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Abstract: One of the major problems of varied knowledge-based systems has to do with aggregation
and fusion. Pang’s probabilistic linguistic term sets denotes aggregation of fuzzy information
and it has attracted tremendous interest from researchers recently. The purpose of this article
is to deal investigating methods of information aggregation under the probabilistic linguistic
environment. In this situation we defined certain Einstein operational laws on probabilistic linguistic
term elements (PLTESs) based on Einstein product and Einstein sum. Consequently, we develop some
probabilistic linguistic aggregation operators, notably the probabilistic linguistic Einstein average
(PLEA) operators, probabilistic linguistic Einstein geometric (PLEG) operators, weighted probabilistic
linguistic Einstein average (WPLEA) operators, weighted probabilistic linguistic Einstein geometric
(WPLEG) operators. These operators extend the weighted averaging operator and the weighted
geometric operator for the purpose of aggregating probabilistic linguistic terms values respectively.
Einstein t-norm and Einstein t-conorm constitute effective aggregation tools and they allow input
arguments to reinforce each other downwardly and upwardly respectively. We then generate various
properties of these operators. With the aid of the WPLEA and WPLEG, we originate the approaches
for the application of multiple attribute group decision making (MAGDM) with the probabilistic
linguistic term sets (PLTSs). Lastly, we apply an illustrative example to elucidate our proposed
methods and also validate their potentials.

Keywords: Einstein t-norm; Einstein t-conorm; PLTSs; multiple attribute group decision-making;
entropy; operational laws; Einstein aggregation operator; Shannon entropy

1. Introduction

Generally, when expressing preferences by means of linguistic information, decision-makers
frequently face the challenges of uncertainties and vagueness Pang et al. [1]. To overcome this shortfall,
Zadeh [2] introduced fuzzy sets (FSs) to deal with them as far as decision-making is concerned.
Torra [3] subsequently proposed hesitant fuzzy sets (HFSs) to give a compelling extension of fuzzy
sets to manage those situations, where a set of values are possible in the definition process of the
membership of an element. However due to their limitations, Rodriguez et al. [4], introduced Hesitant
fuzzy linguistic term sets (HFLTSs) to further handle vague and imprecise information whereby two
or more sources of vagueness appear simultaneously. Rodriguez et al. [4], further went ahead and
stated that the modelling tools of ordinary fuzzy sets are limited and besides the aforementioned
tools are used to define quantitative problems. Considering the fact that mostly, uncertainty comes as

Symmetry 2019, 11, 39; doi:10.3390/sym11010039 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-7357-7340
https://orcid.org/0000-0003-1621-4209
http://dx.doi.org/10.3390/sym11010039
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/11/1/39?type=check_update&version=2


Symmetry 2019, 11, 39 2 of 30

a result of vagueness of explication utilized by experts in problems with qualitative nature, it will be
appropriate to introduce fuzzy linguistic approach to provide tangible results. Nevertheless, in the
current studies of (HFLTSs), Pang et al. [1] stated the decision makers’ proposed values cannot have
the same relevance because the idea does not follow a realistic pattern. To bring some elements of
clarifications, Pang et al. [1] propounded the probabilistic linguistic term sets (PLTSs). PLTSs were
introduced to extend HFLTSs via the addition of probabilities without loss of the original linguistic
information given by the experts. It could be mentioned that PLTSs came to light as a result of the
generalization of the existing HFLTSs and HFSs models with the introduction of probabilities and
hesitations. Under the decision-making environment, mentioned could be made of the useful and
flexible nature of PLTSs, allowing them to depict or exhibit the qualitative judgement of experts [1].
They were introduced in the decision -making process to bring more flexibility and accuracy. Due to
their relevance in dealing with uncertainties and vagueness, they are nowadays being considered
as an important concept in the group decision-making domain. For instance, Pang et al. [1] form
certain basic arithmetic aggregation operators, like probabilistic linguistic weighted averaging (PLWA)
operator, the probabilistic linguistic weighted geometric (PLWG) operator, for aggregating PLTEs.
Bai et al. [5] defined more appropriate comparison methods and institute in addition a robust way
to handle PLTSs. Gou and Xu [6] established new operational laws with regards to the probabilistic
information. A multi-criteria group decision-making algorithm with probabilistic interval preferences
orderings was proposed by He et al. [7]. Under the probabilistic linguistic environment, Kobina et al. [8]
proposed a series of probabilistic linguistic power aggregation operators manage multi-criteria decision
making problems.

In decision-making, the accuracy of the final results largely depends on the information
aggregation phase. For the past decade, many scholars have studied and developed numerous
aggregation operators for PLTSs information [1,4–7]. It could be realized that these aggregation
operators are based on the algebraic operational laws of the LTSs and PLTSs. However, the algebraic
operational laws are not the only operational laws for information fusion. The Einstein operations
are equally useful tools to substitute the algebraic operations [9]. Zhao et al. [10], in their research
introduced Einstein product as a t-norm and Einstein sum as t-conorm. Einstein t-norm and t-conorm
are successfully used for processing uncertainty and vagueness in system analysis, decision analysis,
modeling and forecasting applications. For instance, Yu et al. [11] developed a family of hesitant fuzzy
Einstein aggregation operators, such as the hesitant fuzzy Einstein Choquet ordered averaging operator,
hesitant fuzzy Einstein Choquet ordered geometric operator, to deal with multiple attribute group
decision-making under hesitant fuzzy environments. Wang and Liu [12] developed the interval-valued
intuitionistic fuzzy Einstein weighted averaging (IVIFEWA) operator, demonstrated and verified
their practicality and flexibility in a set of propulsion systems. Wang and Liu [13] investigated
intuitionistic fuzzy weighted Einstein average (IFWEA) operator to accommodate the situations where
the given arguments are AIFVs and applied IFEWA operator to MADM problem with intuitionistic
fuzzy information. Yang and Yuan [14] developed the induced interval-valued intuitionistic fuzzy
Einstein ordered weighted geometric (I-IVIFEOWG) operator and applied it to deal with multiple
attribute decision making under interval-valued intuitionistic fuzzy environments. Cai and Han [15]
developed the induced interval-valued Einstein ordered weighted averaging operator. Wang and
Sun [16] also examined the interval-valued intuitionistic fuzzy Einstein geometric Choquet integral
operator. Rahman et al. [17] focused on interval-valued Pythagorean fuzzy Einstein hybrid weighted
averaging aggregation operator and their application to group decision making. Rahman et al. [18]
proposed some interval-valued Pythagorean fuzzy Einstein weighted averaging aggregation operators.
However, it seems that in the literature, there is a little investigation on aggregation techniques using
the Einstein operations to aggregate probabilistic linguistic information. Hence, the aim of this paper
is to explore some probabilistic linguistic aggregation operators based on the Einstein operational
laws. Specifically, we develop the probabilistic linguistic Einstein average (PLEA), probabilistic
linguistic Einstein geometric (PLEG), weighted probabilistic linguistic Einstein average (WPLEA) and
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weighted probabilistic linguistic Einstein geometric (WPLEG) aggregation operators. Taking into
consideration the WPLEA and the WPLEG operators, we design a new multi-criteria group decision
making (MCGDM) approach for PLTS information. The contributions of the study are as follows:
(1) Our proposed methods provide more versatility in the aggregation process and they have the ability
to depict the interrelationship of input arguments and the individual evaluation. (2) Considering the
different situations, our proposed methods use Einstein operations with transformed PLTSs, which are
more competent in handling uncertainty and vagueness than the existing PLTSs, fuzzy sets (FSs),
Hesitant Fuzzy Sets (HFSs), Hesitant Fuzzy Linguistic Terms (HFLTSs). (3) The opinions of the
decision-makers still remain the same in a situation where only few different linguistic terms evaluated
by the DMs are considered. (4) Finally they take into consideration the probabilistic information of the
input arguments and make use of the novel operational laws of PLTSs proposed by Gou et al. [6].

The remainder of the paper is structured as follows: In Section 2, we introduce certain elementary
concepts and operations in relation to PLTSs and Einstein operations. Section 3 deals with Einstein
operations of the transformed probabilistic linguistic term sets (PLTSs). In Section 4, we design a set
of probabilistic linguistic Einstein aggregation operators (PLEA, PLEG, WPLEA, WPLEG) and then
their desirable properties are also studied. In Section 5, we formulate the ways for applying MCGDM
utilizing the WPLEA and WPLEG operators. In Section 6, an illustrative example is given to give
an account and ascertain the proposed methods. In Section 7 we make a conclusion and we expand on
future studies.

2. Preliminaries

2.1. Probabilistic Linguistic Term Sets (PLTSs)

The theory of PLTSs Pang et al. [1] is an extension of the concepts of HFLTSs. In what follows, we
present some basic concepts of PLTSs and the corresponding operations.

Definition 1 (Pang et al. [1]). Let S = {st/t = 0, 1, . . . , τ} be a linguistic term set. Then a probabilistic
linguistic term set (PLTS) is defined as:

L(p) =

{
L(k)

(
p(k)

)
/L(k) ∈ S, r(k) ∈ t, p(k) ≥ 0, k = 1, 2, . . . , #L(p),

#L(p)

∑
k=1

pk ≤ 1

}
, (1)

where L(k)
(

pk
)

is the linguistic term L(k) associated with the probability p(k), r(k) is the subscript of L(k) and
#L(p) is the number of all linguistic terms in L(p).

In a PLTSs, the positions of elements can be swapped arbitrarily. To make sure the operational
results are straightforwardly ascertained, Pang et al. [1] proposed the ordered PLTS. It is described as:

Definition 2 (Pang et al. [1]). Given a PLTS L(p) =
{

Lk
(

p(k)
)

k = 1, 2, . . . , 6= L(p)
}

and r(k) is the

subscript of linguistic term L(k). L(p) is called an ordered PLTS, if the linguistic terms L(k)
(

pk
)

are arranged

according to the values of r(k)p(k) in descending order.

With regards to comparing the PLTSs, Pang et al. [1] defined the scores and the deviation degree
of a PLTS:

Definition 3 (Pang et al. [1]). Let L(p) =
{

Lk
(

p(k)
)

k = 1, 2, . . . , 6= L(p)
}

be a PLTS, and r(k) is the

subscript of linguistic term L(k). Then, the score of L(p) is defined as follows:

E(L(p)) = sα, (2)
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where α =
6=L(p)

∑
k=1

r(k)p(k)/
6=L(p)

∑
k=1

p(k). The deviation degree of L(p) is:

σ(L(p)) =

 6=L(p)

∑
k=1

((
p(k)

(
r(k) − α

))2
)0.5/

6=L(p)

∑
k=1

p(k). (3)

Based on the score and the deviation degree of a PLTS, Pang et al. [1] further proposed the
following laws to compare them:

Definition 4 (Pang et al. [1]). Given two PLTSs L1(p) and L2(p). E(L1(p)) and E(L2(p)) are the scores of
L1(p) and L2(p), respectively.

(1) If E(L1(p)) > E(L2(p)), then L1(p) is bigger than L2(p), denoted by L1(p) > L2(p);
(2) If E(L1(p)) < E(L2(p)), then L1(p) is smaller than L2(p), denoted by L1(p) < L2(p);
(3) E(L2(p)) = E(L2(p)), then we need to compare their deviation degree

(a) if σ(L1(p)) = σ(L2(p)), then L1(p) is equal to L2(p), denoted by L1(p) ∼ L2(p);
(b) if σ(L1(p)) > σ(L2(p)), then L1(p) is smaller than L2(p), denoted by L1(p) < L2(p);
(c) if σ(L1(p)) < σ(L2(p)), then L1(p) is greater than L2(p), denoted by L1(p) > L2(p).

A careful examination of the comparison laws of PLTSs may reveal that the number of their
corresponding linguistic terms may be unequal. In order to address this problem, Pang et al. [1]
normalized the PLTSs by increasing the numbers of linguistic terms for PLTSs. Hence, the normalization
of PLTSs is defined as follows:

Definition 5 (Pang et al. [1]). Let L1(p) =
{

L1
k
(

p1
(k)
)

k = 1, 2, . . . , #L1(p)
}

be a probabilistic linguistic

term set and let L2(p) =
{

L2
k
(

p2
(k)
)

k = 1, 2, . . . , #L2(p)
}

be another PLTS. #L1(p) and #L2(p) are the
numbers of linguistic terms in L1(p) and L2(p). If #L1(p) > #L2(p), then we will add #L1(p)− #L2(p)
linguistic terms to L2(p) so that the numbers of linguistic terms in L1(p) and L2(p) are identical. The added
linguistic terms are the smallest ones in L2(p) and their probabilities are zero. Analogously, 6= L1(p) < 6= L2(p),
we can use the similar method.

