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Abstract: In this paper, a high precision detection method of salient objects is presented based on
deep convolutional networks with proper combinations of shallow and deep connections. In order
to achieve better performance in the extraction of deep semantic features of salient objects, based
on a symmetric encoder and decoder architecture, an upgrade of backbone networks is carried out
with a transferable model on the ImageNet pre-trained ResNet50. Moreover, by introducing shallow
and deep connections on multiple side outputs, feature maps generated from various layers of the
deep neural network (DNN) model are well fused so as to describe salient objects from local and
global aspects comprehensively. Afterwards, based on a holistically nested edge detector (HED)
architecture, multiple fused side outputs with various sizes of receptive fields are integrated to form
detection results of salient objects accordingly. A series of experiments and assessments on extensive
benchmark datasets demonstrate the dominant performance of our DNN model for the detection of
salient objects in accuracy, which has outperformed those of other published works.

Keywords: detection of salient objects; deep learning; deep neural networks; semantic segmentation;
shallow and deep connections

1. Introduction

With astonishing ability, humans are able to detect visually distinctive, so-called salient
objects/regions effortlessly and rapidly. Benefitting from selective attention mechanisms of human
visual systems (HVSs), people capture the most obvious objects from complex scenes and implement
analysis and treatment, and this helps to greatly improve the efficiency of information perception [1–3].

Different from fixation prediction, the aim of saliency detection lies in locating the most remarkable
objects in the scene accompanied with a binary segmentation result output [4–6]. In general, these
methods can be divided into two categories (i.e., bottom-up and top-down approaches) driven by
stimulus and tasks, respectively. Early bottom-up approaches usually adopted hand-designed features
or combinations of them. However, limited with the cognition of HVS, the mechanism of feature
selection and combinational optimization was unclear. The main disadvantage of hand-designed
features mainly lies in its low generalization ability. Some handcraft features are deigned for specific
tasks without accounting for variability in the input data. They also suffer from a lack of human
expertise. Meanwhile, owing to the application of space pyramid theory in multi-scale analysis, the
resolution of saliency map was relatively low, and this caused salient objects to be inaccurately located.

With the breakthrough of deep learning, early methods relying on low-level vision cues have been
fast superseded in many fields, including handwritten digit recognition, pedestrian detection, and
automatic drive. In the field of saliency detection, deep convolutional networks have also acquired
enormous successes [7–9]. In the issue of detection for salient objects, the fusion of multi-scale features
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is very important for achieving good results of saliency maps and has been widely referenced in many
published papers [10,11].

Inspired by the achievements of deep semantic segmentation, the inherent hierarchical structure
of DNN models is very conducive to the extraction of multi-scale features of salient objects [12,13].
In Figure 1, it can be seen that saliency maps generated from deep side outputs of DNN models mainly
focus on global appearances of the object. As a contrast, saliency maps generated from shallow side
outputs capture detailed information such as textures and skeletons. Both of them are necessary for
achieving the high precision detection of salient objects [14,15].

(c) Side_1 (d) Side_2 (e) Side_3 (f) Side_4(b) Ground_truth(a) Ori_image

Figure 1. Saliency maps generated from various side outputs.

In this paper, with proper combinations of shallow and deep connections on various side outputs
generated from different layers, a high precision detection method of salient objects based on a
symmetric end-to-end DNN model is proposed. Generally, improvements of our method mainly focus
on four aspects:

(1) A symmetric end-to-end architecture with stronger backbone networks.
An end-to-end encoder and decoder DNN architecture is proposed in this paper. Moreover,

an ImageNet pre-trained ResNet50 is adopted instead of VGG16 to improve the ability of feature
extraction for backbone networks [16].

(2) Resolution recovering based on nonlinear transposed convolution.
The nonlinear transposed convolution adopted in our model helps to recover the resolution of

feature maps with higher accuracy, and this works toward outperforming the bilinear interpolation
applied in fully convolutional networks (FCNs) [17].

(3) Combinations of shallow and deep connections on various side outputs.
Combinations of shallow and deep connections on various side outputs help to integrate feature

maps with different sizes of receptive fields. Such integration of overall and detailed information has
been validated to be very helpful to achieve a higher accuracy detection of salient objects [18,19].

(4) HED-based architecture with the fusion of multiple side outputs.
Outputs generated from various layers of DNN models focus on different scale information

of salient objects. Inspired by HED architecture, multiple side outputs are well fused to integrate
multi-scale information that helps to promote accuracy further [20].

2. Related Work

During the past two decades, an extremely rich set of detection methods of salient objects
has been well developed. Conventional detection methods of salient objects are primarily based
on hand-crafted local features, global features, or the combination of them. A complete review is
beyond the scope of this paper, and details can be acquired from a recent survey paper published by
Borji A. et al. [21]. In this paper, we mainly focus on developments of deep leaning based detection
methods of salient objects.
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The inherent hierarchical architecture of DNN models is conducive to the extraction of feature
maps with various scale information, which is vital for the high precision detection of salient objects.
The literature published by Li G. et al. demonstrates an early attempt [22]. In their work, multi-scale
information was acquired by manually selected local images centered by salient objects such that
their corresponding generalization abilities are limited. The method of SALICON [23] published by
Huang X. et al. in ICCV2015 puts forward another effective solution. In their method, sub-sampled
and full resolution images were fed into DNN models (e.g., AlexNet [24]). Then, generated coarse
and fine feature maps were concatenated and interpolated to produce a saliency map. Cornia M. et al.
proposed a multi-level neural network for the detection of salient objects in ICPR2016 [25]. In their
work, with a feature encoding network, feature maps extracted from different layers of an end-to-end
DNN model were well combined. They also proposed a new loss function to tackle the imbalance
problem of saliency maps. Such a highly efficient end-to-end framework has also been applied in
many other outstanding saliency detection models. Inspired by HED [20], Hou Q. et al. proposed a
deeply supervised salient object detection model by introducing short connections on skip layers in
CVPR2017 [26]. Different from previous methods, hierarchical side outputs produced from various
layers were fused to form one integrated saliency map, and this helped to capture the multi-scale
information of the target. Similarly, Wang W. et al. proposed a deep visual attention prediction
model in TIP2018 [27]. In their work, dense connections between skip layers were discarded from the
organization structure of the reference [26] so as to simplify the network architecture at the expense of
some performance degradation. The motivation and impacts are worth discussing further.

With the similar task of object segmentation, achievements of deep semantic segmentation can be
referenced for the high precision detection of salient objects. The FCN proposed by Long J. et al. in
CVPR2015 replaced the full connection layer with 1× 1 convolutional layers, and this provides the
FCN with the ability to deal with arbitrary sizes of input images [28]. As a strong baseline method,
the FCN has been applied in a wide range of applications, including Mask-RCNN [29]. However,
the bilinear interpolation for resolution-retrieving of extracted feature maps is the main shortcoming
of FCN. The reason for this lies in the fact that such operation ruins the original spatial relationship
between image pixels. In order to solve this problem, Badrinarayanan V. et al. proposed a deep fully
convolutional neural network for semantic pixel-wise segmentation termed SegNet in PAMI2017 [30].
The innovation of SegNet lies in its encoder–decoder architecture. The nonlinear resolution-recovering
through transposed convolution in the decoder part of SegNet overcomes the mode of bilinear
interpolation adopted by the FCN with higher accuracy. However, the encoder–decoder architecture
applied by SegNet is inclined to fall into over-fitting, even with rich training samples. For better
performance, Ronneberger O. et al. proposed a novel convolutional network for biomedical image
segmentation called U-Net [31]. The unique skip-layer architecture concatenates shallow and deep
layers symmetrically, and this is conducive to the propagation of gradient information in DNN
models [32]. Zhao H. S. et al. proposed another effective model for the fusion of multi-scale information
called PSPNet [33]. With pyramid pooling and the integration of feature maps with various scales,
PSPNet can both extract large and/or small objects with higher accuracy.

