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Abstract: In this article, modified multiple dependent (or deferred) state sampling control charts
for the attribute and the variable quality characteristics are presented. The proposed control charts
are designed using the symmetry property of the normal distribution. The control chart coefficients
are estimated through simulation at different levels of the parameters using the normal distribution.
The proposed control chart scheme is evaluated by calculating the in-control average run lengths
and out-of-control average run lengths. Tables are constructed for the selection of parameters for
different control limit coefficients under several shift levels for the attribute data as well as the variable
data. Examples are included for the practical application of the proposed control chart schemes.
The proposed control chart scheme is also compared with the existing control charts. It has been
observed that the proposed schemes are better in quick detection of the out-of-control processes.

Keywords: multiple dependent state sampling; control chart; attribute chart; average run length;
process monitoring

1. Introduction

Process monitoring is an important tool of quality improvement or maintaining the current quality
level. For example, the manufacturer earns its profit when the quality of the product is increased
continuously and/or there is less variation in the current quality level. Both of these situations are
intended to quantify for any change in the quality characteristic. Shewhart A. Walter introduced the
technique of control charts during the 1920s, which is a graphical display with control limits generated
from samples collected from the production process to indicate whether the process is in-control
or out-of-control to prevent the scrapping of items. The basic idea of the control limits is still the
same but a lot of literature is available to develop a robust technique and eventually to improve the
performance of the control chart.

Ultimately, quick and early detection of change in any production process is the prime objective of
the control chart, for which several sampling schemes have been proposed in the statistical control
process [1]. Single sampling and double sampling schemes are the commonly used sampling schemes
in which the decision for the in-control and out-of-control process is based upon the information
obtained from the current sample and totally neglects the information from the aforementioned or
the forthcoming samples [2]. The multiple dependent (or deferred) state (MDS) sampling scheme
was introduced by [3] and is known as the conditional sampling scheme. In MDS sampling the
declaration of the out-of-control process (not necessarily always) is made on the basis of not only
the current sample information, but also the previous sample information. Several quality control
researchers depend upon MDS sampling for the study of the processes [2]. Soundararajan and
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Vijayaraghavan [4] developed a MDS sampling plan for MDS-1 (0,2) type having minimum risks.
Soundararajan and Vijayaraghavan [5] introduced a MDS sampling plan for MDS-(c1, c2) type having
a smaller sample size. Govindaraju and Subramani [6] developed the MDS sampling plans for the
minimum sum of the producer’s and the consumer’s risks using specific acceptable quality level and
the limiting quality level. Balamurali and Jun [7] developed a MDS sampling plan for variable data
using the normally distributed quality characteristics. Aslam et al. [8] used MDS sampling to develop
the X-bar control chart based upon double control limits. Aslam et al. [9] proposed an attribute np
control chart using MDS sampling. Balamurali et al. [2] developed a Bayesian multiple dependent
state sampling plan for the Gamma–Poisson distribution. MDS sampling has been explored by many
authors, including references [7–15].

Two types of control charts are available in the literature: attribute (p, np to monitor the fraction of
non-conforming and c and µ are used to monitor the number of non-conformities etc.) charts are used
when the quality characteristic is counted as pass or fail, conforming or non-conforming etc., and
variable (X, R, S etc.) control charts are applied when the quality characteristic is measureable as
temperature, weight, height etc. Attribute control charts, which are widely accepted charts due to their
simplicity in implementation, are used to categorize the items as good or defective by comparing them
with the standard item, Montgomery [1]. Variable charts provide more information as compared to the
attribute charts but involve more laborious calculation than just categorizing the items [1]. The average
run length (ARL) is the most commonly used measure for performance evaluation of the control chart.
It is defined as the average number of samples falling in the in-control limits until an out-of-control
sample is indicated.

