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Abstract: Aiming at multiple attribute group decision making (MAGDM) problems, especially the
attribute values of 2-tuple linguistic numbers and the interrelationships between each attribute
needing to be considered, this paper proposes a new method of analysis. Firstly, we developed a few
new aggregation operators, like the 2-tuple linguistic dependent weighted Maclaurin symmetric mean
(2TLDWMSM) operator, the 2-tuple linguistic dependent weighted generalized Maclaurin symmetric
mean (2TLDWGMSM) operator, and the 2-tuple linguistic dependent weighted geometric Maclaurin
symmetric mean (2TLDWGeoMSM) operator. In the above operators, Maclaurin symmetric mean
(MSM) operators can take the relationships between each attribute into account and dependent
operators can mitigate the unfair parameters’ impact on the overall outcome, in which those
“incorrect” and “prejudiced” parameters are distributed with low weights. Next, a method used
by the 2TLDWMSM, 2TLDWGMSM, and 2TLDWGeoMSM operators for MAGDM is introduced.
Finally, there is an explanative example to confirm the proposed approach and explain its availability
and usefulness.

Keywords: 2-tuple linguistic information; maclaurin symmetric mean; dependent operator; multiple
attribute group decision making

1. Introduction

The problem with multiple attribute group decision making (MAGDM) is that a group of experts
convey their judgements based on predefined options and choose the best one, which is a significant
sector in decision theory. Owing to the uncertainties of the objects in question and the fuzziness
of human thought, there are many decision-making problems in which the attributes cannot be
expressed by crisp numbers, but rather by linguistic terms. For instance, when assessing a student’s
overall quality or driving performance, we usually use linguistic terms like “good”, “medium good”,
“medium”, “medium poor”, or “poor” instead of numeric values. From this point of view, Zadeh [1]
proposed a new concept of linguistic variables, which gets accomplishment in analyzing qualitative
information. In addition, some methods and aggregation operators are investigated on the basis of
linguistic variables for handling linguistic information, which is very helpful for processing linguistic
multiple attribute decision making (MADM) problems. Yu et al. [2] developed an interactive multiple
criteria decision making (MCDM) approach in which the attribute values are in intuitionistic linguistic
numbers. In addition, Wang et al. [3] presented a likelihood-based TODIM (an acronym in Portuguese
of interactive and multiple attribute decision making) method for dealing with multiple hesitant
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fuzzy linguistic information based on hesitation. Moreover, for purposes of simulating human
perceptions of linguistic terms, Moharrer et al. [4] developed a two-phase methodology with interval
type-2 fuzzy sets. In order to aggregate linguistic preference relations, Herrera et al. [5,6] developed
the linguistic ordered weighted averaging (LOWA) operators. On this basis, Xu [7] introduced a
method with linguistic preference correlations for some linguistic geometric operators. To tackle
the problem of missing information during the calculation, Herrera and Martinez [8] came up with
2-tuple linguistic representation methods that describe the linguistic information recurring for 2-tuples,
which overcame the limitations of missing information. After that, the 2-tuple linguistic models have
solved many problems effectively in the field of MAGDM. Jiang and Fan [9] extended the traditional
ordered weighted geometry (OWG) operator to a new OWG operator with 2-tuple, which enriched
the analysis method of aggregating 2-tuple linguistic information. Wei [10] proposed some 2-tuple
linguistic weighted operator and studied their nature. Merigo’ et al. [11] put forward the induced
2-tuple linguistic operators to analyze the problem from different perspectives and have a more
comprehensive understanding of the situation under consideration. Furthermore, Wang et al. [12]
introduced multi-hesitant fuzzy linguistic term sets (MHFLTSs), which extend prior methods and
consists of continuous and repeatable linguistic terms. Deng et al. [13] proposed the 2-tuple linguistic
Pythagorean fuzzy Heronian mean (2TLPFHM) operator, which can describe the fuzzy information
easily and capture interrelationships among any number of arguments.