Based on convolutional neural networks (CNNs), the idea of feature clustering has also been
widely applied in recent works of object detection and recognition. A recurrent convolutional neural
network (RCNN)-based visual odometry approach for endoscopic capsule robots was proposed by
Turan M. et al. in [34]. On the one side, just-in-moment features were well extracted by CNNs. On the
other side, by means of the RCNN, inference of dynamics across the frames could also be well obtained.
Through the fusion of these two powerful deep-learning-based models, an outstanding monocular
visual odometry method with high translational and rotational accuracies was achieved. The clustered
features can also be used in intelligent systems for disease diagnosis. Połap D. et al. proposed a smart
home system to diagnose skin diseases for residents in the house [35]. With the aid of a SIFT algorithm
and a histogram comparison, clusters of potential areas were first located. These cluster images were
then put forward into CNNs to find real disease areas. With the aid of CNNs, Babaee M. et al. proposed
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a novel background subtraction method from video sequences [36]. In their method, input frames
along with the corresponding background images were patch-wise processed. These fused image
patch stacks contained mixed information regarding the foreground and the background. Therefore,
the segmentation results could take comprehensive consideration of the detection scene so as to
generate high accuracy segmentation results. The idea of feature clustering can also be used in model
optimization. A multi-threading mechanism to minimize training time by rejecting unnecessary weight
selection was proposed by Połap D. et al. in [37]. The multi-core solution was utilized to select the
best weights from all parallel trained networks. A systematic investigation of the impact of class
imbalance on classification performance of convolutional neural networks (CNNs) was proposed by
Buda M. et al. in [38]. Frequently used methods including oversampling, undersampling, two-phase
training, and thresholding were compared, and the optimal solution against class imbalance for deep
learning was summarized. An unsupervised extraction of low or intermediate complexity visual
features with spiking neural networks (SNNs) was proposed by Kheradpisheh S. R. et al. in [39]. They
introduced the technology of spike-timing-dependent plasticity (STDP) into a DNN and presented
a temporal coding scheme to selectively fire neurons according to intensities of activation. With the
combination of STDP and latency coding, the manner in which primate visual systems learn was
well explored.

Based on reviews of related literature, connection mechanisms of various types of DNN models
are deeply discussed in Section 3. Through comparative analysis of their merits and drawbacks,
a kind of scheme for combinatorial optimization of shallow and deep connections will be put
forward accordingly.

3. Analysis and Optimization of the Connection Mechanism of DNNs

As mentioned above, existing DNN models for the detection of salient objects can be summarized
into two typical architectures, i.e., the FCN-type architecture and the encoder–decoder type architecture.
In this section, based on the analysis of various DNN model structures, a series of improvements will
be carried out to generate the framework of our proposed DNN architecture.

3.1. Fully Convolutional Networks (FCNs)

FCNs have been adopted in many strong detection algorithms of salient objects (e.g., [26,27]).
Based on comparisons of backbone networks architectures, configurations of existing FCN-net-based
saliency detection DNN models can be classified into three categories: (1) a single stream with a single
output; (2) multi-streams with a single output; (3) a single stream with multiple side outputs. Model
structures of various types of FCNs are shown in Figure 2.
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Figure 2. Various types of fully convolutional network (FCN) architectures.

(1) A single stream with a single output.
Figure 2a shows FCNs based on a single-steam backbone network. With the aid of convolutional

layers, semantic features are extracted from original input images. Afterwards, the method of bilinear
interpolation is applied onto extracted feature maps, and locations of salient objects are achieved as a
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result. A fully convolutional architecture of FCNs makes the network capable of dealing with arbitrary
sizes of input images. Meanwhile, shared parameters between convolutional kernels are also helpful
to improve the efficiency of the network.

(2) Multi-streams with a single output.
Based on initial explorations of detection algorithms for salient objects, DNN models with

multi-stream architecture shown in Figure 2b have been widely applied. With the aid of pyramid
spatial transformation, multi-scale information is extracted from original input images with various
sizes [40]. This approach has also been referenced by authors using traditional methods [41].

(3) A single stream with multiple side outputs.
The third architecture of FCNs exhibited in Figure 2c is inspired by HED architecture. The main

difference between Figure 2a,c is that the former one only exports a single prediction from the network.
As a contrast, the latter generates multi-level predictions from various hidden layers of the backbone
network. With supervisions directly propagated back to the hidden layers, this architecture helps
networks quickly converge to a global optimal solution. Moreover, it can be regarded as a lightweight
version of multi-stream FCNs shown in Figure 2b, and the quantity of parameters can be well controlled
accordingly.

As a strong baseline architecture, FCNs still face drawbacks that need to be overcome. Spatial
information among pixels in input images is lost during the operation of max- pooling and/or
convolution with various strides. In addition, backbone networks can be strengthened further to
enhance the ability of feature extraction to help better locate salient objects with higher accuracy [42].

3.2. Deep Convolutional Encoder–Decoder Networks (EN-DE Nets)

In order to overcome the drawbacks of FCNs, deep convolutional encoder–decoder networks
(EN-DE nets) have seen many improvements in terms of model structure. Like FCNs, the architecture
of EN-DE nets can be divided into three categories: (1) single-stream EN-DE nets; (2) EN-DE nets with
a skip-layer architecture; (3) EN-DE nets with multiple side outputs. These structures are shown in
Figure 3.
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Figure 3. Various types of encoder–decoder network (EN-DE net) architectures.

(1) Single-stream EN-DE nets.
The architecture of EN-DE nets with single stream backbone networks exhibited in Figure 3a

can be separated into two symmetric parts. The former, called “encoder”, is in charge of feature
extraction, and the latter, termed “decoder”, is responsible for resolution reconstruction of feature
maps correspondingly. The loss between the prediction and the ground truth is back-propagated to
adjust the weights of hidden neurons. However, once the outputs of neurons in the shallow layers
fall into insensitive regions of the activation function, gradient information cannot be effectively
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transmitted to deeper layers. With increasing layers, such a single stream architecture tends to become
trapped into over-fitting. The detailed reason for this phenomenon has been illustrated in [16].

(2) EN-DE nets with a skip-layer architecture.
Inspired by bottleneck layers adopted in the residual module, EN-DE nets with a skip layer

architecture (e.g., U-Nets) help to propagate the flow of information and prevent the model from
over-fitting. Meanwhile, feature maps extracted from shallow layers with a smaller receptive field
focus on the details of an object. As a contrast, maps extracted from deep layers with a larger receptive
field focus on global views. With the aid of the skip-layer architecture, feature maps with various sizes
of receptive field are well fused, and this is beneficial for achieving a higher precision detection of
salient objects.

