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Abstract: Mixed-flow pumps compromise large flow rate and high head in fluid transferring.
Long-axis mixed-flow pumps with radial–axial “spacing” guide vanes are usually installed deeply
under water and suffer strong cavitation due to strong environmental pressure drops. In this
case, a strategy combining the Diffusion-Angle Integral Design method, the Genetic Algorithm,
and the Computational Fluid Dynamics method was used for optimizing the mixed-flow pump
impeller. The Diffusion-Angle Integral Design method was used to parameterize the leading-edge
geometry. The Genetic Algorithm was used to search for the optimal sample. The Computational
Fluid Dynamics method was used for predicting the cavitation performance and head–efficiency
performance of all the samples. The optimization designs quickly converged and got an optimal
sample. This had an increased value for the minimum pressure coefficient, especially under off-design
conditions. The sudden pressure drop around the leading-edge was weakened. The cavitation
performance within the 0.5–1.2 Qd flow rate range, especially within the 0.62–0.78 Qd and 1.08–1.20
Qd ranges, was improved. The head and hydraulic efficiency was numerically checked without
obvious change. This provided a good reference for optimizing the cavitation or other performances
of bladed pumps.

Keywords: mixed-flow pump; cavitation inception; leading-edge shape; optimization design

1. Introduction

Cavitation is a liquid–gas phase change phenomenon which happens in the liquid medium
when pressure drops below the saturation pressure [1]. Traveling cavitation vapour bubbles collapse
immediately while going into high pressure sites [2]. The collapsing bubble may release shock waves
and form re-entrant jets. These waves and jets cause noise, pressure pulsation, and vibration [3,4].
If cavitation happens near the surfaces of materials, the shock waves, re-entrant jets, and following
rigid particles [5] cause material damage, like spotted erosion [6]. In pumps, cavitation was highly
focused on in the past decades [7]. Cavitation-damaged pump impellers have bad performance and
work in an unstable and insecure situation [8,9]. Thus, reducing cavitation scale or delaying cavitation
inception is necessary in design. Cavitation in pumps occurs mainly in the leading-edge cavitation
style because the impeller blade leading-edge is usually the lowest-pressure site [7]. The collapse of a
bubble or cavity directly shocks the blade surface and induces cavitation erosion [10].

Improving cavitation performance or reducing cavitation scale is always on the research frontier.
There are three main approaches: Direct interference, indirect influence, and cavitation-site redesign.
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Susan-Resiga et al. [11] used water jets to interfere with the vortex rope, and their results show that
the low-pressure region inside the rope can be effectively diminished. Yang et al. [12] applied eight
alternating long and short blades, instead of the original six same-length blades, in a centrifugal
pump. This enlarged the original passing area, making it have a relatively higher pressure than before.
Yao et al. [13] also increased the passing area of the Francis turbine for a higher pressure at the runner
outlet. These methods may reduce the energy performance, so further checks and improvements are
needed. Liu et al. [14] directly redesigned the leading-edge position of the centrifugal pump impeller
blade. The lowest-pressure region was removed to an upstream location with a higher pressure value.
However, the performance change cannot be ignored. The cavitation improvements above were mainly
about large-scale cavitation. However, the cavitation inception has received little attention. In this study
of a mixed-flow pump case, the cavitation inception performance becomes the optimization target.
Optimization can be used to improve the performance of pumps. The most common optimization
works in pumps and other hydraulic turbomachinery improved the efficiency by adjusting impeller
geometry, including blade angles and meridional shape parameters [15–17]. When considering the
optimization of cavitation performance, geometry control and searching were also effective. However,
pump head and efficiency were sensitive to geometry [18,19]. The alternating checks of cavitation
and head–efficiency increased the complexity of work. It is necessary to find a simpler way for
parameterization of the blade, especially at the impeller blade leading-edge. A reasonable optimization
method, prediction method, and decision-making strategy are also crucial.

In this study, the optimization design work was conducted on a mixed-flow pump impeller
with consideration of the downstream vane diffuser. The Diffusion-Angle Integral (DI) method [20]
was used to parameterize the leading-edge geometry, which is important for cavitation inception.
The Genetic Algorithm (GA) was used for searching for the optimal sample. A Computational Fluid
Dynamics (CFD) solver was used for predicting the cavitation performance and head–efficiency
performance of all the samples. Based on this combination strategy, the cavitation performance was
improved for a better operation stability and safety.