Both these types of quality characteristics have been explored under MDS sampling in this paper.
The operation of a control chart using MDS sampling is based on the four control limits, namely two
outer control limits and two inner control limits. The process is said to be in-control if the plotting
statistic lies between two inner control limits and out-of-control if it lies outside the outer control limits.
The process is considered as in-decision if some plotting statistic is between the outer and inner control
limits. In this situation, the existing MDS sampling guide the practitioner to collect information from
previous in-control subgroups. The process is declared to be in-control if a specified number of the
previous subgroup are in-control, otherwise they are out-of-control. However, the proposed modified
MDS sampling is more flexible than the existing MDS sampling, see Aslam et al. [9]. In the proposed
MDS, the decision about in-control state is taken on the basis of previous in-control subgroups and
allowing that a maximum of one subgroup may lie in between the outer and inner control limits.
The MDS was introduced in the area of sampling plan by Govindaraju and Subramani [6].

According to the best of authors’ knowledge, no control chart using modified MDS has yet been
proposed. Therefore, the Shewhart attribute and variable control charts are designed using modified
MDS sampling in this paper. The proposed control will be helpful to test the hypothesis that the
process mean is same with the alternative hypothesis that the process mean has changed. It is expected
that the proposed control charts will be more efficient than the traditional Shewhart control charts and
the existing control charts based on MDS sampling in terms of average run length. The efficiency of
the proposed control charts will be given with the help of a simulation study and real examples.

The rest of the paper is organized as follows: the attribute chart using the modified MDS sampling
is proposed in Section 2. The result of ARL performance for the proposed attribute chart is given
in Section 3. Comparison of the proposed attribute chart with the existing attribute control chart
is discussed in Section 4. In the second portion of the paper, the variable chart using the modified
MDS sampling chart has been developed. Thus, the design of the variable MDS sampling is given in
Section 5. The results of ARLs for the variable chart are given in Section 6. Comparison of the proposed
variable chart with the existing variable control chart is discussed in Section 7.
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2. Attribute Chart Using Modified Multiple Dependent State (MDS) Sampling

In this section, working of the proposed attribute chart using the modified MDS sampling will be
explained. As mentioned earlier, in the proposed MDS, the decision about in-control state is taken on
the basis of previous in-control subgroups and allowing that a maximum of one subgroup may lie in
between the outer and inner control limits. The steps of the proposed control chart are as follows:

Step-1: Count the number of defectives D from n.
Step-2: If LCL2 ≤ D ≤ UCL2, the process is in-control. If D > UCL1 or D < LCL1 out-of-control,

otherwise, go to Step-3.
Step-3: Declare the process is in control if m proceeding subgroups are in-control except in one

sample where UCL2 ≤ D ≤ UCL1 or LCL1 ≤ D ≤ LCL2.
By the usual MDS sampling scheme, the process is declared as in-control if m proceeding

subgroups declared the process as in-control. Therefore, the use of the modified MDS sampling
may be more flexible.

Let p0 be the probability that an item becomes a defective when the process is in-control. Then,
np0 is the mean and np0(1− p0) is the variance of the number of defectives (denoted by D). Therefore,
the four control limits of the proposed chart are:

UCL1 = np0 + k1

√
np0(1− p0) (1)

LCL1 = max[0, np0 − k1

√
np0(1− p0)

]
(2)

UCL2 = np0 + k2

√
np0(1− p0) (3)

LCL2 = max
[

0, np0 − k2

√
np0(1− p0)

]
(4)

The proposed attribute control chart contains two coefficients k1 and k2, which will be determined
by considering the in-control ARL.