(3) EN-DE nets with multiple side outputs.
Compared with Figure 3b, the architecture shown in Figure 3c integrates multiple side outputs

with various sizes of receptive field and has already been applied, e.g., [43]. Meanwhile, this multi-level
output architecture also exhibits outstanding performance in the task of object detection (e.g., feature
pyramid networks (FPNs) [44]). Based on the fusion of multi-scale feature maps, further modifications
of Figure 3c will be discussed in Section 3.3.

3.3. Deep Convolutional Models with Combinations of Shallow and Deep Connections

A multi-level side output architecture helps to integrate attention information from different
layers of DNN models, and this is beneficial for achieving more accurate detection of variously sized
salient objects [13,25]. In this section, through an analysis of metrics and drawbacks of deep networks
with combinations of short connections based on an FCN architecture, our framework of a deep
network with combinations of shallow and deep connections based on an EN-DE architecture is put
forward accordingly and integrated with improvements of multiple aspects.

(1) A deep network with combinations of short connections based on an FCN architecture.
The model shown in Figure 4 was first published in [26] as an improvement of that shown in

Figure 1c. The author also drew comparisons of various short connection patterns, and the model
shown in Figure 4 outperformed the compared architectures in terms of accuracy. Intuitively, the main
difference between these two models shown in Figure 4 and Figure 1c lies in the addition of short
connections between outputs generated from various layers of backbone networks. With the aid of
this new model, global and local information of salient objects can be well fused, and higher accuracy
segmentation results are achieved as a consequence. Although it overcomes many state-of-the-art DNN
models, relying on the comparison of FCNs and EN-DE nets stated above, a series of improvements
can be adopted with respect to this structure to propose our DNN model afterwards.
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Figure 4. A deep network with combinations of short connections on FCN architecture.

(2) A deep network with combinations of shallow and deep connections on an EN-DE architecture.
Based on architectures of HED and densely connected convolutional networks [45], our adopted

network architecture in this paper, i.e., a deep network with combinations of shallow and deep
connections based on an EN-DE architecture, is exhibited in Figure 5. Three main advantages
are integrated into this DNN architecture. First, backbone networks based on EN-DE nets with a
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skip-layer architecture help the model converge faster and better [32]. Meanwhile, nonlinear resolution
reconstruction based on symmetric EN-DE nets can also help recover the context information of pixels
with higher accuracy. Second, the integration of multi-level side outputs generated from different
layers helps to integrate the multi-scale saliency information. Third, shallow and deep connections on
various side outputs help to fuse the global and local information of salient objects. Along with the
advantages stated above, the details of this architecture will be discussed in Section 4.
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Figure 5. A deep network with combinations of shallow and deep connections on EN-DE architecture.

4. Saliency Detection Based on a DNN with Combinations of Shallow and Deep Connections

Based on comparisons mentioned above, details of the model structure and its corresponding
settings of deep network parameters with combinations of shallow and deep connections are put
forward here. Afterwards, the inference process of our proposed detection model for salient objects
is discussed in depth. By means of cross-validation, the generalization ability of the model is
comprehensively assessed. Finally, with the aid of ablation analysis, contributions of each key module
with respect to overall performance improvements are evaluated to validate the rationality of our
model design.

4.1. DNN Structures with Combinations of Shallow and Deep Connections for Saliency Detection

The inherent hierarchical structure of DNN models helps to extract the primitive and advanced
semantic information of salient objects. Such low and high level features are shown to be both
important and complementary in estimating visual attention, and this motivates us to incorporate
shallow and deep information for inferring visual attention [46]. The architecture of our proposed
deep network with combinatorial optimization of shallow and deep connections is shown in Figure 6,
and the whole organization can be divided into four main parts: (1) backbone networks consisting of
(1)–(10); (2) skip-layer architectures including four skip-layers of (11)–(18), (12)–(17), (13)–(16), and
(14)–(15); (3) multiple side outputs shown as (19)–(22); and (4) shallow and deep connections on
various side outputs shown as (23)–(25). The fusion layer is shown as (26).

4.1.1. Backbone Networks

The backbone of the deep network with combinations of shallow and deep connections includes
(1) to (10) shown in Figure 6. Intuitively, our model is designed with an end-to-end symmetric
mode, and the fully convolutional architecture is very helpful for the promotion of efficiency as a
consequence [47].

Meanwhile, we also adopted the technique of transfer learning to help promote the performance
of backbone networks in feature extraction. Specifically, the encoder part of the deep network with
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combinations of shallow and deep connections was upgraded with the ImageNet pre-trained ResNet50
without fully connected layers, and specific implementations are shown in Figure 7. We did not train
the networks from scratch but directly invoked pre-trained weight coefficients that achieve 5.25% in
top-5 error rates in the ImageNet dataset. The encoder part with pre-trained weight coefficients helps
to better extract deep semantic features of salient objects [48]. On the contrary, weights of the decoder
part were randomly initialized and adjusted in the process of training. The performance assessment of
this transferable model is analyzed in depth in Section 4.2.
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4.1.2. Skip-Layer Architecture

The function of skip layer architectures shown as (11)–(18), (12)–(17), (13)–(16), and (14)–(15) in
Figure 6 lies in the integration of feature maps extracted from various layers of backbone networks
with different depths. The other important role of skip-layer architectures is to prevent the model
from falling into over-fitting. Even if outputs of neurons in the shallow layers fall into insensitive
regions of the activation function, with the aid of skip layers, gradient information can still be
effectively transmitted to the deeper layers of the network. Further, with the aid of ablation analysis
in Section 4.3.4, the effectiveness of such an architecture is analyzed in depth. The details of the
connection and the parameter settings of skip-layer architectures are exhibited in Figure 8.
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4.1.3. Integrations of Multiple Side Outputs

Based on the HED architecture, the structure of multi-level side outputs is shown in Figure 9.
The structure of multi-level side outputs corresponds to modules of (19)–(22) in Figure 6. Outputs
generated from deeper layers are better at describing the global characteristics of objects, while
those produced by shallower layers tend to represent details that can be clearly seen in Figure 1 [49].
Compared with traditional detection models for salient objects which generate only one saliency map
result, the deep network with combinations of shallow and deep layers integrates multi-level side
outputs generated from various layers of the decoder part. The inference process will be discussed in
Section 4.2.

14×14 28×28 56×56 112×112 224×224

224×224112×11256×5628×28

224×224112×11256×56

224×224112×112

224×224

Output of 
Side_1

Output of 
Side_2

Output of 
Side_3

Output of 
Side_4

Output of 
Module (10)

Fused result of 
salient object

Driving from 
module (15)

Driving from 
module (16)

Driving from 
module (17)

Driving from 
module (18)

Driving from 
module (10)

Figure 9. Structure of multiple side outputs.



Symmetry 2019, 11, 5 10 of 31

4.1.4. Combinatorial Optimization of Shallow and Deep Connections on Various Side Outputs

It has been illustrated that side outputs generated from various layers of DNN models focus
on different scale information of salient objects. Based on this phenomenon, shallow and deep
connections are constructed to establish contacts of various side outputs to capture the most visually
distinctive objects.