2. Mixed-Flow Pump Object

The studied mixed-flow pump object is shown in Figure 1. Its design and operation parameters
are listed in Table 1, where the specific speed nq was calculated by:

nq =
nd
√

Qd

H3/4
d

(1)
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Table 1. Design and operation parameters of the pump.

Parameter Value

Rotation speed nd 1470 [rpm]
Design flow rate Qd 1 [m3/s]

Design head Hd 55 [m]
Specific speed nq 72.8

Impeller blade number 6
Guide vane blade number 7
Impeller inlet diameter D1 0.4 [m]

3. Mathematical Methods

3.1. Brief Introduction of the Diffusion-Angle Integral Method

The Diffusion-Angle Integral (DI) method [20] was specifically used to parameterize the
leading-edge geometry (thickness). Traditionally, the leading-edge geometry was controlled by
multiple points with the connection of a B-spline, as shown in Figure 2a. Under the 2D t–m coordinate
where t denotes thickness and m denotes the mean line, ∆m-interval points were set to control the t
distribution along the m direction. If the number of point n is small, the geometry cannot be described
well. If the number of point n is big, optimization will be complex with too many parameters.

Therefore, the DI method was introduced based on a geometry deconstruction. The blade profile
can be deconstructed into five parts, including the leading-edge (LE) ellipse arc, t diffusion part,
t transition part, t shrinking part, and trailing-edge (TE). As shown in Figure 2b, point A, which is
between the t diffusion part and t transition part, should be determined. Then, the LE ellipse arc and
the t diffusion part, which are quickly changing on t, become the design region. Point A* is set to
divide the LE ellipse arc and the t diffusion part. Five steps can be executed in sequence: (a) Giving the
long–short axis ratio Rab = aLE/bLE of the LE ellipse arc, (b) scaling the leading-edge elliptical-arc to the
arc based on Rab, (c) giving the straight thickness diffusion angle γs (unit: degree) and calculating the
leading-edge arc (scaled) radius rLE, (d) giving the coefficient B of the thickness integration expression
and integrating out the thickness distribution in the thickness diffusion part, and (e) rescaling the
leading-edge arc and the integrated thickness back to the elliptical-arc-scale based on Rab.

Based on the steps above, the LE ellipse arc can be calculated under coordinate scaling:

aLE = Rab
tA − 2mA tan γs

2(sin γs tan γs − tan γs + cos γs)
(2)

bLE =
aLE
Rab

(3)

where tA is the thickness at point A and mA is the m position at point A. Then, the increasing of t
between A* and A can be integrated by

∆tAA = Cs

∫ mA

m∗A
tan γ(m)dm (4)

where mA
* is the m position at point A*, Cs is the scale factor, and γ(m) is the thickness integral

expression which can be expressed in the following form:

γ(m) =

(
mA −m

mA −m∗A

)B
(5)

Thus, the variation law between A and A* can be simply and well controlled by the coefficient
B. The number of design parameters was simplified to three by keeping an accurate description of t
along m.
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3.2. Genetic Algorithm and Setup

The Genetic Algorithm (GA), which is a nature-inspired optimization algorithm, can find better
samples generation by generation after setting a fitness function [21]. It imitates biological evolution by
treating samples as individuals. Certain quantities of individuals should be created. Their properties
as fitness functions need to be carefully checked to judge the best and worst individuals. The best
individual in each generation is copied and the worst one is eliminated. The remaining individuals
crossover and mutate in a certain probability. Thus, the GA always finds better results and can escape
from local-best traps. In this case, the GA was used for optimal impeller geometry. A cavitation
inception number σ was set as the optimization target:

σ =
pre f − pv

1
2 ρv2

re f
(6)

where pref and vref are the reference pressure and velocity at the impeller inlet, respectively. pv is
the saturation pressure. ρ is the density of fluid medium. To apply predictions for σ, the pressure
coefficient Cp was defined as:

Cp =
p− pre f

1
2 ρv2

re f
(7)

where p is the pressure. Commonly, cavitation inception occurs when p drops below pv. Therefore,
σ = −Cp at the time that cavitation inception occurs. As a result, the negative value of the minimum
pressure coefficient −Cpmin can be used instead of the cavitation inception number σi as the basis of
the fitness function ffit in GA. Three different flow rate conditions were considered so that ffit could be
written as a weighted value:

f f it =
3

∑
i=1

wi
(
−Cp min

) (
3

∑
i=1

wi = 1

)
(8)

where wi is the weight value for different conditions. The weight value should be larger in off-design
conditions and smaller in design conditions. The more the condition is different from design flow rate,
the larger the weight value is. For a 0.7 Qd condition, w1 = 0.5. For a 1.0 Qd condition, w2 = 0.2. For a
1.2 Qd condition, w3 = 0.3.