Now, the probability that the process is declared as in-control under the modified MDS sampling
is given as follows [16]:

Pin = P(LCL2 ≤ D≤ UCL2)


[P(LCL2 ≤ D≤ UCL2)]

m+

m[P(UCL2 < D≤ UCL1) + P(LCL1 ≤ D< LCL2)]

[P(LCL2 ≤ D≤ UCL2)]
m−1

 (5)

P(LCL2 ≤ D ≤ UCL2)= ∑|UCL2|
d=|LCL2|+1

(
n
d

)
pd(1− p)n−dd = 0, 1, . . . , n (6)

P(D ≥ UCL1) = 1−∑UCL1
d=0

(
n
d

)
pd(1− p)n−d; d = 0, 1, . . . , n (7)

P(D ≤ LCL1) = ∑UCL1
d=0

(
n
d

)
pd(1− p)n−d; d = 0, 1, . . . , n (8)

It is to be noted here that the proposed attribute chart becomes the traditional Shewhart chart
when k1 = k2 and i = 1.
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2.1. In-Control Process

Hence, the in-control ARL (denoted by ARL0) when p = p0 is finally obtained by

P(LCL2 ≤ D ≤ UCL2)= ∑|UCL2|
d=|LCL2|+1

(
n
d

)
p0

d(1− p0)
n−d (9)

P(D ≥ UCL1) = 1−∑UCL1
d=0

(
n
d

)
p0

d(1− p0)
n−d; d = 0, 1, . . . , n (10)

P(D ≤ LCL1) = ∑LCL1
d=0

(
n
d

)
p0

d(1− p0)
n−d; d = 0, 1, . . . , n (11)

where d = 0, 1, . . . , n shows the number of defectives may 0, 1, . . . , n.

ARL0 =
1

1 − P0
in

(12)

2.2. Shifted (or Out-Of-Control) Process

Hence, the out-of-control ARL (denoted by ARL1) when p = p1 is finally obtained as

P(LCL2 ≤ D ≤ UCL2)= ∑|UCL2|
d=|LCL2|+1

(
n
d

)
p1

d(1− p1)
n−d (13)

P(D ≥ UCL1) = 1−∑UCL1
d=0

(
n
d

)
p1

d(1− p1)
n−d; d = 0, 1, . . . , n (14)

P(D ≤ LCL1) = ∑LCL1
d=0

(
n
d

)
p1

d(1− p1)
n−d; d = 0, 1, . . . , n (15)

ARL1 =
1

1 –P1
in

. (16)

The performance of the proposed chart is assessed by computing the values of ARL, so the
in-control ARL0 denoted by r0 is obtained as the average number of samples when the false alarm
indicates for the specified values of the MDS sample parameter i. Here, it is to be noted that the larger
values of the ARL0 are recommended as the process is in a situation of in-control, and no change occurs.
For the specific values of ARL0 = 200, 300, and 370, the values of ARL1 have been computed by running
the R-code program using the simulation approach. This type of simulation approach is employed
when the mean and other measures of the proposed chart are unavailable. Several researchers of the
statistical process control used the simulation approach for numerical calculations of the proposed
methodology including, for example, [17].

3. ARLs of the Attribute Chart Using Modified MDS Sampling

In Table 1 the control chart coefficients k1 and k2 are estimated for the MDS sampling parameter
i = 2, and 3. The performance of the proposed methodology is evaluated by calculating ARL1 values,
in which the smaller values show the early indication of false alarm [1]. The smaller the value of ARL1

is, the better the performance of the proposed chart is. Thus, Tables 1–3 are generated for different
process settings using different shift levels from 1.00 to 2.00. It can be observed that as the shift level
increases, the ARL1 is going to decrease. This means that the larger shifts are addressed quickly, for
example a shift of size 1.01 is detected with 188.49 samples on the average for i = 2, r0 = 200 and
p0 = 0.01, while a shift of 1.80 is detected with 2.52 samples for the same process settings. The same
pattern can be observed for p0 = 0.05 and p0 = 0.10.
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Table 1. The (ARL) values of the attribute chart for p0 = 0.01.

