Ω, δ), f ∈ L2,γ(Ω, δ), g ∈
W1/2

2,γ (Γ, δ), ν ≥ γ.

Thus, we construct a weighted FEM to find an Rν-generalized solution for the rotation form of
the Oseen problem (8) and (9).

Then, using (15) and (16), we get a system of linear algebraic equations:

Ad + Be = ω, CTd = z, (17)

where d = (d0, d2, d4, . . . , d1, d3, d5, . . .)T , e = (e0, e1, e2, . . .)T , ω = Fh, z = 0.

4. Iterative Algorithm

Now, we present an iterative procedure for solving the system of equations (17). Note that the
system (17), which needs to be solved, has a large dimension, and moreover, its matrix is sparse.
Finding the solution of the system by the direct method is not possible, so that we will construct a
convergent iterative process of the following type [19]:

(1) Let (d0, e0) be an initial guess for the system (17). We iterate (n = 0, 1, 2, . . .) until the stopping
condition is fulfilled;

(2) Compute dn+1 = dn + Â−1(ω−Adn − Ben);
(3) Find en+1 = en + Ŝ−1(CTdn+1 − z);

where Â is a preconditioning matrix to A and Ŝ is a preconditioning matrix to S = CTA−1B, which is
called the Schur complement matrix. Next, we describe the process of constructing preconditioning
matrices Â and Ŝ.
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At first, we build a preconditioner Â applying an incomplete LU factorization, where L and
U are low unitriangular and upper triangular matrices respectively. At each iteration in Item 2,
we employ the GMRES(l) method (see [20]) as the solution of a problem Av = s with the left
preconditioner Â. The method is designed so that it approximates the solution in an lth order
Krylov subspace. In our research, the dimension of a Krylov subspace is equal to 10; so that if
r0 = Â−1(s − Av), then the Arnoldi procedure will build an orthonormal basis of the subspace:
Span{r0, (Â−1A)1r0, . . . , (Â−1A)9r0}.

Secondly, we build an intermediate matrix S̃ to Ŝ. The matrix S̃ represents a mass matrix Mν,µ� ,ν
P

of a special view, such that on all elements K ∈ Υh :

(Mν,µ� ,ν
P )ij =

1
ν

∫
K

ρ2(ν+µ�) θj(x) θi(x)dx, θj(x), θi(x) ∈ Yh, j, i = 0, 1, . . . .

After that, we determine a matrix S̄, which is equal to a diagonal matrix M̄ν,µ� ,ν
P with elements(

M̄ν,µ� ,ν
P

)
ii = ∑

k

(
Mν,µ� ,ν

P
)

ik. In other words,
(
S̄
)

ii = ∑
k

(
S̃
)

ik. It is known (see [9] and the references

therein) that such diagonal lumping S̄ is a good preconditioner to the initial matrix S̃.
Therefore, in order to determine the vector Ψ? := Ŝ−1χ, at each iteration of Item 3, we must find

a solution to the following internal procedure: (1) φ0 = 0; (2) φm = φm−1 + S̄−1(χ− S̃φm−1) (m =

1, . . . , M); (3) Ψ? = φM.
We apply the GMRES(5) method, where Span{r̄, (S̄−1S̃)1 r̄, . . . , (S̄−1S̃)4 r̄}, and

r̄ = S̄−1(χ− S̃φm−1).

5. Numerical Experiments

Now, we present numerical results for the Oseen system in the rotation form (8) and (9) and show
the advantage of the proposed method.

Let Ωk = (−l; l)× (−l; l) \ Ḡk be a polygon with one internal corner greater than 180◦ on Γk

whose vertex is at the origin. We will consider the following sizes of the reentrant corner: ωk =
2k+1

2k π,
k = 1, 2, 3. The triangulation Υh (see Section 3) of each Ω̄k, k = 1, 2, 3 and l = 1 we present in Figure 2.

Figure 2. The triangulation Υh of a domain Ω̄k.

In a test problem, we consider the solution of the problem (8), (9), which has a singularity in a
neighborhood of a point located at the origin. Let α = ν̄ = 1, w = b · curl u, b = 0.95, and for each
corner ωk in polar coordinates (r, ϕ), we have an auxiliary function:

Ψk(ϕ) =
sin((1 + λk)ϕ)cos(λkωk)

1 + λk
− sin((1− λk)ϕ)cos(λkωk)

1− λk
+ cos((1− λk)ϕ)− cos((1 + λk)ϕ).