There were three parameters in total (Rab, γs, and B) because all the spanwise positions used
the same thickness distribution. Eight-digit binary code was used for coding each parameter. Thus,
24-digit binary code was used for each sample. The probabilities of genetic operations are listed in
Table 2. In total, 10 individual samples were set for each generation. The convergence criterion was
set as the residual being less than 0.1% in 10 continuous generations. In the optimization, the design
parameters can vary in the ranges shown in Table 3.
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Table 2. Probabilities of genetic operations.

Operation Copy/Eliminate Crossover Mutation

Probability 1.0 0.6 0.1

Table 3. Parameter range in optimization.

Parameter Rab γs [◦] B

Range 1–5 1–10 1–6

3.3. CFD Simulation Setup

In this study, Computational Fluid Dynamics (CFD) was used as the solver for predicting the ffit in
optimization. Commercial software ANSYS CFX 12.0 was used for numerical simulation. The SST-DES
method [22,23], which hybrids RANS with LES by zonal division, was used to solve the turbulent flow.
The equation of the SST k-ω turbulence model proposed by Menter is defined as:

∂(ρk)
∂t

+
∂(ρuik)

∂xi
= P− ρk3/2

lk−ω
+

∂

∂xi

[
(µ + σkµt)

∂k
∂xi

]
(9)

∂(ρω)

∂t
+

∂(ρuiω)

∂xi
= CωP− βρω2 +

∂

∂xi

[
(µl + σωµt)

∂ω

∂xi

]
+ 2(1− F1)

ρσω2

ω

∂k
∂xi

∂ω

∂xi
(10)

where
lk−ω = k1/2βkω (11)

where ρ is the density; P is the production term; µ is the dynamic viscosity; µt is the turbulent eddy
viscosity; σk, σω, and βk are model constants; Cω is the coefficient of the production term; F1 is the
mixture function; lk-ω is the turbulence scale; k is the intensity of turbulence kinetic energy; t is the
time; ui is the velocity; xi refers to the unit coordinates; and ω is the turbulence dissipation rate.

In the DES simulation method, the turbulence scale lk-ω will be replaced by min(lk-ω, CDES∆).
CDES is the model constant. ∆ is the grid scale. For non-uniform grids, there is ∆ = max(∆x, ∆y, ∆z),
which is the maximum side length of the grid element. When lk-ω ≤ CDES∆, the DES method is solved
by the SST k-ω turbulence model. When lk-ω ≥ CDES∆, the LES is used to solve the problem.

The flow domain is shown in Figure 3. The single impeller passage and single guide vane
passage were used to reduce the time cost. The two single passages were meshed by structural
elements. The mesh independence check was conducted as shown in Table 4, by checking that the
head residual was less than 0.5%. Finally, the total mesh node number was about 1.21 × 106, as plotted
in Figure 3. The y+ value near the wall was guaranteed within 30–300 for applying the wall functions.
The mass–flow inlet boundary was set at the impeller inlet. A static pressure outlet was set at the
impeller outlet. The wall boundaries were set as no-slip. Rotational periodic boundaries were set
to simplify the problem into a “single passage”. A general grid interface (GGI) was set between the
impeller domain and the guide vane domain, based on the multiple reference frame (MRF) model.
Steady-state simulations were conducted for predicting the −Cpmin of the single-passage domain at
0.7, 1.0, and 1.2 Qd, with a maximum iteration number of 600 and a convergence criterion of 1 × 10−5.
The rotor-stator interface was in the “frozen rotor” type in the steady-state simulation. The final
verifications by full-passage domain were based on the transient-state simulations, with 0.41 s in
total. The time step was set as 1.134 × 10−4 s, with the iteration number up to 10 for each time step.
The rotor-stator interface was in the “transient rotor-stator” type in the steady-state simulation.

Table 4. Mesh independence check.

Number of Mesh Nodes [×106] 0.3180 0.5594 0.8269 1.2056 1.7427 2.3546

Residual [%] 100 1.1862 0.7266 0.0809 0.3019 0.3782
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Figure 3. Schematic map of the flow domain, mesh, and boundaries. RP is the rotational periodic
boundary, RSI is the rotor-stator interface, and other unmarked boundaries are no slip walls.