Definition 6 (Pang et al. [1]). Let S = {st/t = 0, 1, . . . , τ} be a linguistic term set. Given three PLTSs,
L(p), L1(p) and L2(p) their basic operations are summarized as follows:

(1) L1(p)⊕ L2(p) = ∪L(k)
1∈L1(p), L(k)

2∈L2(p)

{
(p(k)1L(k)

1 ⊕ p(k)2L(k)
2)
}

;

(2) L1(p)⊗ L2(p) = ∪L(k)
1∈L1(p), L(k)

2∈L2(p)

{
(L(k)

1)
p1

(k)

⊗ (L(k)
2)

p2
(k)
}

;

(3) λ(L(p)) = λ ∪L(k)∈L(p)

{
λp(k)L(k)

}
and λ ≥ 0;

(4) (L(p))λ = λ ∪L(k)∈L(p)

{(
L(k)

)λp(k)
}

and λ ≥ 0;

2.2. Einstein Operations

The concept of a triangular norm was introduced by Klement et al. [19] in order to generalize
the triangular inequality of a metric. The existing notion of a t-norm and its dual operator (t-conorm)
originated from Schweizer and Sklar [20]. These two operations can be applied as a generalization of
the Boolean logic connectives to multi-valued logic. The t-norms generalize the conjunctives ‘AND’
operator and the t-conorms generalize the disjunctive ‘OR’ operator. This situation allows them to
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be used to define the intersection and union operations in fuzzy logic. Einstein operations include
the Einstein product and Einstein sum, which are examples of t-norm and t-conorm, respectively are
defined as follows.

Definition 7 ([21]). Einstein product as, a t-norm is a function T : [0, 1]× [0, 1]→ [0, 1] such that

x⊗ε y =
x · y

1 + (1− x) · (1− y)
, ∀(x, y) ∈ [0, 1]2 (4)

Definition 8 ([21]). Einstein sum as, a t− conorm is also a function S : [0, 1]× [0, 1]→ [0, 1] such that

x⊕ε y =
x + y

1 + x · y∀(x, y) ∈ [0, 1]2 (5)

3. Einstein Operations of Transformed Probabilistic Linguistic Term Sets

Since Einstein operational laws need to obey some conditions before they can be carried out,
thus the values of the individual arguments must be within the interval [0, 1], we need to find the
equivalent transformation of PLTSs, since some probabilistic linguistic elements (PLEs) might not
necessarily belong to [0, 1]. Luckily Gou and Xu [6] defined the first equivalent transformation of
probabilistic linguistic term sets (PLTSs) as follows:

Definition 9 (Gou and Xu [6]). Let S = {st/t = −τ, . . . ,−1, 0, 1, . . . , τ} be any linguistic term set. L(p)
is a PLTS. The equivalent transformation function of L(p) is defined as:

g(L(p)) =

{[
r(k)

2τ
+

1
2

](
p(k)

)}
= Lγ(p) (6)

where g : [−τ, τ]→ [0, 1] and γ = g
(

L(k)
)

, γ ∈ [0, 1]. g
(

L(k)
)
=
(

r(k)
2τ + 1

2

)
= γ.

Based on Definition 9, we can obtain new operational laws defined as follows:

Proposition 1. Let L(p) =
{

L(k)
i

(
pi

(k)
)

/k = 1, 2, . . . , #Li(p)
}
(i = 1, 2, . . . , n) be a collection of PLTSs

and g(L(p)) its equivalent transformation. Given three transformed PLTSs g(L(p)), g(L1(p)), g(L2(p)) then

(1) g(L1(p))⊕ g(L2(p)) = ∪
g(L1

(k))∈g(L1(p)),g(L2
(k))∈g(L2(p))

{(
g
(

L1
(k)
)
+ g
(

L2
(k)
)
− g
(

L1
(k)
)

g
(

L2
(k)
))(

p1
(k)p2

(k)
)}

(2) g(L1(p))⊗ g(L2(p)) = ∪
g(L1

(k))∈g(L1(p)),g(L2
(k))∈g(L2(p))

{(
g
(

L1
(k)
)
× g
(

L2
(k)
))(

p1
(k)p2

(k)
)}

(3) λg(L(p)) = ∪
g(L(k))∈g(L(p))

{(
1−

(
1− g

(
L(k)

))λ
)(

p(k)
)}

; λ ≥ 0

(4) g(L(p))λ = ∪
g(L(k))∈g(L(p))

{
g
(

L(k)
)λ(

p(k)
)}

; λ ≥ 0

Based on Definition 7 and Definition 8, we give some new operations on the transformed PLTEs
as follows:

Proposition 2. Let S = {st/t = 0, 1, . . . , τ} be a linguistic term set and λ > 0. Given three transformed
PLTSs g(L(p)), g(L1(p)) and g(L2(p)) then

(1) g(L1(p))⊕ε g(L2(p)) = ∪
g(L1

(k))∈g(L1(p)),g(L2
(k))∈g(L2(p))

{
p1

(k)g(L1
(k))+p2

(k)g(L2
(k))

1+[p1
(k)g(L1

(k))][p2
(k)g(L2

(k))]

}
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(2) g(L1(p))⊗ε g(L2(p)) = ∪
g(L1

(k))∈g(L1(p)),g(L2
(k))∈g(L2(p))

{
[p1

(k)g(L1
(k))][p2

(k)g(L2
(k))]

1+[1−p1
(k)g(L1

(k))][1−p2
(k)g(L2

(k))]

}
(3) λ.εg(L(p)) = ∪

g(L(k))∈g(L(p))

{
[1+p(k)g(L(k))]

λ−[1−p(k)g(L(k))]
λ

[1+p(k)g(L(k))]
λ
+[1−p(k)g(L(k))]

λ

}

(4) g(L(p))∧ελ = ∪
g(L(k))∈g(L(p))

{
2[p(k)g(L(k))]

λ

[2−p(k)g(L(k))]
λ
+[p(k)g(L(k))]

λ

}
where g

(
L(k)

)
p(k) ∈ [0, 1]

and g(Li(p)) = g
(

Li
(k)
)

pi
(k).

Since the operational law 1 and 2 are straightforward, we will prove operational laws 3 and 4.

Proof. In the following we firstly prove operational law 4 on the basis of operational law 2.
Based on Definition 7 and Definition 8, let x = g(L1(p)) and y = g(L2(p)) then

g(L1(p))⊗ε g(L2(p)) = g(L1(p))⊗g(L2(p))
1+(1−g(L1(p)))⊗(1−g(L2(p)))

= g(L1(p))⊗g(L2(p))
1+1−g(L1(p))−g(L2(p))+g(L1(p))⊗g(L2(p))

= g(L1(p))⊗g(L2(p))
2−g(L1(p))−g(L2(p))+g(L1(p))⊗g(L2(p))

For g(L1(p)) = g(L2(p)) = g(L(p)), we obtain

g(L(p))∧ε2 =
g(L(p))2

2− 2g(L(p)) + g(L(p))2

g(L(p))∧ε2 =
2g(L(p))2

(2− g(L(p)))2 + g(L(p))2 ∀λ ∈ R

we have g(L(p))λ = 2g(L(p))λ

(2−g(L(p)))λ+g(L(p))λ g(L(p))∧ελ = ∪
g(L(k))∈g(L(p))

{
2[p(k)g(L(k))]

λ

[2−p(k)g(L(k))]
λ
+[p(k)g(L(k))]

λ

}
since g(L(p)) = g

(
L(k)

)
p(k).

Proved as required. �

Considering operational law 1, we prove the operational law 3

g(L1(p))⊕ε g(L2(p)) =
g(L1(p))⊕ g(L2(p))

1 + g(L1(p))⊗ g(L2(p))

If
g(L1(p)) = g(L2(p)) = g(L(p))

then

2εg(L(p)) =
2g(L(p))

1 + g(L(p))2 so ∀λ ∈ R

we have

λεg(L(p)) =
λg(L(p))

1 + g(L(p))λ
=

(1 + g(L(p)))λ − (1− g(L(p)))λ

(1 + g(L(p)))λ + (1− g(L(p)))λ

λ.εg(L(p)) = ∪
g(L(k))∈g(L(p))


[
1 + p(k)g

(
L(k)

)]λ
−
[
1− p(k)g

(
L(k)

)]λ

[
1 + p(k)g

(
L(k)

)]λ
+
[
1− p(k)g

(
L(k)

)]λ


since

g(L(p)) = g
(

L(k)
)

p(k)
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Based on the operational laws (1)–(4) of Section 3, we can easily obtain the following properties.

(1) g(L1(p))⊕ε g(L2(p)) = g(L2(p))⊕ε g(L1(p)).
(2) (g(L1(p))⊕ε g(L2(p)))⊕ε g(L3(p)) = g(L1(p))⊕ε (g(L2(p))⊕ε g(L3(p))).
(3) λ.ε(g(L1(p))⊕ε g(L2(p))) = λ.εg(L1(p))⊕ε λ.εg(L2(p)).
(4) λ1.ε(λ2.εg(L(p))) = (λ1λ2).εg(L(p)).

Proof. g(L1(p))⊕ε g(L2(p)) =
p1

(k)g(L1
(k))⊕p2

(k)g(L2
(k))

1⊕p1
(k)g(L1

(k))⊗p2
(k)g(L2

(k))
and g(L2(p))⊕ε g(L1(p)) =

p2
(k)g(L2

(k))⊕p1
(k)g(L1

(k))
1+p2

(k)g(L2
(k))⊗p1

(k)g(L1
(k))

.

Since p1
(k)g

(
L1

(k)
)
⊕ p2

(k)g
(

L2
(k)
)

= p2
(k)g

(
L2

(k)
)
⊕ p1

(k)g
(

L1
(k)
)

and p1
(k)g

(
L1

(k)
)
⊗

p2
(k)g

(
L2

(k)
)

= p2
(k)g

(
L2

(k)
)
⊗ p1

(k)g
(

L1
(k)
)

then 1 + p1
(k)g

(
L1

(k)
)
⊗ p2

(k)g
(

L2
(k)
)

= 1 +

p2
(k)g

(
L2

(k)
)
⊗ p1

(k)g
(

L1
(k)
)

.

Therefore
p1

(k)g(L1
(k))⊕p2

(k)g(L2
(k))

1+p1
(k)g(L1

(k))⊗p2
(k)g(L2

(k))
=

p2
(k)g(L2

(k))⊕p1
(k)g(L1

(k))
1+p2

(k)g(L2
(k))⊗p1

(k)g(L1
(k))

g(L1(p))⊕ε g(L2(p)) =
p1

(k)g(L1
(k))⊕p2

(k)g(L2
(k))

1+p1
(k)g(L1

(k))⊗p2
(k)g(L2

(k))
+

p2
(k)g(L2

(k))⊕p1
(k)g(L1

(k))
1+p2

(k)g(L2
(k))⊗p1

(k)g(L1
(k))

=
p2

(k)g(L2
(k))⊕p1

(k)g(L1
(k))

1+p2
(k)g(L2

(k))⊗p1
(k)g(L1

(k))
+

p1
(k)g(L1

(k))⊕p2
(k)g(L2

(k))
1+p1

(k)g(L1
(k))⊗p2

(k)g(L2
(k))

= g(L2(p))⊕ε g(L1(p))

Hence, we complete the proof of Property 1. The remaining properties can easily be proved. �

4. Probabilistic Linguistic Aggregation Operators

Based on the probabilistic linguistic environment, we treat the input arguments as PLTSs and we
deeply investigate the extension of Einstein t-norm and Einstein t-conorm aggregation operators.

4.1. Probabilistic Linguistic Einstein Average (PLEA) Aggregation Operators

In this section, we discuss the extension of Einstein t-conorm aggregation operators to
accommodate the probabilistic linguistic environment. Specifically, we propose some probabilistic
linguistic Einstein average operators, i.e., Probabilistic Linguistic Einstein Average (PLEA) and
Weighted Probabilistic Linguistic Einstein Average (WPLEA) which allows the input arguments
to reinforce and support each other during the aggregation process.