In fact, “combinatorial optimization” has two meanings. First, “combination” means that there
are many combinatorial modes of these shallow and deep connections between various side outputs.
In fact, there are six combinatorial modes in total. Figure 6 only exhibits one of them. All six
combinatorial modes of shallow and deep connections are shown in Figure 10.
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Figure 10. Various combinatorial modes of shallow and deep connections between different side outputs.

Second, the word “optimization” implies that we should find the best connection mode of shallow
and deep connections from models shown in Figure 10. In order to achieve that goal, we trained these
models on the ECSSD dataset, and the performance evolution curves are shown in Figure 11.

In order to make quantitative comparisons, performance indices including validation accuracy,
validation loss, and Fβ are adopted. The metric of validation accuracy measures the extent to which
predicted saliency maps match ground truth masks. In addition, the binary cross entropy L is applied
to calculate the metric of validation loss, where L = −∑N

i=1

(
y(i) log ŷ(i) + (1− y(i)) log

(
1− ŷ(i)

))
.

y(i) stands for the value of the i-th pixel in the predicted saliency map, and ŷ(i) stands for the value of
the i-th pixel in the ground truth mask. Moreover, it is necessary to employ the index of the harmonic
mean of precision and recall (i.e., Fβ) to evaluate the performance. It is defined as follows:

Fβ =

(
1 + β2) Precision× Recall

β2Precision + Recall
(1)
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where Precision = |S ∩ Z|
/
|S|, and Recall = |S ∩ Z|

/
|Z|. S stands for the binary saliency map, and Z

stands for the ground truth mask. Generally, the binary saliency map is generated with a threshold that
is selected as two times the average gray value of all pixels. Referenced by previous literature [21,26],
β2 is selected to be 0.3 to emphasize the importance of precision. Quantitative experimental results are
shown in Table 1.

Figure 11. The performance evolution based on various modes of shallow and deep connections.

Table 1. Various combination modes of shallow and deep connections.

Combination Modes

Actual Indices Index Terms
Validation
Accuracy

Validation
Loss

Fβ

Mode_1 0.9476 0.1840 0.8576
Mode_2 0.9531 0.1679 0.8598
Mode_3 0.9602 0.1414 0.8622
Mode_4 0.9567 0.1445 0.8607
Mode_5 0.9596 0.1419 0.8616
Mode_6 0.9619 0.1345 0.8637

From Table 1, it can be seen that Mode_6 exhibits the best performance among the compared
DNN models with different combinatorial modes of shallow and deep connections. This is the reason
why it is selected to be the optimal DNN model structure. Details about the combinations of shallow
and deep connections on various side outputs in Mode_6 are shown in Figure 12.
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Figure 12. Structure of shallow and deep connections on various side outputs.

In order to integrate various sizes of feature maps, the operation of transposed convolution is
applied to reconstruct the image resolution. Compared with the bilinear interpolation adopted in
FCNs, nonlinear transposed convolution can obtain higher accuracy [17]. Performance assessments
on shallow and deep connection architecture will be evaluated with ablation analysis in Section 4.3.
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4.2. A Saliency Detection Model Based on a DNN with Combinations of Shallow and Deep Connections

Different from previous published approaches, a DNN with combinations of shallow and deep
connections integrates multi-level side outputs to generate the saliency map with the structure shown
in Figure 9. Here, the inference process of our proposed detection model of salient objects will
be discussed.

Assume there are M side outputs generated from backbone networks. Each of them is associated
with a classifier with weights w represented by Equation (2):

w =
(

w1, w2, . . . , wM
)

(2)

For each branch of side outputs, with the aid of transposed convolution, the resolution of generated
feature maps is recovered to be the same size with input images. Then, based on normalized predictions
and ground truth saliency maps, pixel-level cross entropy lk

side is calculated with Formula (3):

lk
side

(
W, wk

)
= −∑

j∈Z
log Pr

(
zj = 1|X; W, wk

)
+
(
1− zj

)
log Pr

(
zj = 0|X; W, wk

)
(3)

where lk
side denotes the cross entropy loss of the k-th side outputs, xj denotes the pixel at location j of

image X , Z =
{

zj, j = 1, . . . , |Z|
}

stands for the ground truth saliency map, W denotes the collection
of all standard parameters of deep networks with combinatorial optimization of shallow and deep
connections, and Pr(·) denotes the probability of the activation value at location j. Thus, the objective
loss function Lside of side outputs can be represented by Equation (4):

Lside (W, w) =
M

∑
k=1

αklk
side

(
W, wk

)
(4)

where αk is the weight of the k-th side loss.
In Figure 6, it can be seen that a weighted-fusion layer is added to connect each side activation.

The loss function Lfuse of this weighted-fusion layer can be represented by Equation (5):

Lfuse (W, w, f) = σ

(
Z,

M

∑
k=1

fk Ak
side

)
(5)

where f = { f1, . . . , fm} denotes the fusion weight, Ak
side denotes the k-th normalized side output

saliency maps of the fine-tuned deep networks with combinatorial optimization of shallow and deep
connections, and σ(·) represents the function for measuring the distance between the fused saliency
map and the ground truth. Therefore, our final loss function of Lfinal can be described as Equation (6):

Lfinal = Lside + Lfuse. (6)

Finally, all the parameters W, w, f can be learned via minimizing Equation (6) by the algorithm of
adaptive moment estimation.

4.3. A Transferable Model with Combinations of Shallow and Deep Connections Based on ImageNet Training

In this section, at first, the process of hyperparametric optimization is discussed. Afterwards,
through comparisons of DNN models based on various types of backbone networks, the effectiveness
of a transferable model of deep networks with combinations of shallow and deep connections is
evaluated. Moreover, with the aid of 10-fold cross-validation, the stability and generalization ability of
our proposed model is comprehensively validated. Finally, by means of ablation analysis, performance
improvements provided by various key modules of our DNN models is assessed in depth. All
contrastive experiments are implemented on the ECSSD dataset [50].
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4.3.1. Hyperparameters Optimization

Because the algorithm of Adam [51] was utilized to be the optimizer in our DNN model, main
hyperparameters included α, the learning rate, β1, the exponential decay rate of the first moment
estimate, and β2, the exponential decay rate of the second moment estimate. Generally, the default
setting (i.e., α = 0.001, β1 = 0.9, and β2 = 0.999) can yield relatively good experimental results.
However, in order to further improve the performance, with the aid of a randomized grid search, we
implemented an experiment of hyperparameter optimization, and details can be found in the following.

In order to avoid over-concentration of sampling and to find the optimal solution, the interval
of hyperparameters in a randomized grid search should be confirmed first. Specifically, for the
learning rate α, uniform random sampling is implemented at intervals of [0.0001, 0.001], (0.001, 0.01],
and (0.01, 0.1]. For the exponential decay rate of the first moment estimate β1, uniform random
sampling is implemented at intervals of [0.7, 0.8], (0.8, 0.9], and (0.9, 1.0). For the exponential decay
rate of the second moment estimate β2, uniform random sampling is implemented at intervals of
[0.9, 0.99], (0.99, 0.999], and (0.999, 0.9999]. Accordingly, one 3× 3× 3 grid of hyperparameters is
formed. Afterwards, 20 points are randomly selected from the grid to form different combinations of
hyperparameters. In order to exhibit the process of random sampling intuitively, all of these points are
shown in Figure 13, and each point stands for one combination of three hyperparameters.

2

1 

Figure 13. Random sampling points of hyperparameters.