The aggregation operator is an efficient tool for tackling MAGDM problems and it has two main
functions as follows: (1) Aggregation operators can emphasize the relationship between any two
attributes rather than only analyze the significance of each data or their ordered position. For example,
Maclaurin [14] proposed the Maclaurin symmetric mean (MSM) operator, which could detect the
correlation between multiple input arguments. After that, Detemple and Robertson [15] further
developed it. Recently, the MSM has derived many significant results and received increasing
attention in practical applications. Qin and Liu [16] developed some new aggregation operators
that extended the MSM operator to address intuitionistic fuzzy information. At the same time, a
procedure for MADM based on weighted intuitionistic fuzzy Maclaurin symmetric mean (WIFMSM)
was developed. Moreover, in order to better aggregate the hesitant fuzzy information, Qin et al. [17]
developed a hesitant fuzzy MSM (HFMSM) operator, which according to traditional MSM operators
runs under the condition of hesitant fuzziness. In addition, neutrosophic sets are also considered.
Wang et al. [18] introduced some single-valued neutrosophic linguistic MSM operators. Considering
interval neutrosophic linguistic sets, some interval neutrosophic linguistic MSM operators were
proposed by Geng et al. [19], which further enriched the solution to the problem of uncertain
linguistic environments. In addition, Wang et al. [20] developed the interval-valued 2-tuple linguistic
Pythagorean fuzzy MSM (IV2TLPFMSM) operator based on the MSM operator, generalized MSM
(GMSM) operator, and dual MSM (DMSM) operator. (2) Aggregation operators can mitigate the unjust
parameters’ impact on the overall outcomes in which those “incorrect” and “prejudiced” parameters
are distributed with low weights. Therefore, some dependent aggregation operators are investigated.
For instance, Xu [21] proposed some dependent operators based on the uncertain ordered weighted
averaging (UOWA) operator to remove the misjudgment effect on results. Wei and Zhao [22] developed
several dependent ordered weighted operators with 2-tuple and Liu [23] proposed some generalized
dependent operators, in which the linked weights merely rely on the aggregated input parameters.
Moreover, the impact of unjust parameters on the overall outcomes in which those “wrong” and
“prejudiced” parameters distributed with low weights can be relieved. In order to show the influence of
the decision makers psychological factors on the group decision process, Gao and Liu [24] developed a
new class of aggregation operators based on reference-dependent utility functions.

Owing to time stress, knowledge deficit, and limited experience in the field of the problem, taking
the form of 2-tuple linguistic variables is very suitable for depicting vague information. Therefore,
the research on the MAGDM problems based on the 2-tuple linguistic variables has great importance.
Besides which, the MSM is flexible and adaptable, meaning it can detect relationships between multiple
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input parameters. The dependent aggregation operators can mitigate the impact of unjust parameters
on the overall outcomes, in which those “incorrect” and “prejudiced” parameters are distributed with
low weights. At present, there is limited research on the MAGDM method based on 2-tuple linguistic
dependent MSM operators. MSM operators cannot handle fuzzy information in the form of 2-tuples. In
addition, it is more objective to calculate weights by using dependent operators than to assign weights.
If the MSM operator is used to process 2-tuple linguistic information and the dependent operator is
used to calculate weight, the final decision result will be more accurate and objective. For the above
reasons, this paper proposes some operators like the 2-tuple linguistic dependent weighted MSM
(2TLDWMSM) operator, the 2-tuple linguistic dependent weighted generalized MSM (2TLDWGMSM)
operator and the 2-tuple linguistic dependent weighted geometric MSM (2TLDWGeoMSM) operator.
At the same time, a MADGM method is proposed based on above operators and display its merits by
comparing with other methods.

The structure of this paper is as follows. In Section 2, some basic concepts of 2-tuple and the MSM
operator are to be introduced respectively. Section 3 introduces the 2TLMSM operator and proposes
the 2TLDWMSM operator, the 2TLDWGMSM operator and the 2TLDWGeoMSM operator, in which
the related weights merely rely on the aggregated 2-tuple linguistic parameters and could mitigate
unequitable parameters’ impact on the overall outcomes in which those “wrong” and “prejudiced” ones
are distributed low weights to. In Section 4 of this paper, a MAGDM method based on 2TLDWMSM
operator is presented. Section 5 provides an illustrative instance to expound the advantages of the
proposed method. Eventually, the conclusions and directions of further researches are proposed.