4.1.1. PLEA

Based on the results of Definitions 1 and operational law (1) of Proposition 1 we present the
definition of the PLEA aggregation operator as follows:

Definition 10. Let L(p) =
{

L(k)
i

(
pi

(k)
)

/k = 1, 2, . . . , #Li(p)
}
(i = 1, 2, . . . , n) be a collection of PLTSs

and g(L(p)) its equivalent transformation. A probabilistic linguistic Einstein Average (PLEA) operator is
a mapping g(Ln(p))→ g(L(p)) , such that

PLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) =
n
⊕ε
i=1

1
n

g(Li(p)) (7)
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Theorem 1. Let L(p) =

{
L(k)

(
p(k)

)
/L(k) ∈ S, r(k) ∈ t, p(k) ≥ 0, k = 1, 2, . . . , #L(p),

#L(p)
∑

k=1
pk ≤ 1

}
,

(i = 1, 2, . . . , n) be a collection of PLTSs and g(L(p)) its equivalent transformation, then their aggregated value
by using PLEA operator is also a PLTE and

PLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p)))

= ∪
g(Li

(k)) ∈ g(Li(p))
i = 1, 2, . . . , n


n
∏

i=1
(1+pi

(k)g(Li
(k)))

1
n
−

n
∏

i=1
(1−pi

(k)g(Li
(k)))

1
n

n
∏

i=1
(1+pi

(k)g(Li
(k)))

1
n +

n
∏

i=1
(1−pi

(k)g(Li
(k)))

1
n

 (8)

Proof. We proved (8) by using mathematical induction on n. For n = 2, according to the operational
law (3) of Definition 10, we have

(
1
2

)
⊗ε g(L1(p)) = ∪

g(L1
(k))∈g(L1(p))


[
1 + p1

(k)g
(

L1
(k)
)] 1

2 −
[
1− p1

(k)g
(

L1
(k)
)] 1

2

[
1 + p1

(k)g
(

L1
(k)
)] 1

2 +
[
1− p1

(k)g
(

L1
(k)
)] 1

2


(

1
2

)
⊗ε g(L2(p)) = ∪

g(L2
(k))∈g(L2(p))


[
1 + p2

(k)g
(

L2
(k)
)] 1

2 −
[
1− p2

(k)g
(

L2
(k)
)] 1

2

[
1 + p2

(k)g
(

L2
(k)
)] 1

2 +
[
1− p2

(k)g
(

L2
(k)
)] 1

2


then

PLEA(g(L1(p)), g(L2(p))) =
(

1
2

)
⊗ε g(L1(p))⊕ε

(
1
2

)
⊗ε g(L2(p))

(
1 + p1

(k)g
(

L1
(k)
)) 1

2
(

1 + p2
(k)g

(
L2

(k)
)) 1

2 −
(

1− p1
(k)g

(
L1

(k)
)) 1

2
(

1− p2
(k)g

(
L2

(k)
)) 1

2

(
1 + p1

(k)g
(

L1
(k)
)) 1

2
(
1 + p2

(k)g
(

L2
(k)
)) 1

2 +
(
1− p1

(k)g
(

L1
(k)
)) 1

2
(
1− p2

(k)g
(

L2
(k)
)) 1

2

And (
1
2

)
⊗ε g(L1(p))⊕

(
1
2

)
⊗ε g(L2(p))

= ∪
g(L1

(k))∈g(L1(p)),g(L2
(k))∈g(L2(p))

2
∏

i=1
(1+pi

(k)g(Li
(k)))

1
2−

2
∏

i=1
(1−pi

(k)g(Li
(k)))

1
2

2
∏

i=1
(1+pi

(k)g(Li
(k)))

1
2 +

2
∏

i=1
(1−pi

(k)g(Li
(k)))

1
2

That is for n = 2 (8) holds. If Equation (8) holds for n = m, i.e.,

m
⊕

i=1

(
1
m g(Li(p))

)
= PLEA(g(L1(p)), g(L2(p)), . . . , g(Lm(p)))

= ∪
g(Li

(k)) ∈ g(Li(p))
i = 1, 2, . . . , m

m
∏

i=1
(1+pi

(k)g(Li
(k)))

1
m −

m
∏

i=1
(1−pi

(k)g(Li
(k)))

1
m

m
∏

i=1
(1+pi

(k)g(Li
(k)))

1
m +

m
∏

i=1
(1−pi

(k)g(Li
(k)))

1
m
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Then, for n = m + 1 based on Definition 11 and the operational laws of Definition 10, we have

m+1
⊕

i=1

(
1
n g(Li(p))

)
=

m
⊕

i=1

(
1
n g(Li(p))

)
⊕
(

1
n g(Lm+1(p))

)
=

PLEA(g(L1(p)), g(L2(p)), . . . , g(Lm+1(p))) = ∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2, . . . , m)


m
∏

i=1
(1+pi

(k)g(Li
(k)))

1
m −

m
∏

i=1
(1−pi

(k)g(Li
(k)))

1
m

m
∏

i=1
(1+p1

(k)g(Li
(k)))

1
m +

m
∏

i=1
(1−pi

(k)g(Li
(k)))

1
m


= ∪

g(Li
(k)) ∈ g(L(p))

(i = 1, 2, . . . , n)

n
∏

i=1
(1+pi

(k)g(Li
(k)))

1
n −

n
∏

i=1
(1−pi

(k)g(Li
(k)))

1
n

n
∏

i=1
(1+pi

(k)g(Li
(k)))

1
n +

n
∏

i=1
(1−pi

(k)g(Li
(k)))

1
n

i.e., for n = m + 1, (8) holds, which completes the proof of Theorem 1. �

Illustrative example to demonstrate the validity of the operational laws in Definition 10.
Considering [6] let L1(p) = {s1(0.3), s2(0.2), s3(0.5)}; L2(p) = {s−1(0.2), s0(0.3)}

and λ = 1
2 . After normalization we obtained L2(p) = {s−1(0.4), s0(0.6)}. Given that

g(Li(p)) =
(

ri
(k)

2τ + 1
2

)(
pi

(k)
)

, we obtained g(L1(p)) =
{ 2

3 (0.3), 5
6 (0.2), 1(0.5),

}
and g(L2(p)) ={

1
3 (0.4), 1

2 (0.6)
}

.
Considering operational law 1 and operational law 3 we obtain

1
2

g
(

L1(p)
)
⊕ε

1
2

g
(

L2(p)
)
=



(1+0.6667×0.3)
1
2 −(1−0.6667×0.3)

1
2

(1+0.6667×0.3)
1
2 +(1−0.6667×0.3)

1
2

+
(1+0.5×0.3333)

1
2 −(1−0.5×0.3333)

1
2

(1+0.5×0.3333)
1
2 +(1−0.5×0.3333)

1
2

1 + (1+0.6667×0.3)
1
2 −(1−0.6667×0.3)

1
2

(1+0.6667×0.3)
1
2 +(1−0.6667×0.3)

1
2
× (1+0.5×0.3333)

1
2 −(1−0.5×0.3333)

1
2

(1+0.5×0.3333)
1
2 +(1−0.5×0.3333)

1
2

, . . . . . . . . . . . . . . . . . . . . . . . . . .



PLEA(g(L1(p)), g(L2(p))) = (0.1668, 0.2506, 0.1500, 0.2344, 0.3290, 0.4048)

With respect to Definition 11 and Theorem 1, it can easily be proven that the PLEA aggregation
operator has the following desirable properties. �

Property 1 (Idempotency). Let g(Li(p)) (i = 1, 2, . . . , n) be a collection of transformed PLTSs. If all
g(Li(p)) (i = 1, 2, . . . , n) are equal, i.e., g(Li(p)) = g(L(p)) then

PLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) = g(L(p))

Proof. If g(Li(p)) = g(L(p)) for all i, then PLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) is computed
as follows:

PLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) =
n
⊕ε
i=1

1
n

g(Li(p)) =
n
⊕ε
i=1

1
n

g(L(p))

�

Property 2 (Boundedness). Let g(Li(p)) (i = 1, 2, . . . , n) be a collection of PLTSs, then we have:

n
min
i=1

#Li(p)
min
k=1

pi
(k)g

(
Li

(k)
)
≤ g(L) ≤ n

max
i=1

#Li(p)
max
k=1

pi
(k)g

(
Li

(k)
)

where g(L) ∈ PLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p))).
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Proof. According to the result of Theorem 1, PLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) is computed as:

PLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) =
n
⊕ε
i=1

1
n

g(Li(p)).

Then, we can deduce the following relationships:

n
min
i=1

#Li(p)
min
k=1

pi
(k)g

(
Li

(k)
)
≤ pi

(k)g
(

Li
(k)
)
≤ n

max
i=1

#Li(p)
max
k=1

pi
(k)g

(
Li

(k)
)

By using the result of Theorem 1, we can easily conclude the proof of Property 2. �

Property 3 (Monotonicity). Let g(Li(p)) and g(Li(p))∗ be two sets of PLTSs and the numbers of linguistic

terms in g(Li(p)) and g(Li(p))∗ are identical (i = 1, 2, . . . , n). If g
(

Li
(k)
)(

pi
(k)
)
≤ g

(
Li

(k)
)(

pi
(k)
)∗

for

all i, i.e., g(Li(p)) ≤ g(Li(p))∗, then

PLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) ≤ PLEA
(

g(L1(p))∗, g(L2(p))∗, . . . , g(Ln(p))∗
)
.

Property 4 (Commutativity). Let (g(L1(p)), g(L2(p)), . . . , g(Ln(p))) and(
g(L1(p))∗, g(L2(p))∗, . . . , g(Ln(p))∗

)
be a collection of PLTSs and let be any permutation of

(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) then

PLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) = PLEA
(

g(L1(p))∗, g(L2(p))∗, . . . , g(Ln(p))∗
)

Proof. Because
(

g(L1(p))∗, g(L2(p))∗, . . . , g(Ln(p))∗
)

is any permutation of
(g(L1(p)), g(L2(p)), . . . , g(Ln(p))), by utilizing the results of Theorem 1 we can easily finish
the proof of Property 4. �

4.1.2. WPLEA

In this section, we mainly consider the aggregation of the probabilistic linguistic information
on the basis of the operational laws defined in Section 3. In the following, we present the weighted
probabilistic linguistic Einstein average (WPLEA) operator based on the weighted arithmetic mean.

Definition 11. Let Li(p) be a collection of PLTSs, w = (w1, w2, . . . , wn,)T denotes the weighting vector of

Li(p) and wi ∈ [0, 1],
n
∑

i=1
wi = 1. Given the value of the weight w = (w1, w2, . . . , wn,)T , we define weighted

probabilistic linguistic Einstein average (WPLEA) as follows:

WPLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) =
n
⊕

i=1
wig(Li(p)) (9)

Especially, if w = (1/n, 1/n, . . . , 1/n,)T , then the WPLEA operator reduces to the probabilistic linguistic
Einstein average (PLEA) operator:

PLEA(L1(p), L2(p), . . . , Ln(p)) =
1
n

g(L1(p))⊕ε
1
n

g(L2(p))⊕ε . . .⊕ε
1
n

g(Ln(p)) (10)

In light of the operations of the PLTSs described in Definition 10, we can deduce the following theorem.
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Theorem 2. Suppose that g(Li(p)) (i = 1, 2, . . . , n) is a collection of transformed PLTSs, then their
aggregated values by using the WPLEA operator is also a transformed PLTS, and:

WPLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p)))

= ∪
g(Li

(k))∈g(Li(p))


n
∏

i=1
(1+g(Li

(k))pi
(k))

wi−
n
∏

i=1
(1−g(Li

(k))pi
(k))

wi

n
∏

i=1
(1+g(Li

(k))pi
(k))

wi+
n
∏

i=1
(1−g(Li

(k))pi
(k))

wi

 (11)

where w = (w1, w2, . . . , wn,)T is the weight vector of g(Li(p)) (i = 1, 2, . . . , n) with wi ∈ [0, 1] and
n
∑

i=1
wi = 1.

Proof. In the following, we first prove (11), by using mathematical induction on n:
For n = 2: Since

w1g(L1(p)) = ∪
g(L1

(k))∈g(L1(p))



(

1 + p1
(k)g

(
L1

(k)
))w1 −

(
1− p1

(k)g
(

L1
(k)
))w1(

1 + p1
(k)g

(
L1

(k)
))w1 +

(
1− p1

(k)g
(

L1
(k)
))w1




w2g(L2(p)) = ∪
g(L2

(k))∈g(L2(p))



(

1 + p2
(k)g

(
L2

(k)
))w2 −

(
1− p2

(k)g
(

L2
(k)
))w2(

1 + p2
(k)g

(
L2

(k)
))w2 +

(
1− p2

(k)g
(

L2
(k)
))w2




Then

w1g(L1(p))⊕ w2g(L2(p))

= ∪
g(L1

(k))∈g(L1(p)),g(L2
(k))∈g(L2(p)),


(1+p1

(k)g(L1
(k)))

w1−(1−p1
(k)g(L1

(k)))
w1

(1+p1
(k)g(L1

(k)))
w1 +(1−p1

(k)g(L1
(k)))

w1 +
(1+p2

(k)g(L2
(k)))

w2−(1−p2
(k)g(L2

(k)))
w2

(1+p2
(k)g(L2

(k)))
w2 +(1−p2

(k)g(L2
(k)))

w2

1+
(1+p1

(k)g(L1
(k)))

w1−(1−p1
(k)g(L1

(k)))
w1

(1+p1
(k)g(L1

(k)))
w1 +(1−p1

(k)g(L1
(k)))

w1 .
(1+p2

(k)g(L2
(k)))

w2−(1−p2
(k)g(L2

(k)))
w2

(1+p2
(k)g(L2

(k)))
w2 +(1−p2

(k)g(L2
(k)))

w2



= ∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2)


2
∏

i=1
(1+pi

(k)g(Li
(k)))

wi−
2
∏

i=1
(1−pi

(k)g(Li
(k)))

wi

2
∏

i=1
(1+pi

(k)g(Li
(k)))

wi+
2
∏

i=1
(1−pi

(k)g(Li
(k)))

wi


If (11) holds for n = m, that is

m
⊕

i=1
wig(Li(p)) = ∪

g(Li
(k)) ∈ g(Li(p))

(i = 1, 2, . . . , m)


m
∏
i=1

(
1 + pi

(k)g
(

Li
(k)
))wi −

m
∏
i=1

(
1− pi

(k)g
(

Li
(k)
))wi

m
∏
i=1

(
1 + pi

(k)g
(

Li
(k)
))wi +

m
∏
i=1

(
1− pi

(k)g
(

Li
(k)
))wi


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Then, when n = m + 1, by the operations of PLTEs, we have:

m+1
⊕

i=1
wig(Li(p)) =

m
⊕

i=1
wig(Li(p))⊕ wm+1g(Lm+1(p))

=

∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2, . . . , m)


m
∏

i=1
(1+pi

(k)g(Li
(k)))−

m
∏

i=1
(1−pi

(k)g(Li
(k)))

m
∏

i=1
(1+pi

(k)g(Li
(k)))+

m
∏

i=1
(1−pi

(k)g(Li
(k)))

⊕
∪

g(Lm+1
(k))∈g(Lm+1(p))

{
(1+pi

(k)g(Li
(k)))

wm+1−(1−pi
(k)g(Li

(k)))
wm+1

(1+pi
(k)g(Li

(k)))
wm+1+(1−pi

(k)g(Li
(k)))

wm+1

}

= ∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2, . . . , m + 1)


m+1
∏

i=1
(1+pi

(k)g(Li
(k)))

wi−
m+1
∏

i=1
(1−pi

(k)g(Li
(k)))

wi

m+1
∏

i=1
(1+pi

(k)g(Li
(k)))

wi+
m+1
∏

i=1
(1−pi

(k)g(Li
(k)))

wi


i.e., (11) holds for n = m + 1. Thus, Equation (11) holds for all n. Then

WPLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) = ∪
g(Li

(k)) ∈ g(Li(p))

(i = 1, 2, . . . , n)


n
∏
i=1

(
1 + pi

(k)g
(

Li
(k)
))wi −

n
∏
i=1

(
1− pi

(k)g
(

Li
(k)
))wi

n
∏
i=1

(
1 + pi

(k)g
(

Li
(k)
))wi +

n
∏
i=1

(
1− pi

(k)g
(

Li
(k)
))wi



This completes the proof of Theorem 2. �

Example 1. Considering [6] let L1(p) = {s1(0.3), s2(0.2), s3(0.5)}; L2(p) = {s−1(0.2), s0(0.3)}
and w = (0.5, 0.5)T . After normalization we obtained L2(p) = {s−1(0.4), s0(0.6)}. Given that

g(Li(p)) =
(

ri
(k)

2τ + 1
2

)(
pi

(k)
)

, we obtained g(L1(p)) =
{ 2

3 (0.3), 5
6 (0.2), 1(0.5),

}
and g(L2(p)) ={

1
3 (0.4), 1

2 (0.6)
}

.