In order to evaluate the performance, the off-line training was carried out on the DNN
model shown in Figure 6 with different combinations of hyperparameters on the ECSSD dataset.
Combinations of hyperparameters and their corresponding performance are shown in Table 2. Through
a comparison of validation loss, the optimal combination of hyperparameters (i.e., α = 0.0022,
β1 = 0.8657, and β2 = 0.9995) was confirmed.
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Table 2. Randomized grid search of hyperparameters and their corresponding performance.

Parameters

Indices Groups
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

α 0.0022 0.0688 0.0074 0.0401 0.0127 0.0532 0.0656 0.0619 0.0008 0.0002 0.0550 0.0071 0.0006 0.0008 0.0693 0.0068 0.0489 0.0219 0.0008 0.0010
β1 0.8657 0.8432 0.7167 0.7198 0.8952 0.9738 0.7548 0.9983 0.7666 0.8666 0.7999 0.7561 0.9190 0.8981 0.7645 0.8428 0.8589 0.7582 0.7617 0.9000
β2 0.9995 0.9792 0.9995 0.9281 0.9381 0.9424 0.9996 0.9288 0.9936 0.9998 0.9909 0.9938 0.9138 0.9474 0.9946 0.9998 0.9260 0.9991 0.9601 0.9990

Val. loss 0.1345 0.1358 0.1402 0.1439 0.1366 0.1489 0.1506 0.1398 0.1521 0.1482 0.1539 0.1586 0.1392 0.1421 0.1429 0.1502 0.1383 0.1622 0.1528 0.1374
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4.3.2. Performance Comparison of Backbone Networks

In Figure 6, it can be seen that the backbone network of our DNN model is designed as a symmetric
end-to-end architecture. In order to achieve the goal of high accuracy saliency detection, the method
of transfer learning is applied to the backbone network to promote the ability of feature extraction.
Specifically, the ImageNet pre-trained ResNet50 without fully connected layers is utilized to be the
encoder part. In correspondence, weights of the decoder part are randomly initialized and adjusted
during the process of training. In order to comprehensively evaluate improvements generated by the
modification of backbone networks, DNN models based on various types of backbone networks are
compared with different indices, including Precision–Recall (P-R) curves, accuracy, and loss in the
validation dataset. Experimental results are shown in Figure 14.

Resnet-50 with
Pre-training

Resnet-50 without
Pre-training

VGG-16 with
Pre-training

VGG-16 without
Pre-training

(a) Comparison of P–R curves of DNN models 
based on various types of backbone networks

(b) Comparison of performance of DNN models 
based on various types of backbone networks

Figure 14. Performance of various types of transferable DNN models.

All of the compared DNN models are based on the structure shown in Figure 6. The difference
mainly lies in the types of backbone networks set to be Resnet50 and VGG16 with/without pre-training,
respectively. In order to comprehensively compare the performance of transferable models, P-R curves
were drawn based on the whole dataset. Specifically, a series of binary saliency maps were obtained by
setting a threshold from 0 to 255 with an increment of 5. By comparing binary saliency maps with their
corresponding ground truth masks, pairs of precision and recall scores were counted and averaged
among the dataset so as to generate the final P-R curves. Generally, the P-R curves closer to the upper
right corner represent a better performance. The P-R curves in Figure 14a show that, with Resnet50
or VGG16, the application of transfer learning improves the detection of salient objects. Moreover,
among the compared backbone networks, Resnet50 pre-trained on the ImageNet dataset exhibits
remarkable superiorities.

The other direct way to evaluate the performance of DNN models is to monitor the process of
performance evolution. During the process of training, after each epoch of iteration, metrics of accuracy
and loss will be calculated on the training and validation datasets. In our experiment, once a lower
validation loss is achieved, the model will be updated and its corresponding performance indices will
be recorded accordingly. The next epoch of training will be then implemented on the model continually.
When the process of training is complete, only the best model with the lowest validation loss will
be saved. The performance indices of the best model are shown in Table 3. For clarification, results
in Table 3 are exhibited in Figure 14b. For the DNN model based on the backbone network of the
pre-trained Resnet50, the accuracy of the validation set reached 0.9619 and the loss dropped to 0.1345.
Based on this comprehensive analysis, the improvement of backbone networks with transfer learning
has been fully validated.
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Table 3. DNN models based on various types of backbone networks.

Index Terms

Actual
Indices

DNN Models VGG-16
without

Pre-Training

VGG-16
with

Pre-Training

Resnet-50
without

Pre-Training

Resnet-50
with

Pre-Training

Training accuracy 0.9231 0.9579 0.9799 0.9892
Training loss 0.1823 0.1284 0.0619 0.0335

Validation accuracy 0.7674 0.8224 0.9290 0.9619
Validation loss 0.4793 0.4374 0.2226 0.1345

4.3.3. Cross-Validation and Assessments

In order to evaluate the performance of stability and generalization ability, the method of 10-fold
cross-validation was carried out on our DNN model. Specifically, the ECSSD dataset with the capacity
of 1000 was divided into 10 sub-samples. Then, nine sub-samples (i.e., 900 image samples) were
selected to be the training set and the remaining sub-sample (i.e., 100 image samples) was assigned to
be the validation set to test the performance of the DNN model shown in Figure 6 with the backbone
of ResNet50. This process was repeated alternately 10 times, and experimental results are shown in
Figure 15.

Figure 15. 10-fold cross-validation on the ECSSD dataset.

In Figure 15, it can be seen that the DNN model with the architectures shown in Figure 6 exhibits
outstanding performance in terms of accuracy and stability. During 10-fold cross-validation, with
different training and validation datasets, our proposed DNN model converges well and achieves a
high level of performance accordingly.

Without obvious debasement of the performance, in each fold of cross-validation, the settings of
hyperparameters were set to be the same. Specifically, if performance degradation occurred on the
(k+1)-th fold of cross-validation, a randomized grid searching of hyperparameters was carried out in
the local neighborhood around current optimal parameters. Then the updated hyperparameters were
tested on the k-th fold of cross-validation again. If the updated optimal hyperparameters worked well
on the k-th fold of cross-validation, they were set as the new solution of optimal hyperparameters.
In each fold of cross-validation, only the performance of the best model was recorded. In each fold
of cross-validation, all of the images in the dataset were selected to be the training and validation
sets. Therefore, the performance of the optimal model was distinct. In order to obtain the mean
performance of the model on the whole dataset, all performance indices in each fold of cross-validation
were averaged, and the mean value of the performance was achieved accordingly. For a more intuitive
exhibition, experimental results in Figure 15 are exhibited in Table 4.



Symmetry 2019, 11, 5 17 of 31

Table 4. Assessments of 10-fold cross-validation.