3.4. Model Test for Verification

Figure 4 shows the model test rig used for numerical-experimental verification. The pump head
and efficiency were verified to have a correct prediction of flow field in the pump. The pump head H
was tested by acquiring the pressure difference between the inlet and outlet, and calculating. The flow
rate Q was tested using the electromagnetic flow meter. The shaft power Psft was tested by the
power meter, which acquired the rotating speed and torque, respectively. The efficiency η, including
mechanical, volumetric, and hydraulic efficiencies, was calculated using the flow rate, shaft power,
and head by η = ρgQH/Psft, where g is the acceleration of gravity.

Symmetry 2019, 11, x FOR PEER REVIEW 6 of 12 

 

 
Figure 3. Schematic map of the flow domain, mesh, and boundaries. RP is the rotational periodic 
boundary, RSI is the rotor-stator interface, and other unmarked boundaries are no slip walls. 

Table 4. Mesh independence check 

Number of Mesh Nodes [×106] 0.3180 0.5594 0.8269 1.2056 1.7427 2.3546 
Residual [%] 100 1.1862 0.7266 0.0809 0.3019 0.3782 

3.4. Model Test for Verification 

Figure 4 shows the model test rig used for numerical-experimental verification. The pump head 
and efficiency were verified to have a correct prediction of flow field in the pump. The pump head H 
was tested by acquiring the pressure difference between the inlet and outlet, and calculating. The 
flow rate Q was tested using the electromagnetic flow meter. The shaft power Psft was tested by the 
power meter, which acquired the rotating speed and torque, respectively. The efficiency η, including 
mechanical, volumetric, and hydraulic efficiencies, was calculated using the flow rate, shaft power, 
and head by η = ρgQH/Psft, where g is the acceleration of gravity. 

 
Figure 4. The pump model test rig. (a) Schematic map of test rig; (b) Test rig on site. 

4. Experimental Verification of Computation 

The pump performance, including head H and efficiency η, was used for the experimental 
verification of computation, as shown in Figure 5, before optimization design. “CFD-Full” refers to 
the CFD simulation calculated using the full passage of impeller and guide vanes. “CFD-Single” 
refers to the CFD simulation calculated using the single passages of impeller and guide vanes. 

Impeller (single passage) Guide vane (single passage) 
Flow 

Outlet 

Inlet 

RP 

RP RP 

RP RSI 

RSI 

Tested pump inside 

Flow Meter 

Water 
Tank 

Pressure 

Pressure 

Computer 

Power Meter Motor 

Tested Pump Water  
Tank 

Valve Valve 

Supply Pump 

Shaft 
Power 

Flow Rate 

Data 
Fluid 

(a)  (b)  

Figure 4. The pump model test rig. (a) Schematic map of test rig; (b) Test rig on site.

4. Experimental Verification of Computation

The pump performance, including head H and efficiency η, was used for the experimental
verification of computation, as shown in Figure 5, before optimization design. “CFD-Full” refers to the
CFD simulation calculated using the full passage of impeller and guide vanes. “CFD-Single” refers to
the CFD simulation calculated using the single passages of impeller and guide vanes. Differences can be
found between the single-passage result and the full-passage result. This is because of the simplification
of the flow domain and the approximation of rotor-stator interface. However, the single-passage result,
which was commonly seen in CFD simulations of turbomachinery [24,25], shows the same variation
tendency under different conditions. Therefore, it can be accepted with full-passage verification after
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optimization. In this experiment, the pipelines and flow passages for connecting the impeller and guide
vane were also considered. The mechanical and volumetric losses were considered in the experimental
data. It was shown that the CFD values were slightly higher than the experimental value for both
the head and efficiency. Generally, it can be observed that the CFD simulation captured the head and
efficiency well when comparing with the experiment.
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5. Results of Optimization Design

5.1. Optimization Process

Figure 6 shows the optimization process of the ffit changing with iteration steps. The ffit value
of the initial impeller sample was −1.9945. After 60 iterative steps of optimization, the ffit value
increased to about −0.9615, and converged when the residual was continually less than 0.1% for
10 steps. The comparison of blade thickness around the leading-edge is shown in Figure 7. The design
parameter Rab changed from 2.00 to 3.96, γs changed from 5.97◦ to 4.03◦, and B changed from 1.50 to
3.00. The −Cpmin values varied from −3.06 to −1.025 at 0.7 Qd, from −1.19 to −1.363 at 1.0 Qd, and
from −0.755 to −0.588 at 1.2 Qd. The main improvements were under the partial-load 0.7 Qd and the
over-load 1.2 Qd. At the design load, the cavitation performance was somehow deteriorated.
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5.2. Analysis of Cavitation Performance