Then, the exact solution u = (u1, u2) and P of the problem (8) and (9) for each corner ωk, k = 1, 2, 3,
in polar coordinates has the following form:
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u1(r, ϕ) = rλk · ((λk + 1) sin ϕ ·Ψk(ϕ) + cos ϕ ·Ψ′k(ϕ)),

u2(r, ϕ) = rλk · (sin ϕ ·Ψ′k(ϕ)− (λk + 1) cos ϕ ·Ψk(ϕ)),

P(r, ϕ) = rλk−1 ·
(λk + 1)2 Ψ′k(ϕ) + Ψ′′′k (ϕ)

λk − 1
,

where λk = min{λ : sin(λ ωk) + λ sin ωk = 0 and λ > 0}.
Thus, for the corner ω1 = 3π

2 , we have λ1 ≈ 0.544483, for ω2 = 5π
4 , λ2 ≈ 0.673583, and for

ω3 = 9π
8 , λ3 ≈ 0.800766. The proposed solution is analytical in Ω̄k \ (0, 0), but unfortunately, P 6∈

W1
2 (Ωk), u 6∈ W2

2(Ωk).
In numerical experiments, we use meshes with a various step size h and number N, where N · h

equals two. The approximate generalized solution (velocity field) by classical FEM converges to the
exact one in the W1

2(Ωk) norm with a rate depending on the size of reentrant corner ω, the so-called
pollution effect (see [12] and the references therein): for a corner ω1 = 3π

2 , we have the rate of
convergence, which is equal to O(h0.55), for a corner ω2 = 5π

4 , O(h0.67), and for a corner ω3 = 9π
8 ,

O(h0.8) (see Table 1); whereas, the approximate Rν-generalized solution by the presented weighted
FEM converges to the exact one in the W1

2,ν(Ωk) norm with a rate that is independent of the value of
the internal angle ω and has the first order by h (see Table 2), where we derive computationally the
optimal parameters δ, ν� = ν�opt and ν . Both errors for the Rν-generalized and generalized solutions
visually are represented in Figure 3 for different values of a number N.

Table 1. The generalized solution error (uh − u) in the norm of a space W1
2(Ωk).

ωk, N = 74 148 296

3π
2

2.886 ×10−1 1.980 ×10−1 1.358 ×10−1

5π
4

1.622 ×10−1 1.017 ×10−1 6.377 ×10−2

9π
8

6.747 ×10−2 3.870 ×10−2 2.220 ×10−2

Table 2. The Rν-generalized solution error (uh
ν − uν) in the norm of a space W1

2,ν(Ωk), where ν� =

µ� = λk − 1 and ν� = µ� = ν�opt.

ν� = µ� = λk − 1 ν� = µ� = ν�
opt

ωk ν δ, N = 74 148 296 74 148 296

3π
2

1.6 0.01375 2.261 ×10−4 1.126 ×10−4 5.504 ×10−5 1.614 ×10−5 8.026 ×10−5 3.991 ×10−5

0.01625 3.181 ×10−4 1.582 ×10−4 7.895 ×10−5 2.290 ×10−4 1.138 ×10−4 5.648 ×10−5

1.9 0.01375 6.236 ×10−5 3.101 ×10−5 1.543 ×10−5 4.469 ×10−5 2.235 ×10−5 1.109 ×10−5

0.01625 9.311 ×10−5 4.601 ×10−5 2.288 ×10−5 6.789 ×10−5 3.381 ×10−5 1.675 ×10−5

5π
4

1.6 0.01375 1.181 ×10−4 5.849 ×10−5 2.925 ×10−5 9.247 ×10−5 4.603 ×10−5 2.276 ×10−5

0.01625 1.720 ×10−4 8.568 ×10−5 4.275 ×10−5 1.322 ×10−4 6.567 ×10−5 3.260 ×10−5

1.9 0.01375 3.320 ×10−5 1.651 ×10−5 8.234 ×10−6 2.605 ×10−5 1.293 ×10−5 6.437 ×10−6

0.01625 5.115 ×10−5 2.547 ×10−5 1.262 ×10−5 3.835 ×10−5 1.905 ×10−5 9.513 ×10−6

9π
8

1.6 0.01375 6.020 ×10−5 2.993 ×10−5 1.495 ×10−5 4.493 ×10−5 2.233 ×10−5 1.104 ×10−5

0.01625 7.947 ×10−5 3.946 ×10−5 1.959 ×10−5 6.124 ×10−5 3.036 ×10−5 1.497 ×10−5

1.9 0.01375 1.684 ×10−5 8.366 ×10−6 4.170 ×10−6 1.239 ×10−5 6.158 ×10−6 3.068 ×10−6