Index Terms

Actual Indices Kth-Fold
1-Fold 2-Fold 3-Fold 4-Fold 5-Fold 6-Fold 7-Fold 8-Fold 9-Fold 10-Fold Mean

Training accuracy 0.9885 0.9888 0.9865 0.9888 0.9903 0.9874 0.9916 0.9915 0.9895 0.9891 0.9892
Training loss 0.0357 0.0343 0.0431 0.0349 0.0293 0.0395 0.0257 0.0256 0.0329 0.0338 0.0335

Validation accuracy 0.9682 0.9657 0.9659 0.9546 0.9633 0.9581 0.9763 0.9408 0.9622 0.9636 0.9619
Validation loss 0.1510 0.1408 0.1469 0.1228 0.1270 0.1232 0.1592 0.1161 0.1246 0.1329 0.1345

From records shown in Table 4, it can be seen that, whether trained by Kth-fold (K = 1, 2, . . . , 10)
of the dataset or not, our DNN models exhibit a high and stable performance. For the ECSSD dataset,
the average accuracy on the validation set was 0.9619, and the average loss dropped to 0.1345. In each
fold, the performance of our DNN model was basically maintained around the average level without
obvious fluctuations. Thus, by the method of 10-fold cross-validation, the generalization ability of our
proposed DNN models has been fully validated.

4.3.4. Ablation Analysis

Our proposed deep network based on combinations of shallow and deep connections has
integrated advantages of multiple key modules. In order to evaluate improvements of each module
onto the overall performance, the experiment of ablation analysis was carried out. As stated above,
key modules of our DNN model include four main parts, i.e., the symmetric encoder and decoder
backbone networks, skip layer architectures, multiple side outputs, and intergrations of side outputs
with shallow and deep connections. These key modules are removed step by step from the DNN
model to assess the change in performance, and the experimental results are shown in Figure 16.

Figure 16. Performance ablation analysis with Precision–Recall (P-R) curves.

In fact, among these compared models, some of them are very strong baseline methods (e.g., the
network based on the encoder and decoder architecture with skip layers refers to U-Net). P-R curves
in Figure 16 show that, along with removals of these key modules step by step, the performance of
the detection for salient objects was gradually reduced thereupon. Especially, when the fusion of
multiple side outputs with shallow and deep connections were removed, the performance dropped
obviously by a large margin. This phenomenon validates the importance and effectiveness of the
fusion of multiple side outputs with shallow and deep connections proposed in this paper. Meanwhile,
the performance of DNN models based on the encoder–decoder architecture generally outperforms
that of FCNs, and this is exactly the reason why our model is built up based on such an architecture.

Further, in order to quantitatively demonstrate experimental results, the index of the Intersection
over Union (IoU) is evaluated with Equation (6):

IoU =
Area(RoIT ∩ RoIG)

Area(RoIT ∪ RoIG)
(7)
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where RoIT stands for the binary saliency maps processed by threshold segmentation, RoIG stands for
the ground truth mask images, Area (·) stands for the pixel number within the area. In our experiment,
the adaptive threshold is selected to be twice the average value of the saliency map, and the results of
the IoU are shown in Table 5.

Table 5. Ablation analysis with the Intersection over Union (IoU) score.

Methods IoU

FCN 0.4515
EN-DE (E) 0.6297

Skip layers + EN-DE (S+E) 0.6418
Side outputs + Skip layers + EN-DE (S+S+E) 0.6911

Fusion + Side outputs + Skip layers + EN-DE (F+S+S+E) 0.7547

Based on IoU scores shown in Table 5, the contribution of each module to overall performance
improvements is shown very clearly. The most obvious promotion comes from two aspects, i.e., the
encoder–decoder architecture and the fusion of multi-side outputs with shallow and deep connections,
which are systematically elaborated in Section 4.1. Compared with existing saliency detection DNN
models (most of which are still based on the FCN architecture and/or have no consideration of the
fusion of side outputs with various sizes of receptive fields), our proposed network structure shows
obvious superiorities.

Corresponding to methods presented in Table 5, binary outputs of saliency maps are exhibited in
Figure 17. The effectiveness of our proposed DNN model has thus been fully validated.

(a) Ori (b) G_truth (c) F+S+S+E (d) S+S+E (e) S+E (f) E (g) FCN

Figure 17. Performance ablation analysis with binary saliency maps.

4.4. Integrated Architecture of Saliency Detection System

Based on the analysis stated above, details about the architecture of our DNN model and how to
find the optimal hyperparameters has been well illustrated. In this section, the integrated architecture
of our proposed saliency detection system is provided. The flow chart of the whole system is exhibited
in Figure 18.

In Figure 18, it can be seen that our system can be divided into two main parts. The first part is
“off-line training.” For each benchmark dataset, the operation of normalization is implemented onto
the original RGB images and their corresponding gray scale ground truth masks. Through image size
normalization, all of the images and masks are resized to 224× 224. Afterwards, based on the resized
images and masks, the off-line training is implemented to the DNN model with the architecture shown
in Figure 6. The second part is “on-line testing.” Similar to the procedure of training, all of the test
images should be first resized to 224× 224. Then, with the aid of well-trained end to end DNN models,
the results of saliency maps with the same size as the inputs are obtained directly without a further
need of processing. The performance analysis and assessment of our method for the detection of
salient objects is discussed in Section 5.
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Figure 18. Integrated architecture of saliency detection system.

5. Performance Analysis and Assessment

Through comprehensive analysis, the characteristics of the DNN model based on combinations of
shallow and deep connections have been illustrated in depth. In this section, through comparisons
with other strong baseline methods, the performance of our DNN model will be synthetically evaluated
on extensive saliency detection benchmark datasets. According to experimental results, the metrics
and drawbacks of our model will be analyzed, and applicable scenarios will be discussed.

5.1. Benchmark Datasets and Evaluation Indices

5.1.1. Benchmark Datasets

In order to evaluate the performance, comparative experiments were implemented on three
widely used saliency detection benchmark datasets: ECSSD [50], MSRA-10K [52], and iCoSeg [53,54].

For the ECSSD dataset, the sizes of the original images and their corresponding masks are exactly
the same, mainly 267× 400, 400× 267, and 300× 400. RGB images are stored in the format of jpg. The
gray scale mask images are stored in the format of png. The ECSSD dataset has the capacity for 1000
image samples. Moreover, objects in ECSSD usually have a complex appearance, which makes it very
suitable for evaluating the description ability of DNN models.

For the MSRA-10K dataset, the sizes of the original images and their corresponding masks are
also the same. The range of image size mainly covers 400× 300, 300× 400, etc. RGB images are stored
in the format of jpg. The gray scale mask images are stored in the format of png. The MSRA-10K
dataset has a large quantity of image samples from hundreds of different categories. Most of these
images only include one main salient object near the center area.

For the iCoSeg dataset, like ECSSD and MSRA-10K, each RGB image has a corresponding mask
with the same size. The image size is mainly 500× 333, 400× 500, 500× 252, or 375× 500. RGB images
are stored in the format of jpg. The gray scale mask images are stored in the format of png. As a small
dataset, the amount of image samples in iCoSeg was designed for co-segmentation with only 643
images. Meanwhile, some images in iCoSeg include multiple objects with complex shapes.

According to the design of our proposed DNN model structure, before training images are
imported into the DNN model, all of these images and their corresponding masks should be normalized
to the size of 224× 224 for all three benchmark datasets. The entire process can also be seen very
clearly from the system flow chart shown in Figure 18.

5.1.2. Evaluation Indices

In order to assess the performance, four universally agreed, standard evaluation metrics were
adopted: P-R curves, F-measure, intersection-over-union (IoU), and mean absolute error (MAE).
Meanwhile, time consumption was also counted to evaluate the efficiency of the compared DNN
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models. P-R curves, F-measure, and the IoU score are illustrated above, and here we only provide the
expression of MAE as follows.