WPLEA(g(L1(p)), g(L2(p))) = ∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2)


2
∏

i=1
(1+pi

(k)g(Li
(k)))

wi−
2
∏

i=1
(1−pi

(k)g(Li
(k)))

wi

2
∏

i=1
(1+pi

(k)g(Li
(k)))

wi+
2
∏

i=1
(1−pi

(k)g(Li
(k)))

wi



=


(1+0.2)0.5(1+0.13333)0.5−(1−0.2)0.5(1−0.13333)0.5

(1+0.2)0.5(1+0.13333)0.5+(1−0.2)0.5(1−0.13333)0.5 , (1+0.2)0.5(1+0.3)0.5−(1−0.2)0.5(1−0.3)0.5

(1+0.2)0.5(1+0.3)0.5+(1−0.2)0.5(1−0.3)0.5 ,

(1+0.16667)0.5(1+0.13333)0.5−(1−0.16667)0.5(1−0.13333)0.5

(1+0.16667)0.5(1+0.13333)0.5+(1−0.16667)0.5(1−0.13333)0.5 , (1+0.16667)0.5(1+0.3)0.5−(1−0.16667)0.5(1−0.3)0.5

(1+0.16667)0.5(1+0.3)0.5+(1−0.16667)0.5(1−0.3)0.5 ,

(1+0.5)0.5(1+0.13333)0.5−(1−0.5)0.5(1−0.13333)0.5

(1+0.5)0.5(1+0.13333)0.5+(1−0.5)0.5(1−0.13333)0.5 , (1+0.5)0.5(1+0.3)0.5−(1−0.5)0.5(1−0.3)0.5

(1+0.5)0.5(1+0.3)0.5+(1−0.5)0.5(1−0.3)0.5 ,


WPLEA(g(L1(p)), g(L2(p))) = (0.1668, 0.2506, 0.1500, 0.2344, 0.3290, 0.4048)

Based on Definition 11 and Theorem 2, we can deduce the following desirable properties for the
WPLEA aggregation operator.

Property 5 (Idempotency). Let g(Li(p)) (i = 1, 2, . . . , n) be a collection of PLTSs. If all
g(Li(p)) (i = 1, 2, . . . , n) are equal, i.e., g(Li(p)) = g(L(p)), then

WPLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) = g(L(p))
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Proof. If g(Li(p)) = g(L(p)) for all i, then WPLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) is computed
as follows:

WPLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) =
n
⊕ε
i=1

wig(Li(p)) =
n
⊕ε
i=1

wig(L(p)) =
n

∑
i=1

wig(L(p)) =g(L(p))

�

Property 6 (Boundedness). Let g(Li(p)) (i = 1, 2, . . . , n) be a collection of PLTSs, then we have

n
min
i=1

#g(Li(p))
min
k=1

pi
(k)g

(
Li

(k)
)
≤ g(L) ≤ n

max
i=1

#g(Li(p))
max
k=1

pi
(k)g

(
Li

(k)
)

where g(L) ∈WPLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p))).

Proof. Let f (x) = 1−x
1+x , 0 ≤ x ≤ 1, and suppose that x1 ≤ x2, then f (x1)− f (x2) =

1−x1
1+x1

− 1−x2
1+x2

=

2 x2−x1
(1+x1)(1+x2)

≥ 0, and thus, the function f (x) is decreasing.

Because
n

min
i=1

#g(Li(p))
min
k=1

pi
(k)g

(
Li

(k)
)
≤ g(L) ≤ n

max
i=1

#g(Li(p))
max
k=1

pi
(k)g

(
Li

(k)
)

for every

g
(

Li
(k)
)
∈ g(Li(p))

1− n
max
i=1

#Li(p)
max
i=1

pi
(k)g

(
Li

(k)
)

1 +
n

max
i=1

#Li(p)
max
i=1

pi
(k)g

(
Li

(k)
) ≤ 1− pi

(k)g
(

Li
(k)
)

1 + pi
(k)g

(
Li

(k)
) ≤ 1−

n
min
i=1

#Li(p)
min
i=1

pi
(k)g

(
Li

(k)
)

1 +
n

min
i=1

#Li(p)
min
i=1

pi
(k)g

(
Li

(k)
)

Since (i = 1, 2, . . . , n) and (k = 1, 2, . . . , #g(Li(p))) then, for wi ≥ 0, we have


1− n

max
i=1

#Li (p)
max
i=1

pi
(k)g

(
Li
(k)
)

1+
n

max
i=1

#Li (p)
max
i=1

pi
(k)g

(
Li
(k)
)


wi

≤

 1−pi
(k)g

(
Li
(k)
)

1+pi
(k)g

(
Li
(k)
) wi

≤


1−

n
min
i=1

#Li (p)
min
i=1

pi
(k)g

(
Li
(k)
)

1+
n

min
i=1

#Li (p)
min
i=1

pi
(k)g

(
Li
(k)
)


wi

(i = 1, 2, . . . , n)

∪
g(Li

(k) ) ∈ g(Li (p))
(i = 1, 2, . . . , n)


n
∏

i=1


1− n

max
i=1

#Li (p)
max
i=1

pi
(k)g

(
Li
(k)
)

1+
n

max
i=1

#Li (p)
max
i=1

pi
(k)g

(
Li
(k)
)


wi
 ≤ ∪

g(Li
(k) ) ∈ g(Li (p))

(i = 1, 2, . . . , n)

 n
∏

i=1

 1−pi
(k)g

(
Li
(k)
)

1+pi
(k)g

(
Li
(k)
) wi

 ≤ ∪
g(Li

(k) ) ∈ g(Li (p))
(i = 1, 2, . . . , n)


n
∏

i=1


1−

n
min
i=1

#Li (p)
min
i=1

pi
(k)g

(
Li
(k)
)

1+
n

min
i=1

#Li (p)
min
i=1

pi
(k)g

(
Li
(k)
)


wi


⇔ 2

1+
n

max
i=1

#Li (p)
max
i=1

pi
(k)g

(
Li
(k)
)
 ≤ 1 + ∪

g(Li
(k) ) ∈ g(Li (p))

(i = 1, 2, . . . , n)

 n
∏

i=1

 1−pi
(k)g

(
Li
(k)
)

1+pi
(k)g

(
Li
(k)
) wi

 ≤
 2

1+
n

min
i=1

#Li (p)
min
i=1

pi
(k)g

(
Li
(k)
)


n
min
i=1

#Li (p)
min
i=1

pi
(k)g

(
Li
(k)
)
≤ 2

1+ ∪
g(Li

(k) )∈g(Li (p))

 n
∏

i=1

 1−pi
(k)g

(
Li
(k)
)

1+pi
(k)g

(
Li
(k)
) wi


− 1 ≤ n

max
i=1

#Li (p)
max
i=1

pi
(k)g

(
Li
(k)
)

⇔

n
min
i=1

#Li (p)
min
i=1

pi
(k)g

(
Li
(k)
)
≤ ∪

g(Li
(k) )∈g(Li (p))

n
∏

i=1

(
1+pi

(k)g
(

Li
(k)
))wi−

n
∏

i=1

(
1−pi

(k)g
(

Li
(k)
))wi

n
∏

i=1

(
1+pi

(k)g
(

Li
(k)
))wi +

n
∏

i=1

(
1−pi

(k)g
(

Li
(k)
))wi

≤ n
max
i=1

#Li (p)
max
i=1

pi
(k)g

(
Li
(k)
)

.

Hence, the proof of Property 6 is completed. �

Property 7 (Monotonicity). Let g(Li(p)) and g
(

Li(p)∗
)

be two collections of PLTSs and the numbers
of linguistic terms in g(Li(p)) and g

(
Li(p)∗

)
are identical (i = 1, 2, . . . , n). Assume that w =

(w1, w2, . . . , wn)
T is an associated weighting vector with wi ∈ [0, 1] and

n
∑

i=1
wi = 1. If g

(
Li

(k)
)(

pi
(k)
)
≤

g
(

Li
(k)
)∗(

pi
(k)
)

for all i, i.e., g(Li(p)) ≤ g(Li(p))∗ then,

WPLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) ≤WPLEA
(

g(L1(p))∗, g(L2(p))∗, . . . , g(Ln(p))∗
)
.
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Proof. Let WPLEA(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) = g(L(p)) and
WPLEA

(
g(L1(p))∗, g(L2(p))∗, . . . , g(Ln(p))∗

)
= g(L(p))∗. Let f (x) = 1+x

1−x , x ∈ [0, 1]; then, it
is an increasing function. If g(Li(p)) ≤ g(Li(p))∗ for all i, then f (g(L(p))) ≤ f

(
g(L(p))∗

)
, i.e.,

1+g(L(p))∗

1−g(L(p))∗ ≤
1+g(L(p))
1−g(L(p)) , for all i. Therefore, we have:

g(L(p)) = ∪
g(Li

(k)) ∈ g(Li(P))
(i = 1, 2, . . . , m)


n
∏

j=1

(
1+pi

(k)g
(

Li
(k)
))wi−

n
∏

j=1

(
1−pi

(k)g
(

Li
(k)
))wi

n
∏

j=1

(
1+pi

(k)g
(

Li
(k)
))wi +

n
∏

j=1

(
1−pi

(k)g
(

Li
(k)
))wi

 = 1− 2

1+ ∪
g(Li

(k)) ∈ g(Li(P))
(i = 1, 2, . . . , m)

 n
∏

i=1

 1+pi
(k)g

(
Li
(k)
)

1−pi
(k)g

(
Li
(k)
) wi


≤

1− 2

1+ ∪
g(Li

(k)) ∈ g(Li(P))
(i = 1, 2, . . . , m)

 n
∏

i=1

 1+pi
(k)g

(
Li
(k)
)∗

1−pi
(k)g

(
Li
(k)
)∗
wi


= ∪

g(Li
(k)) ∈ g(Li(P))

(i = 1, 2, . . . , m)


n
∏

j=1

(
1+pi

(k)g
(

Li
(k)
)∗)wi−

n
∏

j=1

(
1−pi

(k)g
(

Li
(k)
)∗)wi

n
∏

j=1

(
1+pi

(k)g
(

Li
(k)
)∗)wi +

n
∏

j=1

(
1−pi

(k)g
(

Li
(k)
)∗)wi

 = g(L(p))∗

Therefore, we complete the proof of Property 7. �

4.2. Probabilistic Linguistic Einstein Geometric (PLEG) Aggregation Operators

In this section, we explore the fusion of Einstein t-norm (EG) aggregation operators under the
probabilistic linguistic environment. We proposed the probabilistic linguistic Einstein geometric
(PLEG) and the weighted probabilistic linguistic Einstein geometric (WPLEG) operators.