0.01625 2.364 ×10−5 1.174 ×10−5 5.800 ×10−6 1.756 ×10−5 8.708 ×10−6 4.324 ×10−6

Let δ′ji = |uj(Mi) − uh
j (Mi)| and δji = |uj(Mi) − uh

ν,j(Mi)|, j = 1, 2, Mi ∈ GΩ be errors for the
generalized and Rν-generalized solutions, respectively. Then, we show the percentage of nodes, where
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δ′1i and δ1i are less than a given value 4̄l . The quantity of points Mi ∈ GΩ, where δ′1j < 4̄l (for the
classical FEM), is significantly less in relation to the quantity of points Mi ∈ GΩ, where δ1j < 4̄l (for
the proposed weighted FEM) for all sizes of the reentrant corner ω (see Table 3). Moreover, in numerical
experiments, the number of nodes Mi, where δ′2i < 4̄l and δ2i < 4̄l are approximately equal to the
number of nodes Mi, where δ′1i < 4̄l and δ1i < 4̄l , l = 1, 2, respectively.

Table 3. The percentage of points Mi ∈ GΩ, where the values δ1i and δ′1i are less than 4̄l , l = 1, 2.

Rν-Generalized Solution, ν = 1.9, Generalized Solution
δ = 0.01375, ν� = µ� = ν�

opt

ωk 4̄l , N = 74 148 296 74 148 296

3π
2

10−5 19.1% 36.7% 65.7% 13.2% 14.8% 22.1%

5× 10−6 16.4% 29.3% 51.4% 6.2% 9.1% 15.6%

5π
4

10−5 33.9% 51.0% 76.2% 21.4% 32.4% 44.2%

5× 10−6 24.1% 42.4% 64.7% 11.4% 17.5% 27.4%

9π
8

10−5 60.3% 91.5% 98.1% 44.7% 68.3% 86.4%

5× 10−6 39.7% 62.7% 80.5% 24.8% 32.7% 44.3%

Then, we present the distribution of errors δji and δ′ji in the points Mk for components uh
ν,j and uh

j
for all sizes ωl , l = 1, 2, 3, j = 1, 2 , and h, such that N = 148 and N = 296. The weighted finite element
method allows us to perform computations with high accuracy both inside of the domain and near the
point of singularity. Moreover, the error of the proposed FEM is localized near the point of singularity
and does not extend into the interior of the domain, in contrast to the error of the classical FEM for all
values of the internal corner ω (see Figures 4–15).

In Figures 16–18, we show the dependence of error in the W1
2,ν(Ωk) norm on the parameter

ν� (µ� = ν�), where each minimum is compatible with the best value ν�opt. Any value from the
interval (λk − 1, 0) can be taken as an exponent ν� for the presented FEM in the domain Ωk with a
reentrant corner ωk. Moreover, if the exponent µ� does not coincide with ν�, then we get substantially
worse results. This research was supported in through computational research provided by the Shared
Facility Center “Data Center of FEB RAS”.

4e-1

2e-1

1e-1

5e-2

2.5e-2

74 148 296

1.6e-4

8e-5

4e-5

2e-5

1e-5

74 148 296

ω1 = 3π/2
ω2 = 5π/4
ω3 = 9π/8

Figure 3. The errors of (left) a classical FEM in the W1
2 norm and (right) a weighted FEM in the

W1
2,ν norm, where ν = 1.6, δ = 0.01375 : ω1 = 3π

2 , ν� = νopt = −0.35; ω2 = 5π
4 , ν� = νopt = −0.25;

ω3 = 9π
8 , ν� = νopt = −0.125, for different values of a number N.
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Figure 4. The errors δ′1i of the approximate generalized solution (uh
1) : ω1 = 3π

2 , (left) N = 148,
(right) N = 296.

Figure 5. The errors δ1i of the approximate Rν-generalized solution (uh
ν,1) : ω1 = 3π

2 , ν = 1.6,
δ = 0.01375, ν� = µ� = −0.35, (left) N = 148, (right) N = 296.

Figure 6. The distribution of the errors δ′2i of the approximate generalized solution (uh
2) : ω1 = 3π

2 ,
(left) N = 148, (right) N = 296.
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Figure 7. The errors δ2i of the approximate Rν-generalized solution (uh
ν,2) : ω1 = 3π

2 , ν = 1.6,
δ = 0.01375, ν� = µ� = −0.35, (left) N = 148, (right) N = 296.