Assuming that the width and height of the original RGB image is W, H, the MAE score can be
calculated by Equation (8):

MAE =
1

H ×W

H

∑
i=1

W

∑
j=1
|S (i, j)− Z (i, j)| (8)

where S stands for the binary saliency map segmented with the threshold of twice the average value,
and Z stands for the ground truth correspondingly. MAE is useful in evaluating the applicability of a
model, as it reveals the numerical distance between the saliency map and the ground truth.

5.2. Platform and Implementation Details

We constructed the DNN model with combinations of shallow and deep connections on the
platform of Keras 2.0.9 using Tensorflow 1.2 as the backend. As mentioned above, the encoder part
was designed as an ImageNet pre-trained ResNet50 without fully connected layers. We invoked the
weights from the library of Keras instead of training from the scratch. The rest of the model was
randomly initialized and adjusted during the procedure of training. All of the weights were adjustable
without freezing.

The algorithm of Adam [51] was adopted as the optimizer. During the procedure of training, in
order to stably converge to the optimal solution, one adjusting schedule was designed for the learning
rate—α. Specifically, for the whole 45 epochs training process, in 1 to 30, 31 to 40, and 41 to 45 epochs,
learning rates, α, were set to be 0.0022, 0.00022, and 0.000022, respectively. The hyperparameters of β1

and β2 remained unchanged throughout the training.
When the process of training was finished, the best model with the minimum loss in the validation

set was saved. It took about 2.5, 30, and 2 h to train the model for the ECSSD , MSRA-10K, and iCoSeg
datasets, respectively. Two NVIDIA GEFORCE 1070Ti GPUs with 16 GB memory under multi-GPU
mode provided the computing power. All experiments were carried out on this platform without
further explanations.

5.3. Performance Assessment by Verification on ECSSD

In order to evaluate the performance, five state-of-the-art deep-learning-based saliency detection
methods including deep networks with short connections (DSCs) [26], deep visual attention networks
(DVAs) [27], networks of static saliency (NSSs) [55], networks of dynamic saliency (NDSs) [55], and
deep multi-level networks (DMLNs) [25] were applied to compare with our DNN models. Meanwhile,
five conventional saliency detection methods, i.e., RBD [56], DSR [57], MC [58], GR [59], and CA [60]
were also employed, and source codes were all obtained from the project website of [21]. First, on the
ECSSD dataset, P-R curves of these compared methods were drawn, which can be seen in Figure 19.
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Figure 19. P-R curves of the ECSSD dataset.

In Figure 19, it can be seen that our model has the best performance. With stronger backbone
networks based on an encoder–decoder architecture, our model overcomes the performance of the
DSC, which is designed in FCNs. In addition, DVA and DMLN models were also built on the FCN
architecture. Meanwhile, in these two models, feature maps with different sizes of receptive fields
were merged directly without fusions between each other. Similar situations also occurred with respect
to NSS and NDS. Although these two models are based on the encoder–decoder architecture, their
single steam models do not consider the utilization of feature maps generated from various layers
of the network. Therefore, useful multi-scale information regarding salient objects was discarded,
resulting in relatively poor performance.

Extensive indices including precision, recall, F-measure, IoU, and MAE were also adopted to
assess the performance between contrastive DNN models. In the process of comparison, continuous
saliency maps were first processed by the operation of threshold segmentation. For the sake of fairness,
thresholds were all set to be twice the average value of the saliency maps in each saliency detection
DNN model. Comparison results are shown in Figure 20.

Ours DSC DVA NSS NDS DMLN

(a) Comparison of precision, recall and F-measure
Ours DSC DVA NSS NDS DMLN

(b) Comparison of IoU and MAE

(a) Comparison of precision, recall and F-measure (b) Comparison of IoU and MAE

Figure 20. Various performance indices on the ECSSD dataset.

In Figure 20, it can be seen that our model has obvious advantages, regardless of precision or recall.
This is mainly due to the coordination of multiple key modules. With the aid of the fusion of multiple
side outputs, our models capture the local and global information of salient objects comprehensively.
In addition, the score of the IoU and MAE indicate that our model can accurately locate not only salient
objects, and the probability of false alarm is controlled at a low level in irrelevant background areas.

At last, a visual comparison of saliency maps is exhibited in Figure 21. The first column exhibits
original RGB images, and the second column exhibits their corresponding binary ground truth masks.
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The third and later columns stand for continuous saliency maps generated by various contrastive
methods. It is obviously noticed that our saliency maps are most similar to the ground truth and
highlight the saliency objects with high accuracy.

(a) Ori_images (b) G_truth (c) Ours (d) DSC (e) DVA (f) NSS (g) NDS (h) DMLN (i) RBD (j) DSR (k) MC (l) GR (m) CA

Figure 21. Saliency maps generated by various methods on the ECSSD dataset.

5.4. Performance Assessment by Verification on MSRA-10K

Similarly, the performance of our proposed detection model of salient objects are also evaluated on
the large scale MSRA-10K dataset. Because the generalization ability of our DNN model has been well
validated through 10-fold cross-validation in Section 4.3.3, here we randomly selected 6000 samples
from the dataset as the training set. The remaining 4000 samples are utilized as the test set to evaluate
the performance of well trained DNN models. For the sake of fairness, all models were trained on the
same training set. P-R curves are shown in Figure 22.

Figure 22. P-R curves of the MSRA-10K dataset.

In Figure 22, it can be seen that our model still exhibits the best performance. Compared with
the ECSSD dataset, objects in MSRA-10K generally have a relatively simple shape. As a consequence,
the performance of contrastive DNN models for saliency detection is promoted. Meanwhile, other
indices are also compared, and the experimental results are shown in Figure 23.
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(b) Comparison of IoU and MAE

(a) Comparison of precision, recall and F-measure (b) Comparison of IoU and MAE

Figure 23. Various performance indices on the MSRA-10K dataset.

In Figure 23, it can be seen that our detection model of salient objects shows obvious advantages
compared with other DNN models. This superiority is mainly due to the design of the network
architecture. The coordination of multiple key modules makes our model able to locate the most salient
object with high accuracy. In addition, our model also demonstrates a strong ability in terms of recall
and other performance indices.

Finally, a visual comparison of saliency maps on the MSRA-10K dataset are provided in Figure 24.
Like Figure 21, the first and second columns exhibit original RGB images and their corresponding
ground truth masks, respectively. The third and later columns exhibit saliency maps generated
by contrastive models. From comparisons of saliency maps generated from various methods, the
advantages of our detection model of salient objects can be viewed intuitively.

(a) Ori_images (b) G_truth (c) Ours (d) DSC (e) DVA (f) NSS (g) NDS (h) DMLN (i) RBD (j) DSR (k) MC (l) GR (m) CA

Figure 24. Saliency maps generated by various methods on the MSRA-10K dataset.

5.5. Performance Assessment by Verification on iCoSeg

Based on a small-scale dataset, we also validated the performance of DNN models on the iCoSeg
dataset. Compared with MSRA-10K, the capacity of iCoSeg is too small for training a deep network
with a structure shown in Figure 6. However, with the aid of the unique multiple side output
architecture, supervisions can be directly propagated back to the hidden layers, which helps the
network quickly converge to a global optimal solution. Meanwhile, skip layer architectures can also
help the network from falling into over-fitting. Therefore, even with fewer training sets, our model can
still perform well. Specifically, from the total 634 image samples, 450 of them were randomly selected
as the training set, and the remaining images were utilized to validate the performance of the well
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trained DNN models. For the sake of fairness, all of the models were trained on the same training set,
and the P-R curves are shown in Figure 25.