r0
i = 2 i = 3

201.7800 301.5360 370.6202 200.9965 305.2319 373.4875

k1 4.8498 3.4960 3.6292 5.1498 3.7202 3.9085

k2 2.9614 3.4723 3.5639 3.6066 3.4506 3.4507

n 810 900 880 680 920 900

Shift ARL1

1.00 201.78 301.54 370.62 201.00 305.23 373.49
1.01 188.49 273.78 339.37 209.70 276.88 342.11
1.03 163.20 224.71 281.99 225.50 226.49 283.89
1.05 140.34 183.98 232.62 237.95 184.58 233.43
1.07 120.23 150.71 191.33 245.73 150.38 191.13
1.10 95.16 112.31 142.83 246.62 111.07 141.53
1.13 75.49 84.47 107.28 234.44 82.76 105.36
1.15 64.88 70.29 89.09 220.41 68.43 86.97
1.17 55.92 58.79 74.32 203.29 56.88 72.11
1.20 45.01 45.42 57.16 174.96 43.54 54.96
1.25 31.90 30.32 37.84 129.61 28.64 35.85
1.30 23.11 20.89 25.83 93.29 19.46 24.14
1.40 12.90 10.83 13.14 48.19 9.84 11.97
1.50 7.76 6.25 7.43 26.04 5.57 6.63
1.70 3.45 2.74 3.12 9.04 2.40 2.73
1.80 2.52 2.05 2.28 5.81 1.80 2.00
2.00 1.60 1.38 1.48 2.85 1.25 1.33

Table 2. The ARL values of the attribute chart for p0 = 0.05.

r0
i = 2 i = 3

200.4457 301.5679 371.4451 200.1407 300.1609 370.1112

k1 3.5377 4.5655 4.3772 6.1016 3.5814 5.6740

k2 2.9214 2.9908 3.1114 2.9065 3.0666 3.1167

n 290 275 270 225 395 315

Shift ARL1

1.00 200.45 301.57 371.45 200.14 300.16 370.11
1.01 177.09 266.99 328.98 180.06 259.69 324.69
1.03 138.23 209.93 258.33 146.05 193.00 250.51
1.05 108.23 165.99 203.62 118.95 143.30 194.32
1.07 85.20 132.11 161.37 97.33 106.92 151.76
1.10 60.28 95.04 115.23 72.75 69.98 106.19
1.13 43.37 69.47 83.54 55.03 46.82 75.56
1.15 35.17 56.86 67.99 45.98 36.27 60.76
1.17 28.73 46.85 55.71 38.61 28.39 49.20
1.20 21.52 35.47 41.82 29.98 20.04 36.29
1.25 13.79 22.99 26.73 20.12 11.78 22.51
1.30 9.23 15.43 17.71 13.87 7.35 14.47
1.40 4.68 7.65 8.57 7.12 3.40 6.60
1.50 2.76 4.27 4.69 4.05 1.96 3.46
1.70 1.43 1.87 1.98 1.81 1.13 1.50
1.80 1.20 1.44 1.50 1.42 1.04 1.21
2.00 1.04 1.10 1.12 1.09 1.00 1.03
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Table 3. The ARL values of the attribute chart for p0 = 0.10.

r0
i = 2 i = 3

200.8375 301.9349 370.9957 200.0664 300.0649 374.3649

k1 6.0760 3.7269 4.9422 3.9412 3.3411 3.6377

k2 2.7771 3.4279 2.9897 2.9031 3.3107 3.4403

n 100 85 205 290 370 140

Shift ARL1

1.00 200.84 301.93 371.00 200.07 300.06 374.36
1.01 182.99 275.08 327.06 177.38 249.31 322.69
1.03 151.61 226.98 250.60 134.45 167.37 241.28
1.05 125.60 186.56 190.56 99.38 111.46 182.06
1.07 104.27 153.23 145.03 72.94 74.92 138.68
1.10 79.38 114.47 97.35 46.14 42.58 93.83
1.13 61.04 86.18 66.57 29.74 25.26 64.82
1.15 51.54 71.72 52.25 22.48 18.27 51.22
1.17 43.72 59.97 41.39 17.17 13.47 40.83
1.20 34.48 46.28 29.66 11.71 8.83 29.52
1.25 23.76 30.80 17.74 6.56 4.81 17.91
1.30 16.83 21.13 11.14 3.97 2.93 11.40
1.40 9.11 10.83 5.02 1.88 1.51 5.30
1.50 5.39 6.17 2.70 1.24 1.11 2.93
1.70 2.42 2.65 1.30 1.01 1.00 1.41
1.80 1.82 1.96 1.11 1.00 1.00 1.17
2.00 1.27 1.32 1.01 1.00 1.00 1.02