Figure 8. The errors δ′1i of the approximate generalized solution (uh
1) : ω2 = 5π

4 , (left) N = 148,
(right) N = 296.

Figure 9. The errors δ1i of the approximate Rν-generalized solution (uh
ν,1) : ω2 = 5π

4 , ν = 1.6,
δ = 0.01375, ν� = µ� = −0.25, (left) N = 148, (right) N = 296.
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Figure 10. The errors δ′2i of the approximate generalized solution (uh
2) : ω2 = 5π

4 , (left) N = 148,
(right) N = 296.

Figure 11. The errors δ2i of the approximate Rν-generalized solution (uh
ν,2) : ω2 = 5π

4 , ν = 1.6,
δ = 0.01375, ν� = µ� = −0.25, (left) N = 148, (right) N = 296.

Figure 12. The errors δ′1i of the approximate generalized solution (uh
1) : ω3 = 9π

8 , (left) N = 148,
(right) N = 296.
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Figure 13. The errors δ1i of the approximate Rν-generalized solution (uh
ν,1) : ω3 = 9π

8 , ν = 1.6,
δ = 0.01375, ν� = µ� = −0.125, (left) N = 148, (right) N = 296.

Figure 14. The errors δ′2i of the approximate generalized solution (uh
2) : ω3 = 9π

8 , (left) N = 148,
(right) N = 296.

Figure 15. The errors δ2i of the approximate Rν-generalized solution (uh
ν,2) : ω3 = 9π

8 , ν = 1.6,
δ = 0.01375, ν� = µ� = −0.125, (left) N = 148, (right) N = 296.
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7e-05

1.4e-04

-0.45 -0.425 -0.4 -0.375 -0.35 -0.325 -0.3 -0.275 -0.25

ν = 1.9, δ = 0.01625, N = 296

ν = 1.9, δ = 0.01625, N = 148

ν = 1.9, δ = 0.01375, N = 296

ν = 1.9, δ = 0.01375, N = 148

Figure 16. The dependence of error (uh
ν − u) in the W1

2,ν(Ω1) norm on the degree ν�, ω1 = 3π
2 .

4e-05

8e-05

-0.325 -0.3 -0.275 -0.25 -0.225 -0.2 -0.175 -0.15

ν = 1.9, δ = 0.01625, N = 296

ν = 1.9, δ = 0.01625, N = 148

ν = 1.9, δ = 0.01375, N = 296

ν = 1.9, δ = 0.01375, N = 148

Figure 17. The dependence of error (uh
ν − u) in the W1

2,ν(Ω2) norm on the degree ν�, ω2 = 5π
4 .

2e-05

4e-05

-0.2 -0.175 -0.15 -0.125 -0.1 -0.075 -0.05 -0.025

ν = 1.9, δ = 0.01625, N = 296

ν = 1.9, δ = 0.01625, N = 148

ν = 1.9, δ = 0.01375, N = 296

ν = 1.9, δ = 0.01375, N = 148

Figure 18. The dependence of error (uh
ν − u) in the W1

2,ν(Ω3) norm on the degree ν�, ω3 = 9π
8 .

6. Conclusions

The main results of the numerical experiments for the Oseen problem (8) and (9) lead to the
following conclusions:
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• The approximate generalized solution (velocity field) by classical FEM converges to the exact
one in the W1

2(Ωk) norm with a rate O(hλ), λ < 1, where the exponent λ depends on the size of
reentrant corner ω, the so-called pollution effect (see [12] and the references therein), while the
approximate Rν-generalized solution by the presented weighted FEM converges to the exact one
in the W1

2,ν norm with a rate that is independent of the value of the internal angle ω and has the
first order by h for various values of ν, δ (see Tables 1 and 2 and Figure 3).

• Thanks to Theorem 3.1 in [13], there exists a limitation on the radius δ∗ of the neighborhood of a
reentrant corner ω and ρ(x) exponent ν∗ in Definition 1, that for all δ < δ∗ and ν > ν∗, a weighted
inf-sup condition holds. After a series of computational experiments, we conclude that ν∗ ∼ 1
and δ∗ ∼ h.

• The proposed approach allows us to compute the approximate solution by the weighted FEM
with a given accuracy 10−3, for example in a case when the internal corner ω is equal to 3π

2 ,
about 106-times faster than using classical FEM. Note that in implementing the weighted FEM,
one can spend about 106-times less computing resources and energy consumption.

• The weighted finite element method enables us to perform computations with high accuracy,
both inside of the domain and near the point of singularity.
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