4.2.1. PLEG

On the basis of the operational laws (4) of Definition 10 and (5) of Definition 8, we present the
definition of the PLEG aggregation operator as follows:

Definition 12. Let L(p) =
{

L(k)
i

(
pi

(k)
)

/k = 1, 2, . . . , #Li(p)
}
(i = 1, 2, . . . , n) be a collection of PLTSs

and g(Li(p)) its equivalent transformation. A probabilistic linguistic Einstein Average (PLEG) operator is a
mapping g(Ln(p))→ g(L(p)) such that

PLEG(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) =
n
⊗ε
i=1

(g(Li(p))) (̂
1
n ) (12)

Theorem 3. Let L(p) =
{

L(k)
i

(
pi

(k)
)

/k = 1, 2, . . . , #Li(p)
}
(i = 1, 2, . . . , n) be a collection of PLTSs and

g(L(p)) its equivalent transformation, then their aggregated value by using PLEG operator is also a PLTE and

PLEG(g(L1(p)), g(L2(p)), . . . , g(Ln(p)))

= ∪
g(L1

(k))∈g(L1(p)),g(L2
(k))∈g(L2(p)),...,g(Ln(k))∈g(Ln(p))


2

n
∏

i=1
(pi

(k)g(Li
(k)))

1
n

n
∏

i=1
(2−pi

(k)g(Li
(k)))

1
n +

n
∏

i=1
(pi

(k)g(Li
(k)))

1
n

 (13)

where g
(

Li
(k)
)
=
(

r(k)
2τ + 1

2

)
.

We proved (13) by using mathematical induction on n. For n = 2, according to the operational
law (4) of Definition 10, we have

g(L1(p))∧(
1
n ) = ∪

g(L1
(k))∈g(L1(p))


(

p1
(k)g

(
L1

(k)
)) 1

n

(
2− p1

(k)g
(

L1
(k)
)) 1

n +
(

p1
(k)g

(
L1

(k)
)) 1

n


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g(L2(p))∧(
1
n ) = ∪

g(L2
(k))∈g(L2(p))


(

p2
(k)g

(
L2

(k)
)) 1

n

(
2− p2

(k)g
(

L2
(k)
)) 1

n +
(

p2
(k)g

(
L2

(k)
)) 1

n


Then

PLEG(g(L1(p)), g(L2(p))) = g(L1(p))∧(
1
n ) ⊗ε g(L2(p))∧(

1
n )

=
2(p1

(k)g(L1
(k)))

1
n (p2

(k)g(L2
(k)))

1
n

(2−p1
(k)g(L1

(k)))
1
n (2−p2

(k)g(L2
(k)))

1
n +(p1

(k)g(L1
(k)))

1
n (p2

(k)g(L2
(k)))

1
n

That is for n = 2 Equation (13) holds. Suppose n = m, Equation (13) holds, i.e.,

PLEG(g(L1(p)), g(L2(p)), . . . , g(Lm(p))) =
2

m
∏
i=1

(
pi

(k)g
(

Li
(k)
)) 1

n

m
∏
i=1

(
2− pi

(k)g
(

Li
(k)
)) 1

n +
m
∏
i=1

(
pi

(k)g
(

Li
(k)
)) 1

n

Then, for n = m + 1 based on Definition 11 and the operational laws of Definition 10, we have

m+1
⊗ε
i=1

(g(Li(p)))
1

m+1 =
m
⊗ε
i=1

(g(Li(p)))
1
m ⊗ε (g(Lm+1(p)))

1
m+1

=

 2
m
∏

i=1
(pi

(k)g(Li
(k)))

1
m

m
∏

i=1
(2−pi

(k)g(Li
(k)))

1
m +

m
∏

i=1
(pi

(k)g(Li
(k)))

1
m

⊗ε

(
2(pi

(k)g(Lm+1
(k)))

1
m+1

(2−pi
(k)g(Lm+1

(k)))
1

m+1 +(pi
(k)g(Lm+1

(k)))
1

m+1

)

= ∪
g(Li

(k)) ∈ g(Li(p))
i = 1, 2, . . . , n

 2
n
∏

i=1
(p(k)g(Li

(k)))
1
n

n
∏

i=1
(2−p(k)g(Li

(k)))
1
n +

n
∏

i=1
(p(k)g(Li

(k)))
1
n



Thus, the proof of Equation (13) is completed.
For example, considering the operational laws 2 and 4, and the information provided by

Gou et al. [6] we obtain:

g(L1(p))
1
2 ⊗ε g(L2(p))

1
2 =


(0.2)

1
2

(2−0.2)
1
2 +(0.2)

1
2
⊗ (0.3)

1
2

(2−0.3)
1
2 +(0.3)

1
2

1 +
(

1− (0.2)
1
2

(2−0.2)
1
2 +(0.2)

1
2

)
⊗
(

1− (0.3)
1
2

(2−0.3)
1
2 +(0.3)

1
2

) , . . . , . . . , . . . .


g(L1(p))

1
2 ⊗ε 2g(L2(p))

1
2 = {0.1636, 0.2456, 0.1491, 0.2248, 0.2673, 0.3904}

Now on the basis of Definition 13 and Theorem 3, it can be proved that the PLEG operator has the
following properties.

Property (8) (Commutativity). Let Li(p) (i = 1, 2, . . . n) be a collection of PLTSs and g(Li(p))
its equivalent transformation. Let

(
g(L1(p))∗, g(L2(p))∗, . . . , g(Ln(p))∗

)
be any permutation of

(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) then

PLEG(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) = PLEG
(

g(L1(p))∗, g(L2(p))∗, . . . , g(Ln(p))∗
)

Proof. Let

PLEG(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) = g(L1(p)) (̂
1
n ) ⊗ε g(L2(p)) (̂

1
n )⊗ε, . . . ,⊗εg(Ln(p)) (̂

1
n )

PLEG(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) = g(L1(p))∗̂
( 1

n ) ⊗ε g(L2(p))∗̂
( 1

n )⊗ε, . . . ,⊗εg(Ln(p))∗̂
( 1

n )
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Since
(
g(L1(p))∗, g(L2(p))∗, . . . , g(Ln(p))∗

)
is any permutation of (g(L1(p)), g(L2(p)), . . . , g(Ln(p)))

we have g(Li(p)) = g(Li(p))∗ and then

PLEG(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) = PLEG
(

g(L1(p))∗, g(L2(p))∗, . . . , g(Ln(p))∗
)

�

Property 9 (Boundedness). Let Li(p) (i = 1, 2, . . . n) be a collection of PLTSs and g(Li(p)) its equivalent
transformation, then we have:

n
min
i=1

#g(Li(p))
min
k=1

pi
(k)g

(
Li

(k)
)
≤ g(L) ≤ n

max
i=1

#g(Li(p))
max
k=1

pi
(k)g

(
Li

(k)
)

The proof of Property 9 is similarly to that of Property 8 so we omit here.

Property 10 (Idempotency). Let Li(p) (i = 1, 2, . . . n) be a collection of PLTSs and g(Li(p)) its equivalent
transformation. If all g(Li(p)) (i = 1, 2, . . . , n) are equal, i.e., g(Li(p)) = g(L(p)), then,

PLEG(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) = g(L(p))

Also, the proof of this property is similar to that of Property 9 so we omit here.

4.2.2. WPLEG

Considering the importance of the aggregated arguments, we extend the PLEG and give the
definition of the weighted probabilistic linguistic Einstein geometric (WPLEG) operator as follows.

Definition 13. Let Li(p) be a collection of PLTSs and g(Li(p)) its equivalent transformation

w = (w1, w2, . . . , wn)
T denotes the weighting vector of Li(p), wi ∈ [0, 1] and

n
∑

i=1
wi = 1. Given the value

of the weight vector w = (w1, w2, . . . , wn)
T , we define weighted probabilistic linguistic Einstein geometric

(WPLEG) operator as follows:

WPLEG(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) =
n
⊗ε
i=1

g(Li(p))∧εwi (14)

Based on the operations of the PLTSs described in Proposition 2 and Definition 13, we can derive
the following Theorem:

Theorem 4. Let Li(p) (i = 1, 2, . . . n) be a collection of PLTSs and g(Li(p)) be its equivalent transformation,
then their aggregated values by using the WPLEG operator is also a PLTE, and:

WPLEG(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) =

∪
g(L1

(k))∈g(L1(p)),g(L2
(k))∈g(L2(p)),...,g(Ln(k))∈g(Ln(p))

 2
n
∏

i=1
(pi

(k)g(Li
(k)))

wi

n
∏

i=1
(2−pi

(k)g(Li
(k)))

wi+
n
∏

i=1
(pi

(k)g(Li
(k)))

wi

 (15)
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where w = (w1, w2, . . . , wn)
T is the weight vector of Lij(p) (i = 1, 2, . . . , n) and wi > 0,

n
∑

i=1
wi = 1.

In particular, when wi =
1
n , i = 1, 2, . . . , n, the WPLEG operator is reduced to the probabilistic linguistic

Einstein geometric (PLEG) operator.

PLEG(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) =

∪
g(L1

(k))∈g(L1(p)),g(L2
(k))∈g(L2(p)),...,g(Ln(k))∈g(Ln(p))


2

n
∏

i=1
(pi

(k)g(Li
(k)))

1
n

n
∏

i=1
(2−pi

(k)g(Li
(k)))

1
n +

n
∏

i=1
(pi

(k)g(Li
(k)))

1
n

 (16)

Proof. In the following, we first prove the (15) by using mathematical induction on n.

For n = 2: Since [g(L1(p))]w1 = ∪
g(L1

(k))∈g(L1(p))

{
2(p1

(k)g(L1
(k)))

w1

(2−p1
(k)g(L1

(k)))
w1+(p1

(k)g(L1
(k)))

w1

}
and

[g(L2(p))]w2 = ∪
g(L2

(k))∈g(L2(p))

{
2(p2

(k)g(L2
(k)))

w2

(2−p2
(k)g(L2

(k)))
w2+(p2

(k)g(L2
(k)))

w2

}
, then

[g(L1(p))]w1 ⊗ [g(L2(p))]w2 =

∪
g(L1

(k))∈g(L1(p))g(L2
(k))∈g(L2(p)),


2(p1

(k)g(L1
(k)))

w1

(2−p1
(k)g(L1

(k)))
w1 +(p1

(k)g(L1
(k)))

w1

2(p2
(k)g(L2

(k)))
w2

(2−p2
(k)g(L2

(k)))
w2 +(p2

(k)g(L2
(k)))

w2

1+

(
1−

2(p1
(k)g(L1

(k)))
w1

(2−p1
(k)g(L1

(k)))
w1 +(p1

(k)g(L1
(k)))

w1

)(
1−

2(p2
(k)g(L2

(k)))
w2

(2−p2
(k)g(L2

(k)))
w2 +(p2

(k)g(L2
(k)))

w2

)


= ∪
g(L1

(k))∈g(L1(p)),g(L2
(k))∈g(L2(p)),

 2
2

∏
i=1
(pi

(k)g(Li
(k)))

wi

2
∏
i=1

(2−pi
(k)g(Li

(k)))
wi+

2
∏
i=1
(pi

(k)g(Li
(k)))

wi


If the (15) holds for n = m, that is

m
⊗

i=1
g(Li(p))wi = ∪

η1
(k)∈g(L1(p)),η2

(k)∈g(L2(p)),...,ηn (k)∈g(Lm(p))

 2
m
∏
i=1
(pi

(k)g(Li
(k)))

wi

n
∏
i=1

(2−pi
(k)g(Li

(k)))
wi+

m
∏
i=1
(pi

(k)g(Li
(k)))

wi


then, when n = m + 1, by the operations of PLTEs, we have

m+1
⊗

i=1
g(Li(p))wi =

m
⊗

i=1
g(Li(p))wi ⊗ g(Lm+1(p))wm+1

= ∪
g(L1

(k))∈g(L1(p)),g(L2
(k))∈g(L2(p)),...,g(Lm(k))∈g(Lm(p))

 2
m
∏

i=1
(pi

(k)g(Li
(k)))

wi

m
∏

i=1
(2−pi

(k)g(Li
(k)))

wi+
m
∏

i=1
(pi

(k)g(Li
(k)))

wi


⊗ ∪

g(Lm+1
(k))∈g(Lm+1(p))

{
2(pm+1

(k)g(Lm+1
(k)))

wm+1

(2−g(Lm+1
(k)))

wm+1+(g(Lm+1
(k)))

wm+1

}

= ∪
η1

(k)∈g(L1(p)),η2
(k)∈g(L2(p)),...,ηm(k)∈g(Lm(p)),ηm+1

(k)∈g(Lm+1(p))


2

m+1
∏

i=1
(pi

(k)g(Li
(k)))

wi

m+1
∏

i=1
(2−pi

(k)g(Li
(k)))

wi+
m+1
∏

i=1
(pi

(k)g(Li
(k)))

wi


i.e., the equation holds for n = m + 1. Thus, the equation holds for all n. Then

WPLEG(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) =

∪
g(L1

(k))∈g(L1(p)),g(L2
(k))∈g(L2(p)),...,g(Ln(k))∈g(Ln(p))

 2
n
∏

i=1
(pi

(k)g(Li
(k)))

wi

n
∏

i=1
(2−pi

(k)g(Li
(k)))

wi+
n
∏

i=1
(pi

(k)g(Li
(k)))

wi


which completes the proof of (15). �
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Example 2. Considering Gou et al. [6] let L1(p) = {s1(0.3), s2(0.2), s3(0.5)}; L2(p) = {s−1(0.2), s0(0.3)}
and w = (0.5, 0.5)T . After normalization we obtained L2(p) = {s−1(0.4), s0(0.6)}. Given that g(Li(p)) =(

ri
(k)

2τ + 1
2

)(
pi

(k)
)

, we obtained g(L1(p)) =
{ 2

3 (0.3), 5
6 (0.2), 1(0.5),

}
and g(L2(p)) =

{
1
3 (0.4), 1

2 (0.6)
}

.