Figure 8 shows the Cp distributions on the initial and optimal impeller blades. Sudden pressure
drops can be found on the blade leading-edge because of the local flow separation. After optimization,
the leading-edge pressure drops became much gentler at 0.7 and 1.2 Qd, especially on the spanwise
0.9 surface (spanwise 0 is the hub and 1 is the shroud). At 0.7 Qd, a Cpmin value of about −1.5 occurred
on the mid-span of the initial impeller. After optimization, the Cpmin value became about −1.0 near
the hub. At 1.0 Qd, a Cpmin value of about −1.28 occurred near the shroud of the initial impeller.
After optimization, the Cpmin value was still around −1.0 near the shroud without any improvement.
At 1.2 Qd, a Cpmin value of about −1.0 occurred on the mid-span and near the shroud of the initial
impeller. After optimization, the Cpmin value became about −0.8, which was located on the mid-span.Symmetry 2019, 11, x FOR PEER REVIEW 9 of 12 
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Spanwise 0.5; (a3) 0.7 Qd, Spanwise 0.9; (b1) 1.0 Qd, Spanwise 0.1; (b2) 1.0 Qd, Spanwise 0.5; (b3) 1.0 Qd,
Spanwise 0.9; (c1) 1.2 Qd, Spanwise 0.1; (c2) 1.2 Qd, Spanwise 0.5; (c3) 1.2 Qd, Spanwise 0.9
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Figure 9 shows the Cpmin law at different flow rate conditions. Before optimization, the condition-
minimum Cpmin value of about −3.06 was at 0.7 Qd. After optimization, the condition-minimum
Cpmin value increased to about −2.37. Its flow rate condition became 0.8 Qd. The cavitation inception
performance was improved in the two ranges of 0.62–0.78 Qd and 1.08–1.20 Qd, as illustrated in Figure 9.
The head and efficiency changes were less than 0.5% after optimization in the 0.5–1.2 Qd flow rate
range according to the single-passage CFD prediction.Symmetry 2019, 11, x FOR PEER REVIEW 10 of 12 
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5.3. Comparison of Head and Efficiency

Figure 10 shows the comparisons of head and efficiency between the initial and optimal impeller.
The influence of optimization on head and efficiency is small. Compared with the initial design,
the maximum difference of the optimal head is 0.7%, and the maximum difference of the optimal
efficiency is 0.6%. This shows that the optimization of blade leading-edge shape has little effect on
head and efficiency. This meets the conclusion in IEC standards [26] that slight shape changes will not
affect the hydraulic performance of hydro-turbomachinery.
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Figure 10. The comparisons of head and efficiency between the initial and optimal impeller blades.
(a) Head; (b) Efficiency.

6. Conclusions

In this study, the Diffusion-Angle Integral (DI) method, the Genetic Algorithm (GA), and the
Computational Fluid Dynamics (CFD) method were used to optimize the cavitation performance of
the mixed-flow pump impeller. The geometry (thickness distribution) around the leading-edge was
redesigned. Conclusions can be drawn as follows:

(a) The DI method successfully reduced the design parameter number to three. The design time
cost can be reduced by keeping the accurate shaping of the blade geometry. The rotating periodic
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boundaries were also used to simplify the CFD simulation. By giving the reasonable ranges of the
design parameters, the optimization converged within just 60 iterations. The fitness function ffit
increased from about −1.9945 to about −0.9615 after optimization design. The combination strategy
used in this case provided a quick and reliable solution for the optimization of pump impellers.

(b) After optimization, the thickness t distribution along the mean line m obviously changed in
law, and slightly changed in value. As a result, the cavitation performance was obviously improved,
with only slight influences on head and efficiency. In detail, the condition-minimum Cpmin value
strongly increased within the 0.5–1.2 Qd flow rate range, and the cavitation performance in the
0.62–0.78 Qd, and 1.08–1.20 Qd ranges was obviously improved.

The combination strategy or the individual methods used in this study were proven to be effective
and can be applied to similar optimization design cases for other pump design cases.
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