4. Comparison of the Proposed Chart with Existing MDS chart

In this section, the advantages of the proposed chart over the existing chart by [9] based on MDS
sampling will be discussed. As mentioned earlier, the proposed attribute chart is equal to the [9] chart
when i = 3. Therefore, using the same parameters and setting the ARL1 values from the proposed chart
and [9], the results are reported in Table 4 for i = 3 and ARL0 = 300. A control chart having the smaller
values of ARL1 of the same parameters is considered as the more efficient chart. From Table 4, it can
be noted that the proposed control chart has smaller ARL1 as compared to the [9] chart. For instance,
a shift of 1.20 is detected by an average of 50 samples, while the existing chart detects the same shift
with an average of 43 samples. Figure 1 is presented for i = 2, ARL0 = 370 and p0 = 0.10. From Figure 1,
it is clear that the ARL curve for n = 100 is higher than the ARL curve when n = 130.

Table 4. Comparison in ARLs when p0 = 0.01, p = 0.10 and i = 3.

n = 920 n = 88

Existing MDS Chart Proposed Chart Existing MDS Chart Proposed Chart

Shift ARL1 ARL1 ARL1

1.00 301.13 305.23 372.32 300.10
1.01 273.31 276.88 355.19 271.30
1.03 225.13 226.49 316.12 219.32
1.05 185.76 184.58 274.42 175.62
1.07 153.77 150.38 233.71 139.99
1.10 116.71 111.07 179.26 99.58
1.13 89.53 82.76 135.24 71.31
1.15 75.49 68.43 111.65 57.45
1.17 63.98 56.88 92.15 46.57
1.20 50.38 43.54 69.32 34.44
1.25 34.65 28.64 43.89 21.62
1.30 24.53 19.46 28.62 14.23
1.40 13.28 9.84 13.48 7.06
1.50 7.89 5.57 7.25 4.11
1.70 3.53 2.40 2.96 2.04
1.80 2.61 1.80 2.17 1.65
2.00 1.68 1.25 1.45 1.27
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4.1. Simulation Study

In this section, the methodology of the proposed attribute control chart is explained for its
practical use with the help of simulated data. The efficiency of the proposed control chart will be
compared with existing Shewhart control charts based on single sampling and MDS sampling by [9].
For this simulation study, first, 20 observations were generated from in-control process with n = 205
and p0 = 0.10. Then, the next 20 observations were generated from the shifted process with n = 205,
p1 = c*p0 where c = 1.25 from Table 2, ARL1 was 17.91, and the shift was detected on observation 17.
The simulated data were 13, 25, 24, 21, 20, 19, 19, 22, 23, 22, 16, 26, 13, 19, 21, 24, 18, 18, 16, 18, 24, 32, 38,
18, 29, 20, 27, 22, 28, 28, 32, 25, 30, 25, 42, 24, 23, 24, 23, and 24. Figure 1 shows the simulated data of
40 observations, in which the process indicates an out-of-control situation after 20 + 15 = 35 samples.
Thus, the proposed chart is effective in detecting a shift of 1.25 after 15 samples (a value of ARL1 from
Table 3 for r0 = 370 and i = 2). To compare the proposed control chart with the existing chart by [9],
the values of statistic Di are also plotted on the control chart in Figure 2. By comparing Figure 2 with
Figure 3, it can be noted that the existing control chart by [9] does not have the ability to detect the
shift in the process. Figure 4 shows that the process is in-control. Similarly, the values of statistic Di
are also plotted on the Shewhart control chart in Figure 4. From Figure 4, it can be observed that the
Shewhart control chart does not detect the shift in the process. Therefore, the current chart is more
efficient than two existing control charts in detecting quick shift in the manufacturing process.Symmetry 2019, 11, x FOR PEER REVIEW 8 of 16 
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4.2. An Industrial Example