Figure 25. P-R curves of the iCoSeg dataset.

In Figure 25, it can be seen that the precision of our DNN model dropped sharply only when
the value of the recall approached 1. Among most of the other compared methods, the value of the
precision dropped gradually with the increase in recall. This phenomenon indicates that the saliency
maps generated by our proposed model shows a very high contrast.

Meanwhile, we also compared other performance indices between these contrastive methods.
It can be seen in Figure 26 that, from a comprehensive comparison of various indicators, our DNN
model exhibits a strong capability compared with other DNN models. An outstanding model structure
design leads to a good performance, even under smaller-scale datasets.

Ours DSC DVA NSS NDS DMLN Ours DSC DVA NSS NDS DMLN

(a) Comparison of precision, recall and F-measure (b) Comparison of IoU and MAE

(a) Comparison of precision, recall and F-measure (b) Comparison of IoU and MAE

Figure 26. Various performance indices on the iCoSeg dataset.

For an intuitive visual comparison, saliency maps generated from various DNN models are
provided in Figure 27. It can be clearly seen that the saliency maps generated by our model are the
most similar with the ground truth masks. The superiority of our model has thus been fully validated.
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(a) Ori_images (b) G_truth (c) Ours (d) DSC (e) DVA (f) NSS (g) NDS (h) DMLN (i) RBD (j) DSR (k) MC (l) GR (m) CA

Figure 27. Saliency maps generated by various methods on the iCoSeg dataset.

In order to further improve the performance of our model on small-scale datasets (e.g., iCoSeg),
we also tried to introduce the technique of transfer learning and data augmentation into the process
of training. Specifically, we first performed off-line data augmentation to extend the capacity of the
original dataset. The operations of data augmentation and some off-line augmented image samples
are shown in Figure 28.

Phase transition Degree/amplitude

Random  rotation ≤30°

Horizontal shift ≤20%

Vertical shift ≤20%

Horizontal flip =180°

Vertical flip =180°

(a) Off-line data augmentation samples on iCoSeg (b) Operations for data augmentation

Figure 28. Off-line data augmentation on the iCoSeg dataset.

For each image, nine corresponding samples were generated, with operations listed in Figure 28b.
With the aid of data augmentation, the amount of training sets was expanded to 10 times the original
(e.g., 4500 images for the training set of iCoSeg). However, the correlation between these augmented
image samples is very high, which is adverse. Thus, we introduced the technique of fine tuning to help
further improve the performance. Specifically, weights of the model pre-trained on MSRA-10K were
introduced into the new model. Afterwards, this model will continue to be trained on the augmented
iCoSeg dataset. In order to evaluate the improvements of performance, evolution curves of validation
loss during the process of training are shown in Figure 29.
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Figure 29. Performance evolution with data augmentation on the iCoSeg dataset.

In Figure 25, it can be seen that, by means of data argumentation, the performance of our model
improves remarkably. Techniques of data augmentation and transfer learning have become necessary
approaches to improve the performance of DNN models without the need for special emphasis.
The experiment implemented here is only to show that the performance of our model still has room
for further improvement. Finally, quantitative experimental results of deep-learning-based saliency
detection methods on these benchmark datasets are shown in Table 6.

From records shown in Table 6, it can be seen that our model shows outstanding performance in
accuracy. However, massive adjustable parameters in symmetrical network structure also pulls down
efficiency. The original intention of the design of our network is to improve the precision of detection
for salient objects. Owing to the update of backbone networks and the introduction of the fusion of
multiple side outputs with shallow and deep connections, the number of parameters has increased.
This is the reason why our network obviously lags behind FCNs in terms of testing time.
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Table 6. Performance indices on various benchmark datasets.

Methods

Actual
Indices

Datasets

Index Terms

ECSSD MSRA ICOSEG

Fβ IoU MAE Time (ms) Fβ IoU MAE Time (ms) Fβ IoU MAE Time (ms)

DMLN [25] 0.7897 0.6448 0.1038 51.79 0.8682 0.7873 0.0546 50.96 0.8690 0.7124 0.0889 51.58
NDS [55] 0.8434 0.7172 0.0815 68.79 0.8955 0.7824 0.0479 68.32 0.8641 0.7063 0.0912 69.16
NSS [55] 0.8435 0.7228 0.0812 67.31 0.8928 0.8029 0.0428 67.28 0.8732 0.7266 0.0874 67.62
DVA [27] 0.8182 0.6871 0.0922 53.46 0.8288 0.7357 0.0730 53.58 0.8999 0.7770 0.0790 53.74
DSC [26] 0.8590 0.7337 0.0745 68.39 0.9059 0.8163 0.0636 67.82 0.9296 0.8460 0.0717 68.31

Ours 0.8637 0.7547 0.0722 74.66 0.9478 0.8470 0.0438 79.38 0.9842 0.8810 0.0555 74.92
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6. Discussion and Comments

The effective extraction of deep features is vital to achieve high accuracy saliency detection.
Generally speaking, with deeper backbone networks, the capability of the feature extraction of DNN
models is promoted as a consequence. However, with increasing layers and limited training samples,
the model tends to become trapped in over-fitting. Skip-layer architectures connecting various depths
of DNN models assist the transmission of data flow. Benefitting from this, the performance of DNN
models based on encoder and decoder architecture overcomes FCNs by a large margin.

In addition, global and local vision cues are both very important to locate salient objects in
complex detection scenes. However, conventional saliency detection methods only utilize the end
output of DNN models. The inherent hierarchical structure of DNN models can be used to extract
multi-scale feature maps with various sizes of receptive fields. Through the fusion of feature maps
extracted from various layers of the DNN model with shallow and deep connections, different scale
information of salient objects has been comprehensively utilized. In this way, the detection of salient
objects has been significantly improved as a result.

Through comprehensive evaluations on benchmark datasets, experimental results reveal the fact
that, with various improvements, our model yields state-of-the-art results in terms of the accuracy
of the detection of salient objects. With a series of comparisons, the effectiveness of combinations of
shallow and deep connections has also been well validated. In our model, we did not deliberately
choose the best network. What we want to emphasize is the idea and approach of how to reinforce the
performance of saliency detection through the fusion of multi-scale feature maps on the symmetric
encoder and decoder architecture. With the development of research, stronger backbone networks will
be put forward continuously. Based on the architecture proposed in this paper, the backbone network
can be easily replaced by these stronger networks, and the performance of our model can be further
improved accordingly.

7. Conclusions

In order to achieve high precision detection of salient objects, deep convolutional networks
with proper combinations of shallow and deep connections are proposed in this paper. With the aid
of combinations of shallow and deep connections on multiple side outputs, different scale feature
maps are well fused so as to accurately capture the global and local information of salient objects.
Benefitting from well designed symmetric end-to-end architecture, a deep network with combinatorial
optimization of shallow and deep connections has obvious advantages in detection accuracy, but it
still faces the hindrance of low efficiency, and this will be modified in future works.
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