2. Preliminaries

2.1. The Linguistic Set and 2-tuple

Assume that S(s0, s1, s2 . . . sl−1) is a limited strictly ordered set of discrete items and l is an odd
number. In actual conditions, l can be equal to 3, 5, 7, 9, 11, etc. For instance, if l = 7, a set S could
be expressed:

S = (s0, s1, s2, s3, s4, s5, s6) = {extremely bad, bad, slightly bad, fair, slightly good, good,
extremely good}.

In general, for any linguistic set S, the following characteristics should be satisfied [25–27]:

(1) si < sj if and only if i < j;
(2) neg(si) = sl−i−1 is a negation operator;
(3) max(si, sj) = si is a maximum operator if i ≥ j;
(4) min(si, sj) = sj is a minimum operator If i ≥ j.

As for any linguistic set S = (s0, s1, . . . , sl−1), the correlation between si and its subscript i are
strictly monotonically increasing [25,27,28], so the definition of the function could be represented as
f : si = f (i). Obviously, as for subscript i, the function f (i) is a strictly monotonically increasing
function. In order to retain all the given information, the discrete linguistic label S = (s0, s1, . . . , sl−1)

is extended into a consequent linguistic label S = {sa|α ∈ R} that meets the above features.
The operational rules for the linguistic label are shown below [27,29]:

βsi = sβ×i β ≥ 0 (1)

si ⊕ sj = si+j (2)

si/sj = si/j (3)

(si)
n = sin (4)

λ
(
si ⊕ sj

)
= λsi ⊕ λsj λ ≥ 0 (5)
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(λ1 + λ2)si = λ1si ⊕ λ2si λ1, λ2 ≥ 0 (6)

For the sake of handling the linguistic information more easily, Herrera and Martinez [8] proposed
a symbolic translation method consisting of 2-tuple. We would give the related definitions.

Definition 1 ([8,27,30]). Suppose S = (s0, s1, . . . , sl−1) is a linguistic term collection, β is a real number
in [0, l − 1], and it indicates the calculating result for an element in S, then the 2-tuple corresponding to the
elements in S can be get from the following function:

∆ : [0, l − 1]→ S× [−0.5, 0.5)

∆(β) = (si, α) (7)

where i = round(β), α = β− i, α ∈ [−0.5, 0.5), and round(.) is the usual round operation.

Definition 2 ([8,27,30]). Let S = (s0, s1, . . . , sl−1) be a linguistic term collection, (si, α) be a 2-tuple, and the
inverse function ∆−1 that converts a 2-tuple into the homologous real number β ∈ [0, l − 1], as follows:

∆−1 : S× [−0.5, 0.5)→ [0, l − 1]

∆−1(si, α) = i + α = β (8)

From this, it can be concluded that the 2-tuple corresponding to the element si(i = 0, 1, . . . l − 1)
is (si, 0).

Based on above definitions, related inverse operator and comparing of 2-tuple can be easily shown
as follows.

(1) The inverse operator Neg [8,27]: Neg(si, α) = ∆
(
(l − 1)−

(
∆−1(si, α)

))
(2) The comparison of 2-tuple: Let (si, α1) and

(
sj, α2

)
be any two 2-tuple, and the comparison

rules are as follows [8,27]:
If i > j then (si, α1) >

(
sj, α2

)
;

If i = j then

(a) if α1 = α2 then (si, α1) =
(
sj, α2

)
;

(b) if α1 > α2 then (si, α1) >
(
sj, α2

)
;

(c) if α1 < α2 then (si, α1) <
(
sj, α2

)
.

(3) If (si, α1) ≥
(
sj, α2

)
then max

{
(si, α1),

(
sj, α2

)}
= (si, α1); and if (si, α1) ≤

(
sj, α2

)
then

min
{
(si, α1),

(
sj, α2

)}
= (si, α1).

2.2. Maclaurin Symmetric Mean Operator

Definition 3 ([14,18]). Let xi(i = 1, 2, . . . , n) be the collection of the non-negative real number. An MSM
operator of dimension n is mapping MSM(m) : (R+)

n → R+ and it’s definition is as follows:

MSM(m)(x1, . . . , xn) =

(
∑1≤i1<...<im≤n ∏m

j=1 xij

Cm
n

) 1
m

(9)

where (i1, i2, . . . , im) traverses all the m-tuple combination of (1, 2, . . . , n) and Cm
n = n!

m!(n−m)! is the binomial
coefficient. Moreover, the meaning of xij is ijth element in a special arrangement.