WPLEG(g(L1(p)), g(L2(p))) =


2(0.2)0.5(0.13333)0.5

(2−0.2)0.5(2−0.13333)0.5+(0.2)0.5(0.13333)0.5 , 2(0.2)0.5(0.3)0.5

(2−0.2)0.5(2−0.3)0.5+(0.2)0.5(0.3)0.5 ,

2(0.16667)0.5(0.13333)0.5

(2−0.16667)0.5(2−0.13333)0.5+(0.16667)0.5(0.13333)0.5 , 2(0.16667)0.5(0.3)0.5

(2−0.16667)0.5(2−0.3)0.5+(0.16667)0.5(0.3)0.5 ,

2(0.5)0.5(0.13333)0.5

(2−0.5)0.5(2−0.13333)0.5+(0.5)0.5(0.13333)0.5 , 2(0.5)0.5(0.3)0.5

(2−0.5)0.5(2−0.3)0.5+(0.5)0.5(0.3)0.5 ,


WPLEG(g(L1(p)), g(L2(p))) = {0.1636, 0.2456, 0.1491, 0.2248, 0.2673, 0.3904}

Now on the basis of Definition 13 and Theorem 3, it can be demonstrated that the WPLEG operator
has the following properties.

Property 11 (Boundedness). Let Li(p) (i = 1, 2, . . . n) be a collection of PLTSs and g(Li(p)) its equivalent
transformation, then we have:

n
min
i=1

#g(Li(p))
min
k=1

pi
(k)g

(
Li

(k)
)
≤ g(L) ≤ n

max
i=1

#g(Li(p))
max
k=1

pi
(k)g

(
Li

(k)
)

Proof. Let g(x) = (2−x)
x = 2

x − 1, 0 < x < 1. Since g′(x) = − 2
x2 − 1 < 0 then the function g(x)

is decreasing. Because
n

min
i=1

#g(Li(p))
min
k=1

pi
(k)g

(
Li

(k)
)
≤ pi

(k)g
(

Li
(k)
)
≤ n

max
i=1

#g(Li(p))
max
k=1

pi
(k)g

(
Li

(k)
)

for every

g
(

Li
(k)
)
∈ g(Li(p)).

Then

(
2− n

max
i=1

#Li(p)
max
k=1

pi
(k)g(Li

(k))

)
n

max
i=1

#Li(p)
max
k=1

pi
(k)g(Li

(k))
≤ (2−pi

(k)g(Li
(k)))

pi
(k)g(Li

(k))
≤

(
2−

n
min
i=1

#Li(p)
min
k=1

pi
(k)g(Li

(k))

)
n

min
i=1

#Li(p)
min
k=1

pi
(k)g(Li

(k))
and then


(

2− n
max
i=1

#Li(p)
max
k=1

pi
(k)g

(
Li

(k)
))

n
max
i=1

#Li(p)
max
k=1

pi
(k)g

(
Li

(k)
)


wi

≤


(

2− pi
(k)g

(
Li

(k)
))

pi
(k)g

(
Li

(k)
)

wi

≤


(

2−
n

min
i=1

#Li(p)
min
k=1

pi
(k)g

(
Li

(k)
))

n
min
i=1

#Li(p)
min
k=1

pi
(k)g

(
Li

(k)
)


wi

g
(

Li
(k)
)
∈ g(Li(p)) (i = 1, 2, . . . , n)
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Thus

n
∏
i=1


(

2− n
max
i=1

#Li (p)
max
k=1

pi
(k)g(Li

(k))

)
n

max
i=1

#Li (p)
max
k=1

pi
(k)g(Li

(k))


wi

≤
n
∏
i=1

[
(2−pi

(k)g(Li
(k)))

pi
(k)g(Li

(k))

]wi
≤

n
∏
i=1


(

2−
n

min
i=1

#Li (p)
min
k=1

pi
(k)g(Li

(k))

)
n

min
i=1

#Li (p)
min
k=1

pi
(k)g(Li

(k))


wi


(

2− n
max
i=1

#Li (p)
max
k=1

pi
(k)g(Li

(k))

)
n

max
i=1

#Li (p)
max
k=1

pi
(k)g(Li

(k))
pi
(k)


n
∑

i=1
wi

≤ ∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2, . . . , n)


n
∏
i=1


(

2−pi
(k)g(Li

(k))
pi
(k)
)

pi
(k)g(Li

(k))
pi
(k)


wi
 ≤


(

2−
n

min
i=1

#Li (p)
min
k=1

pi
(k)g(Li

(k))
pi
(k)
)

n
min
i=1

#Li (p)
min
k=1

pi
(k)g(Li

(k))
pi
(k)


n
∑

i=1
wi


(

2− n
max
i=1

#Li (p)
max
k=1

pi
(k)g(Li

(k))

)
n

max
i=1

#Li (p)
max
k=1

pi
(k)g(Li

(k))

 ≤ n
∏
i=1

[
(2−pi

(k)g(Li
(k)))

pi
(k)g(Li

(k))

]wi
≤


(

2−
n

min
i=1

#Li (p)
min
k=1

pi
(k)g(Li

(k))

)
n

min
i=1

#Li (p)
min
k=1

pi
(k)g(Li

(k))


2

n
max
i=1

#Li (p)
max
k=1

pi
(k)g(Li

(k))
≤ ∪

g(Li
(k)) ∈ g(Li(p))

(i = 1, 2, . . . , n)

{
n
∏
i=1

[
(2−pi

(k)g(Li
(k)))

pi
(k)g(Li

(k))

]wi
+ 1
}
≤ 2

n
min
k=1

#Li (p)
min
k=1

pi
(k)g(Li

(k))

n
min
i=1

#Li (p)
min
k=1

pi
(k)g(Li

(k))
2 ≤ 1

∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2, . . . , n)

 n
∏

i=1

 (2−pi
(k)g(Li

(k)))

pi
(k)g(Li

(k))
pi
(k)


wi
+1

≤
n

max
i=1

#Li (p)
max
k=1

pi
(k)g(Li

(k))
2

n
min
i=1

#Li(p)
min
k=1

pi
(k)g

(
Li

(k)
)
≤ 2

∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2, . . . , n)

{
n
∏

i=1

[
(2−pi

(k)g(Li
(k)))

pi
(k)g(Li

(k))

]wi
}
+1

≤ n
max
i=1

#Li(p)
max
k=1

pi
(k)g

(
Li

(k)
)

n
min
i=1

#Li(p)
min
k=1

pi
(k)g

(
Li

(k)
)
≤ ∪

g(Li
(k)) ∈ g(Li(p))

(i = 1, 2, . . . , n)


2

n
∏

i=1
pi
(k)g(Li

(k))

n
∏

i=1

(
2−pi

(k)g(Li
(k))

pi
(k)
)
+

n
∏

i=1
pi
(k)g(Li

(k))

 ≤ n
max
i=1

#Li(p)
max
k=1

pi
(k)g

(
Li

(k)
)

Hence, the statement of Property 11 is true. �

Property 12 (Idempotency). Let Li(p) (i = 1, 2, . . . n) be a collection of PLTSs and g(Li(p)) its
equivalent transformation. If all g(Li(p)) (i = 1, 2, . . . , n) are equal, i.e., g(Li(p)) = g(L(p)), then
WPLEG(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) = g(L(p)).

Proof. If g(Li(p)) = g(L(p)) for all i, then WPLEG(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) is computed
as follows:

WPLEG(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) =
n
⊗ε
i=1

g(Li(p))∧εwi =
n
⊗ε
i=1

g(L(p))∧εwi

= ∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2, . . . , n)

 2
n
∏

i=1
(pi

(k)g(Li
(k)))

wi

n
∏

i=1
(2−pi

(k)g(Li
(k)))

wi+
n
∏

i=1
(pi

(k)g(Li
(k)))

wi


= ∪

g(L(k)) ∈ g(L(p))
(i = 1, 2, . . . , n)

 2
n
∏

i=1
(p(k)g(L(k)))

wi

n
∏

i=1
(2−p(k)g(L(k)))

wi+
n
∏

i=1
(p(k)g(L(k)))

wi



= ∪
g(L(k)) ∈ g(L(p))
(i = 1, 2, . . . , n)

 2(p(k)g(L(k)))

n
∑

i=1
wi

(2−p(k)g(L(k)))

n
∑

i=1
wi
+(p(k)g(L(k)))

n
∑

i=1
wi


= ∪

g(L(k)) ∈ g(L(p))
(i = 1, 2, . . . , n)

{
p(k)g

(
L(k)

)}
= g(L(p))

Therefore, we complete the proof of Property 12. �
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Property 13 (Commutativity). Let Li(p) (i = 1, 2, . . . n) be a collection of PLTSs and g(Li(p))
its equivalent transformation. Let

(
g(L1(p))∗, g(L2(p))∗, . . . , g(Ln(p))∗

)
be any permutation of

(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) then

WPLEG(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) = WPLEG
(

g(L1(p))∗, g(L2(p))∗, . . . , g(Ln(p))∗
)

Proof. Because
(

g(L1(p))∗, g(L2(p))∗, . . . , g(Ln(p))∗
)

is any permutation of

(g(L1(p)), g(L2(p)), . . . , g(Ln(p))), we have
(

pi
(k)g

(
Li

(k)
))wi

=
(

pi
(k)g

(
L(k)

i

))∗wi

2
n

∏
i=1

(
pi

(k)g
(

Li
(k)
))wi

= 2
n

∏
i=1

(
pi

(k)g
(

Li
(k)
))∗wi

n

∏
i=1

(
2− pi

(k)g
(

Li
(k)
))wi

+
n

∏
i=1

(
pi

(k)g
(

Li
(k)
))wi

=
n

∏
i=1

(
2− pi

(k)g
(

Li
(k)
))∗wi

+
n

∏
i=1

(
pi

(k)g
(

Li
(k)
))∗wi

Then

∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2, . . . , n)


2

n
∏

i=1

(
pi
(k)g

(
Li
(k)
))wi

n
∏

i=1

(
2−pi

(k)g
(

Li
(k)
))wi

+
n
∏

i=1

(
pi
(k)g

(
Li
(k)
))wi

 = ∪
g(Li

(k))
∗ ∈ g(Li(p))∗

(i = 1, 2, . . . , n)


2

n
∏

i=1

(
pi
(k)g

(
Li
(k)
))∗wi

n
∏

i=1

(
2−pi

(k)g
(

Li
(k)
))∗wi

+
n
∏

i=1

(
pi
(k)g

(
Li
(k)
))∗wi



where g(Li(p)) = pi
(k)g

(
Li

(k)
)

and g(Li(p))∗ = pi
(k)g

(
Li

(k)
)∗

. Thus, the proof of Property 13 is
completed. �

Property 14 (Monotonicity). Let g(Li(p)) and g(Li(p))∗ be two sets of PLTSs and the numbers of linguistic
terms in g(Li(p)) and g(Li(p))∗ are identical (i = 1, 2, . . . , n). If pi

(k)g(Li(p)) ≤ pi
(k)g(Li(p))∗ for all i,

i.e., g(Li(p)) ≤ g(Li(p))∗, then

WPLEG(g(L1(p)), g(L2(p)), . . . , g(Ln(p))) ≤WPLEG
(

g(L1(p))∗, g(L2(p))∗, . . . , g(Ln(p))∗
)

Proof. Let f (x) = 1−x
1+x , x ∈ [0, 1], and supposed x1 ≤ x2, f (x1) − f (x2) = 1−x1

1+x1
− 1−x2

1+x2

= 2 x2−x1
(1+x1)(1+x2)

≥ 0, then g(x) is a decreasing function. If, pi
(k)g

(
Li

(k)
)
≤ pi

(k)g
(

Li
(k)
)∗

for all

i, then, 1 − pi
(k)g(Li(p))∗ ≥ 1 − pi

(k)g(Li(p)) i.e., 1−pi
(k)g(Li(p))∗

1+pi
(k)g(Li(p))∗

≥ 1−pi
(k)g(Li(p))

1+pi
(k)g(Li(p))

, (i = 1, 2, . . . , n).