Now the application of the proposed control is given on real data from the plastic parts
manufacturing industry. According to [1] “a control chart is used to control the fraction nonconforming
for a plastic part manufactured in an injection molding process”. Ten subgroups each of size 100
are taken from [1]. The number of non-confirming data is: Di = 10, 15, 31, 18, 24, 12, 23, 15, 8 and
8 being noted down and presented here. Figure 5 shows the control chart with k1 = 4.340957 and
k2 = 3.092937, and the control chart limits are calculated as LCL1 = 0, LCL2 = 4, UCL2 = 27, and UCL1 = 32.
From Figure 5, it can be noted that although the process is in a state of control, the 3rd, 9th and 10th
sample are near the control limits, which may cause the shift in the process.
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5. Variable Chart Using Modified MDS Sampling 
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5. Variable Chart Using Modified MDS Sampling

In this section, the application of the variable MDS sampling will be described. The steps of the
MDS sampling are:

Step-1: Compute X from subgroup size n.
Step-2: If LCL2 ≤ X ≤ UCL2, the process is in-control. If X > UCL1 or X < LCL1 the process is

out-of-control, otherwise, go to Step-3.
Step-3: Declare the process is in control if m proceeding subgroups declared the process as

in-control except in one sample where UCL2 < X ≤ UCL1 or LCL1 ≤ X < LCL2.
In this section the construction of the control limits under the MDS sampling scheme is given.

Let m be the mean and σ/
√

n be the standard deviation of the variable chart. Then, the four control
limits of the proposed X chart are:

UCL1 = m + k1σ/
√

n (17)

LCL1 = m− k1σ/
√

n (18)

UCL2 = m + k2σ/
√

n (19)

LCL2 = m− k2σ/
√

n (20)

5.1. In-Control Process

Now the probability that the process is in-control under the MDS sampling with the parameter m
is given as follows:

Pin = P
(

LCL2 ≤ X≤ UCL2
)

[
P
(

LCL2 ≤ X≤ UCL2
)]m

+

m
[
P
(
UCL2 < X≤ UCL1

)
+ P

(
LCL1 ≤ X< LCL2

)][
P
(

LCL2 ≤ X≤ UCL2
)]m−1

 (21)

P
{

LCL2 < X< UCL2|µ = m
}
= Φ(k2)−Φ(−k2) = 2Φ(k2)− 1 (22)

P
(

LCL2 ≤ X≤ UCL2
)
= Φ(k2)−Φ(−k2) = 2Φ(k2)− 1 (23)

P
(
UCL2 < X≤ UCL1

)
= Φ(k1)−Φ(−k2) (24)

P
(

LCL1 ≤ X< LCL2
)
= Φ(−k2)−Φ(−k1) (25)

P
(
X ≥ UCL1

)
= 1−Φ(k1) (26)

P
(
X ≤ LCL1

)
= Φ(−k1) (27)

ARL0 =
1

1 − P0
in

(28)

5.2. Shifted (or Out-Of-Control) Process

Suppose now that the process mean has shifted from m to m + cσ.

P
(

LCL2 < X< UCL2|µ = m + cσ
)
= Φ

(
k2 − c

√
n
)
+ Φ

(
k2 + c

√
n
)
− 1 (29)

P
(
X ≥ UCL1

)
= 1−Φ

(
k1 − c

√
n
)

(30)

P
(
X ≤ LCL1

)
= Φ

(
k1 + c

√
n
)

(31)

P
(
UCL2 < X< UCL1|µ = m + cσ

)
= Φ

(
k1 − c

√
n
)
−Φ

(
k2 − c

√
n
)

(32)