Obviously, MSM(m) operator has the following significant attributes:

(1) Idempotency. If xi = x for each i, MSM(m)(x, x, . . . , x) = x;
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(2) Monotonicity. If xi ≤ yi for all i, MSM(m)(x1, x2, . . . , xn) ≤ MSM(m)(y1, y2, . . . , yn);

(3) Boundedness. min{x1, x2, . . . , xn} ≤ MSM(m){x1, x2, . . . , xn} ≤max{x1, x2, . . . , xn}.

Definition 4 ([18]). Let xi(i = 1, 2, . . . , n) be a collection of non-negative real numbers and p1, p2, . . . , pm ≥ 0.
A generalized MSM operator of dimension n is mapping GMSM(m,p1,p2,...,pm) : (R+)

n → R+ and it is
defined as follows:

GMSM(m,p1,p2,...,pm)(x1, . . . , xn) =

∑1≤i1<...<im<n ∏m
j=1 x

pj
ij

Cm
n


1

p1+p2+...pm

(10)

where (i1, i2, . . . , im) traverses all the m-tuple combination of (1, 2, . . . , n) and Cm
n = n!

m!(n−m)! is the
binomial coefficient.

Some desirable properties of the GMSM(m,p1,p2,...,pm) operator are as follows:

(1) Idempotency. If xi = x for each i, and then GMSM(m,p1,p2,...,pm)(x, x, . . . , x) = x;

(2) Monotonicity. If xi ≤ yi for all i,GMSM(m,p1,p2,...,pm)(x1, x2, . . . , xn) ≤
GMSM(m,p1,p2,...,pm)(y1, y2, . . . , yn);

(3) Boundedness. min{ x1, x2, . . . xn} ≤ GMSM(m,p1,p2,...,pm)(x1, x2, . . . xn) ≤ max{ x1, x2, . . . xn}

Definition 5 ([18]). Let xi(i = 1, 2, . . . , n) be the collection of non-negative real numbers and p1, p2, . . . ,
pm ≥ 0. A geometric MSM operator of dimension n is mapping Geo MSM(m,p1,p2,...,pm) : (R+)

n → R+ , and
it is defined as follows:

Geo MSM(m,p1,p2,...,pm)(x1, . . . , xn) =
1

(p1+p2+...+pm)

(
∏

1≤i1<...<im≤n

(
p1xi1 + p2xi2 + . . . + pmxim

)) 1
Cm

n
(11)

where (i1, i2, . . . , im) traverses all the m-tuple combinations of (1, 2, . . . , n), and Cm
n = n!

m!(n−m)! is the
binomial coefficient.

Some desirable properties of the Geo MSM(m,p1,p2,...,pm) operator are as follows:

(1) Idempotency. If x > 0, and xi = x for each i, then Geo MSM(m,p1,p2,...,pm)(x, x, . . . , x) = x;

(2) Monotonicity. If xi ≤ yi for all i, Geo MSM(m,p1,p2,...,pm)(x1, x2 . . . , xn) ≤
Geo MSM(m,p1,p2,...,pm)(y1, y2 . . . , yn);

(3) Boundedness. min{ x1, x2, . . . xn} ≤ Geo MSM(m,p1,p2,...,pm)(x1, x2, . . . xn) ≤ max{ x1, x2, . . . xn} .

3. The 2-tuple Linguistic Dependent Weighted Aggregation Maclaurin Symmetric
Mean Operators

3.1. The 2-tuple Linguistic MSM Operators

Definition 6 ([31]). Let x = {(r1, a1), (r2, a2), . . . , (rn, an)} be a collection of 2-tuple and let p, q > 0. If

2TLMSM(m)((r1, a1), (r2, a2), . . . , (rn, an)) = ∆




∑
1≤i1<...<im≤n

m
∏
j=1

∆−1
(

rij , aij

)
Cm

n


1
m
 (12)

where (i1, i2, . . . , im) traversal all the m-tuple combination of (1, 2, . . . , n), Cm
n = n!