Let
n
∑

i=1
wi = 1 is the weight vector of g(Li(p)) (i = 1, 2, . . . , n) such that wi ∈ [0, 1], (i = 1, 2, . . . , n) and

n
∑

i=1
wi = 1, we have:

(
1− pi

(k)g(Li(p))∗

1 + pi
(k)g(Li(p))∗

)wi

≥
(

1− pi
(k)g(Li(p))

1 + pi
(k)g(Li(p))

)wi

, i = 1, 2, . . . , n.
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Thus,

∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2, . . . , n)

{
n
∏
i=1

(
1−pi

(k)g(Li(p))∗

1+pi
(k)g(Li(p))∗

)wi
}
≥ ∪

g(Li
(k)) ∈ g(Li(p))

(i = 1, 2, . . . , n)

{
n
∏
i=1

(
1−pi

(k)g(Li(p))
1+pi

(k)g(Li(p))

)wi
}

i = 1, 2, . . . , n

⇔

1 + ∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2, . . . , n)

{
n
∏
i=1

(
1−pi

(k)g(Li(p))∗

1+pi
(k)g(Li(p))∗

)wi
}
≥ ∪

g(Li
(k)) ∈ g(Li(p))

(i = 1, 2, . . . , n)

{
n
∏
i=1

(
1−pi

(k)g(Li(p))
1+pi

(k)g(Li(p))

)wi
}
+ 1

⇔
1

1+ ∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2, . . . , n)

{
n
∏
i=1

(
1−pi

(k)g(Li (p))
1+pi

(k)g(Li (p))

)wi
} ≥ 1

∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2, . . . , n)

{
n
∏
i=1

(
1−pi

(k)g(Li (p))∗

1+pi
(k)g(Li (p))∗

)wi
}
+1

⇔
2

1+ ∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2, . . . , n)

{
n
∏
i=1

(
1−pi

(k)g(Li (p))
1+pi

(k)g(Li (p))

)wi
} ≥ 2

∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2, . . . , n)

{
n
∏
i=1

(
1−pi

(k)g(Li (p))∗

1+pi
(k)g(Li (p))∗

)wi
}
+1

⇔
2

1+ ∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2, . . . , n)

{
n
∏
i=1

(
1−pi

(k)g(Li (p))∗

1+pi
(k)g(Li (p))∗

)wi
} − 1 ≥ 2

∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2, . . . , n)

{
n
∏
i=1

(
1−pi

(k)g(Li (p))
1+pi

(k)g(Li (p))

)wi
}
+1
− 1

i.e.,

∪
g(Li

(k)) ∈ g(Li(p))
(i = 1, 2, . . . , n)


n
∏

i=1

(
1+pi

(k)g(Li (p))
)
−

n
∏

i=1

(
1−pi

(k)g(Li (p))
)

n
∏

i=1

(
1+pi

(k)g(Li (p))
)
+

n
∏

i=1

(
1−pi

(k)g(Li (p))
)
 ≤ ∪

g(Li
(k)) ∈ g(Li(p))

(i = 1, 2, . . . , n)


n
∏

i=1

(
1+pi

(k)g(Li (p))∗
)
−

n
∏

i=1

(
1−pi

(k)g(Li (p))∗
)

n
∏

i=1

(
1+pi

(k)g(Li (p))∗
)
+

n
∏

i=1

(
1−pi

(k)g(Li (p))∗
)


Hence, the statement of Property 14 is true. �

5. Probabilistic Linguistic Einstein Aggregation Operators and Their Approaches to
Multi-Criteria Group Decision Making

Under this section, we present a MCGDM problem where the evaluation information is likely to
be expressed by the transformed PLTSs. Hence, we make use of the WPLEA or WPLEG operators to
buttress our decision.

Let X = {x1, x2, . . . , xm} be a finite set of m alternatives and C = {c1, c2, . . . , cn} be a set of n
attributes. Suppose that D = {d1, d2, . . . , de} denotes the set of DMs. By using the linguistic scale
S = {Sα/α = −τ, . . . ,−1, 0, 1, 2, . . . τ} each DM dq provides his or her linguistic evaluations over the

alternative xi with respect to the attribute aj, i.e., Aq =
(

Lq
ij
)

m×n

(
i = 1, 2, . . . , m; j = 1, 2, . . . n;

q = 1, 2, . . . , e

)
.

Then, we determine the collective evaluations of DMs for each alternative in terms of PLTEs.
In the context of GDM, the linguistic evaluation values g

(
Lij(p)

)
= g

(
Lij

(k)
)

(
k = 1, 2, . . . , #g

(
Lij(p)

))
with the corresponding probability pij

(k) are described as the PLTS

g
(

Lij(p)
)
=
{

g
(

L(k)
ij

(
pij

(k)
))

/k = 1, 2, . . . , #g
(

Lij(p)
)}

and #g
(

Lij(p)
)

is the number of linguistic

terms in g
(

Lij(p)
)
. The PLTSs Lij(p) denote the evaluations values over the alternatives xi

(i = 1, 2, . . . , m) with respect to the attributes cj (j = 1, 2, . . . , n) where Lij
(k) is the kth value of Lij(p)

and pij
(k) is the probability Lij

(k) (k = 1, 2, . . . , #Lij(p)
)
. In this case pij

(k) > 0 and
#Lij(p)

∑
k=1

pij
(k) = 1.



Symmetry 2019, 11, 39 22 of 30

All the PLTSs are contained in the probabilistic linguistic decision matrix R. Hence, the result is shown
as follows:

R = g
[(

Lij(p)
)]

m×n =


g(L11(p)) g(L12(p)) . . . g(L1n(p))
g(L21(p)) L22(p) . . . g(L2n(p))

...
...

...
...

g(Lm1(p)) g(Lm2(p)) · · · g(Lmn(p))

 (17)

Without loss of generality, we assume that each transformed PLTS g
(

Lij(p)
)

is an ordered
transformed PLTS. w = (w1, w2, . . . , wn)

T denotes the weighting vector of the attributes C and

wj ∈ [0, 1],
n
∑

j=1
wj = 1. Based on the above results, we will use the WPLEA or WPLEG aggregation

operators to develop the corresponding approach for MCGDM with probabilistic linguistic information.
This approach is designed with the determination of the objective weights.

5.1. The Determination of the Objective Weights Based on Entropy Measures

Entropy method is the concept of thermodynamics, which was first introduced by Shannon
into the information theory, and now is widely used in the engineering, socio-economic and other
fields [22]. Entropy measures are useful in computing weights of the criteria, and had been used widely
in MCGDM problems [23]. Shannon entropy method constitutes one of the techniques to determine the
weight of the criteria when it becomes difficult to be provided by the decision-maker [24]. Through the
computation of information entropy of a proposed parameter, its weight is determined according to its
relative degree of change that impact on equipment, index with larger degree of relative change as
larger weight. For example, Peng et al. [25] introduced two optimization models for the determination
of the criterion weights in a multi-criteria decision-making situations . In our study, emphasis should
be laid on the determination of a reasonable weight of the criteria. This has become necessary because
many at times the DMs are influenced by what they have as knowledge structure, personal bias,
and familiarity with the decision alternatives. Consequently, the necessity arises for us to consider the
MADM problem with completely unknown weights of criteria. Therefore, there will be a need for us
to establish a weight determination method on the basis of entropy technique under the probabilistic
linguistic environment.

Let L(p) =
{

L(k)
i

(
pi

(k)
)

/k = 1, 2, . . . , #Li(p)
}
(i = 1, 2, . . . , n) be a PLTE, and g(Li(p)) its

equivalent transformation then the steps for determining the weights are as follows:
Step 1: Calculate the score matrix E

(
g
(

Lij(p)
))

m×n of R = g
(

Lij(p)
)

m×n

E
(

g
(

Lij(p)
))

m×n =


E(g(L11(p))) E(g(L12(p))) · · · E(g(L1n(p)))
E(g(L21(p))) E(g(L22(p))) · · · E(g(L2n(p)))

...
...

. . .
...

E(g(Lm1(p))) E(g(Lm2(p))) · · · E(g(Lmn(p)))


m×n

(18)

Step 2: Normalize the score matrix E
(

g
(

Lij(p)
))

m×n as follows:

R = g
(

Lij(p)
)

m×n
=


g
(

L11(p)
)

g
(

L12(p)
)

. . . g
(

L1n(p)
)

g
(

L21(p)
)

g
(

L22(p)
)

. . . g
(

L2n(p)
)

...
...

...
...

g
(

Lm1(p)
)

g
(

Lm2(p)
)
· · · g

(
Lmn(p)

)

 (19)

where g
(

Lij(p)
)
=

g(Lij(p))
m
∑

i=1
g(Lij(p))

; (i = 1, 2, . . . , m; j = 1, 2, . . . , n).
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Step 3: Determine the attribute weights.

Let Ej = − 1
ln m

m
∑

i=1
g
(

Lij(p)
)

. ln g
(

Lij(p)
)

; (j = 1, 2, . . . , n).

The attribute weight wj (j = 1, . . . , n) is determined by

wj =
1− Ej

n
∑

j=1

(
1− Ej

) (20)

5.2. Probabilistic Linguistic MADM Approach

Decision-making processes comprise a series of steps: identifying the problems, constructing
the preferences, evaluating the alternatives, and determining the best alternatives. With the aid of
the WPLEA and the WPLEG aggregation operators, we develop a decision-making procedure for the
ranking of alternatives. The detailed approach is illustrated as follows:

Step 1. In a practical decision-making problem, we determine the alternatives X = {x1, x2, x3, x4, x5}
and a set of the attributes C = {c1, c2, c3, c4}. Then we obtain the decision matrix A(q) =

(
Lq

ij
)

m×n
provided by the decision-maker DM dq.

Step 2. With regards to the collective matrix A(q) =
(

Lq
ij
)

m×n, the normalization process of
the entries of A could be made as stated in Definition 5. The entries of the normalized matrix
R =

(
Lij(p)

)
m×n are arranged in a decreasing order.

Step 3. Since the operational values may exceed the boundaries of LTSs and also the PLTEs must
be within the interval [0, 1] to satisfy the Einstein operational laws, we need to transform the PLTS
R =

(
Lij(p)

)
m×n to the following equivalent form R′ = g

(
Lij(p)

)
m×n.

Step 4. We determine the criteria weights. The criteria weights can be determined by way of
using the following formula:

wj =
1− Ej

n
∑

j=1

(
1− Ej

) (j = 1, 2, . . . , n)

Step 5. If the DM prefers the WPLEA operator, then the aggregated value of the alternative xi is
determined based on (11). The result is:

Zi = WPLEA(g(Li1(p)), g(Li2(p)), . . . , g(Lin(p)))

= ∪
ηij

(k) ∈ g(Lij(p))
(j = 1, 2, . . . , n)


n
∏
j=1

(1+g(Lij
(k))pij

(k))
wij−

n
∏
j=1
(1−g(Lij

(k))pij
(k))

wij

n
∏
j=1

(1+g(Lij
(k))pij

(k))
wij+

n
∏
j=1
(1−g(Lij

(k))pij
(k))

wij

 (i = 1, 2, . . . , m)

If the DM prefers the WPLEG operator, then the aggregated value of the alternative xi is
determined based on (15). The result is:

Zi = WPLEG(g(Li1(p)), g(Li2(p)), . . . , g(Lin(p))) =

∪
ηj

(k) ∈ g(Lj(p))
(j = 1, 2, . . . , n)


2

n
∏
j=1
([pij

(k)g(Lij
(k))])

wij

n
∏
j=1

(2−[pij
(k)g(Lij

(k))])
wij+

n
∏
j=1
([pij

(k)g(Lij
(k))])

wij

 (i = 1, 2, . . . , m)

In this case, we denote the aggregated value of the alternative xi as Zi.
Step 6. Following the results of Definition 4 of Section 2, the score and the deviation degree of Zi

of the alternative xi are computed, i.e., E(Zi) and σ(Zi) (i = 1, 2, . . . , m).
Step 7. Rank all the alternatives xi in accordance with the ranking results of Definition 4.
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6. Illustrative Example

Information technology is has become the antidote to the numerous problems faced by health
organizations to improve healthcare delivery. In order to improve healthcare delivery, the adoption of
health information technology (HIT) has become vital for health organizations. Many stakeholders
like the government, information technology businesses, healthcare organizations, policy makers and
consumers anticipate that healthcare problems can be addressed through technological innovations [26].
The adoption of HIT can help health administrators to reduce clinical errors, provide support to
clinicians, improve patients’ information management and expand patients’ access to both remote
and continuity healthcare services [27–31]. Due to the relevance and involvement of various
uncertainties and risks associated with healthcare process, decision makers are very often involved in
the decision-making process for healthcare issues. As a global concern, the Ghanaian government will
want to assess and improve the quality and safety of care as far as health information technology (HIT)
innovations in public hospitals in Ghana is concerned.

Hence this problem can be considered as a multi-criteria group decision making problem (MCDM)
which requires MCDM methods for an effective problem-solving. In solving real-life decision-making
problems, Pang et al. [1] stated that, decision-makers can employ linguistic terms to evaluate the
performance of the alternatives, which can be used to help rank the hospitals and select the most
desirable one via proper decision-making methods. To address the MCDM problem above, we adopt
probabilistic linguistic values to overcome uncertainty and qualitative factors. In many situations,
the preference information on attributes is uncertain and inconsistent. In order to account for the
insufficiency in decision making, we present a probabilistic linguistic Einstein Aggregation (PLEA)
operators to select the ideal hospital based on probabilistic linguistic values. In this section, we extend
the PLMCGDM method to the healthcare environment. Government will want to assess or evaluate the
performance of hospitals as far as implementation of HIT is concerned. For this, purpose, five hospitals
were randomly chosen. In view of that a committee of three decision makers D = {d1, d2, d3} was
formed to select the most appropriate hospital. Therefore, we introduce a MCGDM problem in
which PLTS is used to express the evaluation information. Then, we apply the WPLEA or WPLEG
operator to support our decision. Let X = {x1, x2, x3, x4, x5} be a finite set of five hospitals and
C = {c1, c2, c3, c4} be the set of criteria defined for the selection process.

c1 = e f f icient thereby decreasing costs
c2 = enhance quality care

c3 = enabling inf ormation exchange and
communication in a s tan dardized way between healthcare establishments
c4 = encouraging a partnership relationship
between patient and health pro f essionals

adopted from [32]. The linguistic scale is S = {st/t = −4, . . . ,−1, 0, 1, . . . , 4}. Considering the results
of [33], the evaluations of the decision makers are shown in Tables 1–3.