P
(

LCL1 < X< LCL2|µ = m + cσ
)
= Φ(LCL2 −U1/S)−Φ

(
LCL1− c

√
n
)

= Φ
(
k2 − c

√
n
)
−Φ

(
k1 − c

√
n
) (33)

ARL1 =
1

1 − P1
in

(34)
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6. ARLs of Variable Chart Using Modified MDS Sampling

In Table 5 the control chart coefficients k1 and k2 are estimated for the MDS sampling parameter
i = 2, and 3. The performance of the proposed methodology is evaluated by calculating ARL1 values,
in which the smaller values show the early indication of false alarm [1]. The smaller the value of the
ARL1 is, the better the performance of the proposed chart is. Thus, Tables 5 and 6 are generated for
different process settings using different shift levels from 0.01 to 0.90. It can be observed that as the
shift level increases, the ARL1 is going to decrease. This means that the larger shifts are addressed
quickly, for example a shift of size 0.05 is detected with 188.89 samples on average for i = 2, r0 = 200,
while a shift of 0.80 is detected with 4.25 samples for the same process settings. The same pattern
can be observed for n = 10.

Table 5. The ARL values of the variable chart for n = 5.

r0
i = 2 i = 3

201.3894 300.2447 370.9500 200.2556 301.5969 376.9614

k1 3.2778 3.4290 3.3808 3.4319 3.3473 3.4785

k2 2.9806 3.0730 3.2267 2.9495 3.3291 3.2531

c ARL1

0.00 201.39 300.24 370.95 200.26 301.60 376.96
0.01 200.86 299.41 369.86 199.72 300.69 375.80
0.03 196.72 292.88 361.31 195.54 293.63 366.77
0.05 188.89 280.56 345.24 187.64 280.34 349.81
0.07 178.14 263.71 323.38 176.79 262.31 326.82
0.10 158.56 233.27 284.21 157.08 230.07 285.86
0.13 137.46 200.79 242.87 135.88 196.18 242.97
0.15 123.66 179.74 216.35 122.04 174.49 215.64
0.17 110.59 159.94 191.57 108.95 154.28 190.23
0.20 92.83 133.26 158.48 91.20 127.36 156.51
0.25 68.68 97.39 114.54 67.12 91.76 112.12
0.30 50.73 71.09 82.78 49.30 66.13 80.34
0.40 28.23 38.64 44.19 27.07 35.15 42.20
0.50 16.36 21.87 24.61 15.45 19.52 23.13
0.70 6.33 8.05 8.82 5.79 7.01 8.06
0.80 4.25 5.25 5.69 3.83 4.55 5.14
0.90 3.01 3.61 3.87 2.69 3.13 3.47

Table 6. The ARL values of the variable chart for n = 10.

r0
i = 2 i = 3

200.2658 300.8521 371.6013 200.6461 300.0891 370.2289

k1 4.241692 3.865157 3.706407 4.389848 4.384344 3.524029

k2 2.81188 2.958272 3.082647 2.814882 2.941529 3.189481

c ARL1

0 200.27 300.85 371.60 200.65 300.09 370.23
0.01 199.38 299.35 369.50 199.75 298.64 368.00
0.03 192.55 287.79 353.39 192.84 287.48 350.99
0.05 180.07 266.91 324.63 180.22 267.26 320.85
0.07 163.87 240.21 288.51 163.83 241.26 283.34
0.1 136.85 196.73 231.19 136.51 198.60 224.71

0.13 110.86 156.13 179.37 110.25 158.39 172.61
0.15 95.41 132.57 150.05 94.64 134.87 143.52
0.17 81.78 112.14 125.10 80.88 114.36 119.00
0.2 64.70 87.03 95.08 63.65 89.01 89.80

0.25 43.90 57.29 60.54 42.69 58.71 56.65
0.3 30.14 38.23 39.14 28.87 39.11 36.40
0.4 14.92 17.97 17.34 13.75 18.10 16.07
0.5 7.93 9.13 8.37 6.98 8.92 7.82
0.7 2.84 3.06 2.65 2.36 2.78 2.56
0.8 1.95 2.04 1.78 1.63 1.84 1.74
0.9 1.47 1.52 1.35 1.27 1.37 1.34