m!(n−m)! is the
binomial coefficient.
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Some desirable properties of the 2TLMSM(m) operator are as follows:

(1) Idempotency. If (ri, ai) = (r, a), for each i, then 2TLMSM(m)((r1, a1), (r2, a2), . . . , (rn, an)) = (r, a);

(2) Monotonicity. If (ri, ai) ≤
(
r′i , a′i

)
, for all i, then 2TLMSM(m)((r1, a1), (r2, a2), . . . , (rn, an)) ≤

2TLMSM(m)
((

r′1, a′1
)
,
(
r′2, a′2

)
, . . . ,

(
r′n, a′n

))
;

(3) Boundedness. min (ri, ai) ≤ 2TLMSM(m)((r1, a1), (r2, a2), . . . , (rn, an)) ≤max (ri, ai);

Definition 7 ([31]). Let x = {(r1, a1), (r2, a2), . . . , (rn, an)} be a collection of 2-tuple and m > 0,
w = (w1, w2, . . . , wn)

T is the weight vector of (ri, ai)(i = 1, 2, . . . , n), the 2-tuple linguistic weighted
MSM operator of dimension n is mapping 2TLWMSM(m)

w : (R+)
n → R+ , and it’s definition is as follows:

2TLWMSM(m)
w ((r1, a1), (r2, a2), . . . , (rn, an)) = ∆




∑
1≤i1<...<im≤n

m
∏
j=1

(
wj∆−1

(
rij , aij

))
Cm

n


1
m
 (13)

where wi shows the significance degree of (ri, ai), satisfying wi > 0(i = 1, 2, . . . , n), and ∑n
i=1 wi = 1,

(i1, i2, . . . , im) traversal all the m-tuple combination of (i = 1, 2, . . . , n), Cm
n = n!

m!(n−m)! is the
binomial coefficient.

Example 1. Let x = {(s6, 0), (s2, 0), (s4, 0), (s5, 0)} be a set of 2-tuple and S = {s0 = extremely bad,
s1 = bad, s2 = slightly bad, s3 = f air, s4 = slightly good, s5 = good, s6 = extremely good}, the
weight vector of each 2-tuple is ω = (0.4, 0.2, 0.3, 0.1)T. Then the following results can be obtained:

2TLWMSM(2)
w ((s6, 0), (s2, 0), (s4, 0), (s5, 0))

= ∆




0.4× 6× 0.2× 2 + 0.4× 6× 0.3× 4 + 0.4× 6× 0.1× 5 + 0.2× 2× 0.3× 4 + 0.2× 2× 0.1× 5+

0.3× 4× 0.1× 5
C2

4


1
2


= ∆(1.0263) = (s1, 0.0263)

Definition 8. Let x = {(r1, a1), (r2, a2), . . . , (rn, an)} be a set of 2-tuple and m > 0, p1, p2, . . . , pm ≥ 0,
w = (w1, w2, . . . , wn)

T is the weight vector of (ri, ai)(i = 1, 2, . . . , n), the 2-tuple linguistic weighted
generalized MSM operator of dimension n is mapping 2TLWGMSM(m)

w : (R+)
n → R+ , and it is defined

as follows:
2TLWGMSM(m,p1,p2,...,pm)

w ((r1, a1), (r2, a2), . . . , (rn, an))

= ∆


 ∑

1≤i1<...<im≤n

m
∏
j=1

(
wj∆−1

(
rij

,aij

))pj

Cm
n


1

p1+p2+...+pm
 (14)

where wi shows the significance degree of (ri, ai), satisfying wi > 0(i = 1, 2, . . . , n), and ∑n
i=1 wi = 1,

(i1, i2, . . . , im) traversal all the m-tuple combination of (i = 1, 2, . . . , n), Cm
n = n!

m!(n−m)! is the
binomial coefficient.