Table 1. Decision matrix A1 provided by d1.

c1 c2 c3 c4

x1 s2 s3 s3 s2
x2 s2 s0 s1 s1
x3 s−1 s0 s2 s1
x4 s2 s0 s−1 s3
x5 s2 s4 s3 s1
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Table 2. Decision matrix A2 provided by d2.

c1 c2 c3 c4

x1 s0 s1 s0 s1
x2 s3 s2 s1 s2
x3 s0 s1 s2 s2
x4 s1 s0 s1 s2
x5 s0 s3 s2 s1

Table 3. Decision matrix A3 provided by d3.

c1 c2 c3 c4

x1 s−1 s1 s0 s1
x2 s3 s2 s1 s2
x3 s1 s0 s3 s3
x4 s3 s2 s1 s1
x5 s1 s2 s3 s2

6.1. Decision Analysis with Our Proposed Approaches

Step 1: Following the proposed methods in Section 5, we integrate the individual decision
matrices A1 − A3 into a collective decision matrix by (17). Hence, the result is shown in Table 4.
For Table 4 each PLTS Lij(p) is assumed to be ordered PLTS. (i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4). Based on
the Entropy Shannon measure determined in Step 4, the weighting vector of the attributes C is
w = (w1, w2, w3, w4)

T = (0.1628, 0.3024, 0.2427, 0.2921)T . We use WPLEA and WPLEG aggregation
operators to analyze the results of Table 5. With respect to the above results and the proposed methods
in Section 5, the detail steps are shown as follows.

Table 4. The probabilistic linguistic decision matrix of the group.

c1 c2 c3 c4

x1

{
s2(0.33), s0(0.33),
s−1(0.33)

}
{s3(0.33), s1(0.67)} {s3(0.33), s0(0.67)} {s2(0.33), s1(0.67)}

x2 {s2(0.33), s3(0.67)} {s0(0.33), s2(0.67)} {s1(1)} {s1(0.33), s2(0.67)}

x3

{
s−1(0.33), s0(0.33),
s1(0.33)

}
{s0(0.67), s1(0.33)} {s2(0.67), s3(0.33)}

{
s1(0.33), s2(0.33),
s3(0.33)

}
x4

{
s2(0.33), s1(0.33),
s3(0.33)

}
{s0(0.67), s2(0.33)} {s−1(0.33), s1(0.67)}

{
s3(0.33), s2(0.33),
s1(0.33)

}
x5

{
s2(0.33), s0(0.33),
s1(0.33)

} {
s4(0.33), s3(0.33),
s2(0.33)

}
{s3(0.67), s2(0.33)} {s1(0.67), s2(0.33)}

Table 5. Normalized probabilistic linguistic decision matrix arranged in decreasing order.

c1 c2 c3 c4

x1

{
s2(0.33), s0(0.33)
s−1(0.33)

} {
s3(0.33), s1(0.67)

}
{s3(0.33), s0(0.67)} {s2(0.33), s1(0.67)}

x2 {s3(0.67), s2(0.33)} {s2(0.67), s0(0.33)} {s1(1)} {s2(0.67), s1(0.33)}

x3

{
s1(0.33), s0(0.33),
s−1(0.33)

}
{s1(0.33), s0(0.67),} {s2(0.67), s3(0.33)}

{
s3(0.33), s2(0.33),
s1(0.33)

}
x4

{
s3(0.33), s2(0.33)
s1(0.33),

}
{s2(0.33), s0(0.67)} {s1(0.67), s−1(0.33)}

{
s3(0.33), s2(0.33),
s1(0.33)

}
x5


s2(0.33), s1(0.33)
s0(0.33)


{

s4(0.33), s3(0.33)
s2(0.33)

}
{s3(0.67), s2(0.33)} {s2(0.33), s1(0.67)}

Step 2. Considering the collective matrix A(q) =
(

Lq
ij
)

5×4, we normalize the entries of R as
stated in Definition 5. Then, the normalized entries are arranged in decreasing order. The results are
presented in the Table 5.
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Step 3. Since the operational values may exceed the boundaries of LTSs and also the PLTEs
must be within the interval [0, 1] to satisfy the Einstein operational laws, we need to transform the
normalized PLTS R =

(
Lij(p)

)
5×4 to the following equivalent form R′ = g

(
Lij(p)

)
5×4. The results are

given in Table 6.

Table 6. The transformed normalized probabilistic linguistic decision matrix.

c1 c2 c3 c4

x1

{
s0.75(0.33), s0.5(0.33)
s0.375(0.33)

} {
s0.625(0.67), s0.875(0.33),
s0.625(0)

}{
s0.5(0.67), s0.875(0.33),
s0.5(0)

} {
s0.625(0.67), s0.75(0.33),
s0.625(0)

}
x2

{
s0.875(0.67), s0.75(0.33),
s0.75(0)

} {
s0.75(0.67), s0.5(0.33),
s0.5(0)

} {
s0.625(1), s0.625(0),
s0.625(0)

} {
s0.75(0.67), s0.625(0.33),
s0.625(0)

}
x3

{
s0.625(0.33), s0.5(0.33),
s0.375(0.33)

} {
s0.5(0.67), s0.625(0.33),
s0.5(0)

} {
s0.75(0.67), s0.875(0.33),
s0.75(0)

} {
s0.875(0.33), s0.75(0.33),
s0.625(0.33)

}
x4

{
s0.875(0.33), s0.75(0.33),
s0.625(0.33)

} {
s0.5(0.67), s0.75(0.33),
s0.5(0)

} {
s0.625(0.67), s0.375(0.33),
s0.375(0)

}{
s0.875(0.33), s0.75(0.33)
s0.625(0.33)

}
x5

{
s0.75(0.33), s0.625(0.33)
s0.5(0.33)

} {
s1(0.33), s0.875(0.33),
s0.75(0.33)

} {
s0.875(0.67), s0.75(0.33),
s0.75(0)

} {
s0.625(0.67), s0.75(0.33),
s0.625(0)

}

Step 4. We derive the criteria weights by utilizing (20) and the following is the weight vector of
g(Li(p))

w = (0.1628, 0.3024, 0.2427, 0.2921)T (j = 1, 2, 3, 4)

Step 5. Aggregate the probabilistic linguistic values g
(

Lij(p)
)

for each alternative xi by the
WPLEA (or WPLEG) operator.

If the decision-maker chooses the WPLEA operator, then the aggregated value of the alternatives
xi (i = 1, 2, . . . , 5) is determined based on (11).

Z1 = WPLEA(g(L11(p)), g(L12(p)), g(L13(p)), g(L14(p)))
= {0.3708, 0.3225, . . . , 0.0204}

Z2 = WPLEA(g(L21(p)), g(L22(p)), g(L23(p)), g(L24(p)))
= {0.5463, 0.4734, . . . , 0}

Z3 = WPLEA(g(L31(p)), g(L32(p)), g(L33(p)), g(L34(p)))
= {0.3454, 0.3338, . . . , 0.0820}

Z4 = WPLEA(g(L41(p)), g(L42(p)), g(L43(p)), g(L44(p)))
= {0.3356, 0.3238, . . . , 0.0958}

Z5 = WPLEA(g(L51(p)), g(L52(p)), g(L53(p)), g(L54(p)))
= {0.4119, 0.3653, . . . , 0.1042}

In case the decision -maker considers the WPLEG operator, then the aggregated value of the
alternative xi is determined based on (15) (i = 1, 2, . . . , m). In the same way, we denote the aggregated
value of the alternative xi as Zi. The results are:

Z1 = WPLEG(g(L11(p)), g(L12(p)), g(L13(p)), g(L14(p)))
= {0.3645, 0.3143, . . . , 0}

Z2 = WPLEG(g(L21(p)), g(L22(p)), g(L23(p)), g(L24(p)))
= {0.5422, 0.4295, . . . , 0}

Z3 = WPLEG(g(L31(p)), g(L32(p)), g(L33(p)), g(L34(p)))
= {0.3304, 0.3163, . . . , 0}

Z4 = WPLEG(g(L41(p)), g(L42(p)), g(L43(p)), g(L44(p)))
= {0.3318, 0.3176 . . . , 0}

Z5 = WPLEG(g(L51(p)), g(L52(p)), g(L53(p)), g(L54(p)))
= {0.3928, 0.3395 . . . , 0}
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Step 6. On the basis of the results of Definition 10, the scores of the alternatives xi can be
computed, i.e., E(Zi). If the DM uses WPLEA operator to calculate the decision formation, the scores
are determined below:

E(Z1) = 0.2200; E(Z2) = 0.2460; E(Z3) = 0.2222; E(Z4) = 0.2186; E(Z5) = 0.2682.
If the DM uses WPLEG operator to aggregate the decision formation, the scores are determined

as follows:
E(Z1) = 0.0888; E(Z2) = 0.0389; E(Z3) = 0.1182; E(Z4) = 0.1151; E(Z5) = 0.1371.
Step 7. If the DM uses WPLEA operator, we can determine the ranking of the scores of the

alternatives based on the results of Step 6. It is shown as follows:

E(Z5) > E(Z2) > E(Z3) > E(Z1) > E(Z4)

Hence, the ordering of the alternatives is:

x5 > x2 > x3 > x1 > x4

If the DM uses WPLEG operator, we can determine the ranking of the scores of the alternatives
based on the results of Step 6. It is shown as follows:

E(Z5) > E(Z3) > E(Z4) > E(Z1) > E(Z2)

In this case, the ordering of the alternatives is:

x5 > x3 > x4 > x1 > x2

6.2. Comparison Analysis

Under the probabilistic linguistic information, Ref. [1] developed an aggregation-based method
for MAGDM. In order to validate the effectiveness of our proposed methods, we carefully compute
the decision results for Ref. [1] and Ref. [33]. The decision results are demonstrated in Table 7.

Table 7. Comparative analysis of our proposed method with that in the existing literatures.

Method Rank

Aggregation-based method of Ref. [1] x5 > x2 > x4 > x1 > x3
The method with LPWA of Ref. [33] x5 > x2 > x4 > x1 > x3
Our proposed method with WPLEA x5 > x2 > x3 > x1 > x4
Our proposed method with WPLEG x5 > x3 > x4 > x1 > x2

Considering the linguistic power weighted average (LPWA) of Ref. [33] the rank is x5 > x2 >

x4 > x1 > x3. Also, that of Ref. [1] is x5 > x2 > x4 > x1 > x3. For both methods the ranking
is the same but different from our rankings, thus WPLEA: x5 > x2 > x3 > x1 > x4 and WPLEG:
x5 > x3 > x4 > x1 > x2. However, the optimal decision result conforms to our best alternative which
is also x5 for both methods, thus WPLEA and WPLEG.

On the MCGDM problems under probabilistic linguistic environment, we introduced our model
to improve upon the existing techniques. Unlike the existing model of Ref. [33] considered in this
paper, our model yields better results because since probabilities were not considered in their approach
the accuracy of preference information of the DMs might be questionable and the ignorance of the
probabilistic information may lead to erroneous decision results. Pang et al. [1] stated that completely
ignoring the importance and probability of possible linguistic term sets in GDM with linguistic
information is not rational. In addition, without the PLTSs, it might not be easy for the DMs to
provide several possible linguistic values over an alternative or an attribute. This situation exposes the
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shortcomings of the model proposed in Ref. [33], in spite of the power average involvement in the
aggregation process.

Now comparing our results with that of Ref. [1], our model yields better results. The reason being
that since PLTSs itself as a theory has some limitations, it encounters the relationship phenomenon
between inputs arguments. Luckily our proposed model provides more versatility in the aggregation
process and it has the ability to depict the interrelationship of input arguments. To throw more light
on the weaknesses, Gou et al. [6] stated that the existing operational laws of linguistic term and
the extended linguistic terms are very unreasonable because occasionally their operational values
exceed the bounds of linguistic term sets (LTSs). Besides, their novel operational laws can reduce the
computational complexity experienced in [1] and also keep the probability information complete after
operations. In general, WPLEG applies to the average of the ratio data and is mainly used to calculate
the average growth (or change) rate of the data. From the characteristics of Table 7, the WPLEA is
much better than WPLEG.

7. Conclusions

In this paper, we investigated the multi-criteria group decision-making problems where
attribute values are in the form of transformed PLTSs. We introduce Einstein operations into the
probabilistic linguistic environment where, we define some operations of PLTSs based on them,
and some corresponding operational laws. Meanwhile, we develop the corresponding new operators,
i.e., the PLEA, PLEG, WPLEA and WPLEG operators. In light of the PLMCGDM, we describe the
decision-making problem and design corresponding approaches by employing the WPLEA and
WPLEG. We extend the literature on Einstein operations and enrich the research work of PLTSs.
Unlike other existing literatures, we assumed that weights are unknown and we calculated the weight
of the criteria through entropy Shannon method, which is another reliable way of determining the
weight of the criteria. Desirable properties of the operators have also been analyzed. Numerical
experiments on hospital selection and comparative studies show the practicality and advantages of our
proposed model. The ideas behind the implementation of our method will have the potential to give
more insights to researchers and practitioners in the area of PLTSs. Future research work may propose
new aggregation operators for the PLTSs in the areas of pattern recognition and clustering analysis.
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