Symmetry 2019, 11, 53 11 of 14

7. Comparison of the Proposed Chart with Existing MDS Chart

In this section, the advantages of the proposed chart over the existing chart by [8] based on MDS
sampling are presented. As mentioned earlier, the proposed attribute chart is equal to the [8] chart
when i = 3. Therefore, using the same parameters and setting the ARL1 values from the proposed chart
and [8], the results are reported in Table 4 for i = 3 and ARL0 = 300. A control chart having the smaller
values of ARL1 of the same parameters is considered as the more efficient chart. From Table 4, it can be
noted that the proposed control chart has a smaller ARL1 as compared to the [8] chart. For instance, a
shift of 1.20 is detected by an average of 109 samples, while the existing chart detects the same shift
with an average of 89 samples. Figure 6 is presented for i = 2 and ARL0 = 370. From Figure 6, it is clear
that the ARL curve for n = 5 is higher than the ARL curve when n = 10.
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7.1. Simulation Study

In this section, the methodology of the proposed variable control chart is explained for its practical
use with the help of simulated data. The efficiency of the proposed control chart will be compared
with existing Shewhart control charts based on single sampling and MDS sampling by [8].

First, 20 observations were generated from in-control process with mean, µ = 0 and σ = 1. Then,
the next 20 observations were generated from the shifted process with µ+c* σ, where c = 0.40 from
Table 7, ARL1 was 17.97, and the shift is detected on observation 17. The simulated data are not given
here due to short space. Figure 7 shows the simulated data of 40 observations in which the process
indicates an out-of-control situation after 20 + 17 = 37 samples. Thus, the proposed chart is effective in
detecting a shift of 0.40 after 17 samples (a value of ARL1 from Table 6 for r0 = 200 and i = 3).

To compare the proposed control chart with the existing chart by [8], the values of statistic X are
also plotted on a control chart in Figure 8. By comparing Figure 7 with Figure 8, it can be noted that the
existing control chart by [8] does not have ability to detect the shift in the process. Figure 8 shows that
the process is in-control. Similarly, the values of statistic X are also plotted on the Shewhart control
chart in Figure 9. From Figure 9, it can be observed that the Shewhart control chart does not detect the
shift in the process. Therefore, the current chart is more efficient than two existing control charts in
detecting quick shift in the manufacturing process.
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Table 7. Comparison in ARLs when n = 10 and i = 3.

Existing MDS Chart Proposed Chart

c ARL1

1.00 370.77 370.23
1.01 368.95 368.00
1.03 354.95 350.99
1.05 329.63 320.85
1.07 297.20 283.34
1.10 244.27 224.71
1.13 194.70 172.61
1.15 165.86 143.52
1.17 140.80 119.00
1.20 109.93 89.80
1.25 73.21 56.65
1.30 49.53 36.40
1.40 24.08 16.07
1.50 12.74 7.82
1.70 4.56 2.56
1.80 3.06 1.74
2.00 2.21 1.34
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8. Conclusions

In this paper, a control chart using modified multiple dependent state sampling for attribute
and variable data has been presented. The parameters of the proposed chart are estimated using
several process settings. The performance of the proposed chart has been evaluated by the average
run lengths at different shift levels. The comparative performance for the quick and early detection of
the out-of-control process has also been studied. Practical application of the proposed charts has been
given through examples for the elucidation of proposed methodology. It has been observed that the
proposed charts are better than the existing Shewhart chart by comparing the ARLs of the shifted
processes. The proposed control chart can be used for other probability models by transforming
the variable of interest into symmetry form. The control chart measures will be different for other
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symmetric probability models. The proposed charts are a useful addition in the toolkit of quality control
personnel. The proposed methodology can further be extended for some non-normal distributions.
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