Definition 9. Let x = {(r1, a1), (r2, a2), . . . , (rn, an)} be a set of 2-tuple and m > 0, p1, p2, . . . , pm ≥ 0,
w = (w1, w2, . . . , wn)

T is the weight vector of (ri, ai)(i = 1, 2, . . . , n), the 2-tuple linguistic weighted
geometric MSM operator of dimension n is mapping 2TLWGeo MSM(m)

w : (R+)
n → R+ , and it is defined

as follows:
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2TLWGeo MSM(m,p1,p2,...,pm)(x1, . . . , xn)

= ∆

 1
(p1+p2+...+pm)

(
∏

1≤i1<...<im≤n

( (
p1∆−1(ri1 , ai1

))wi1 +
(

p2∆−1(ri2 , ai2
))wi2

+ . . . +
(

pm∆−1(rim , aim)
)win

)) 1
Cm

n

 (15)

where wi shows the significance degree of (ri, ai), satisfying wi > 0(i = 1, 2, . . . , n), and ∑n
i=1 wi = 1,

(i1, i2, . . . , im) traversal all the m-tuple combination of (i = 1, 2, . . . , n), Cm
n = n!

m!(n−m)! is the
binomial coefficient.

3.2. The 2-tuple Linguistic Dependent Weighted Aggregation Maclaurin Symmetric Mean Operators

Definition 10 ([22]). Let x = {(r1, a1), (r2, a2), . . . , (rn, an)} be a set of 2-tuples, the 2-tuple arithmetic
mean can be obtained by following formula:

(r, a) = ∆

(
1
n

n

∑
j=1

∆−1(rj, aj
))

, r ∈ S, a ∈ [−0.5, 0.5) (16)

Definition 11 ([22]). Let (ri, ai) and
(
rj, aj

)
be two 2-tuple linguistic variables, and the definition of the

distance between (ri, ai) and
(
rj, aj

)
are as follows:

d
(
(ri, ai),

(
rj, aj

))
=

∣∣∆−1(ri, ai)− ∆−1(rj, aj
)∣∣

l
(17)

Definition 12 ([22,23]). Let x = {(r1, a1), (r2, a2), . . . , (rn, an)} be a collection of 2-tuples, and the arithmetic
mean of 2-tuples is represented by (r, a), then we would obtain the degree of similarity between the jth largest
2-tuples linguistic variables

(
rj, aj

)
and the mean (r, a), as follows.

sim((rπ(j), aπ(j)), (r, a)) = 1− d((rπ(j),aπ(j)),(r,a))
∑n

j=1 d((rπ(j),aπ(j)),(r,a))
(18)

where (π(1), π(2), . . . , π(n)) is a permutation of (1, 2, . . . , n), such that
(

rπ(j−1), aπ(j−1)

)
≥
(

rπ(j), aπ(j)

)
for all j = 2, . . . , n.

In the cases of the real-life decision making, n different individuals would provide n preference
values in the form of the 2-tuple (r1, a1), (r2, a2), . . . , (rn, an). There is no doubt that assigning different
weights will affect the final decision of the group [32]. However, for some object that decision-makers
prefer or hate, some decision-making experts can assign too good or too bad preference values. Under
the circumstances, “false” or “biased” opinions would be assigned lower weight. In other words, the
greater the weight of the preference value (argument), the closer it is to the intermediate value [23]. So,
based on (18), the weights could be defined as follows:

wj =
sim
(
(rπ(j), aπ(j)), (r, a)

)
∑n

j=1 sim
(
(rπ(j), aπ(j)), (r, a)

) , j = 1, 2, . . . , n (19)

where wj ≥ 0, j = 1, 2, . . . , n and ∑n
j=1 wj = 1.

Particularly, if (rπ(j), aπ(j)) = (r, a), for all j = 1, 2, . . . , n, then by (19), wj =
1
n can be obtained for

all j = 1, 2, . . . , n. In addition, the following results can be obtained:

(1) Let x = {(r1, a1), (r2, a2), . . . , (rn, an)} be a collection of 2-tuples, and let (r, a) be the
arithmetic mean of 2-tuples, (π(1), π(2), . . . , π(n)) is a permutation of (1, 2, . . . , n), such
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that
(

rπ(j−1), aπ(j−1)

)
≥
(

rπ(j), aπ(j)

)
for all j = 2, . . . , n. If sim

(
(rπ(i), aπ(i)), (r, a)

)
≥

sim
(
(rπ(j), aπ(j)), (r, a)

)
, then wi ≥ wj.

Definition 13. Let x = {(r1, a1), (r2, a2), . . . , (rn, an)} be a collection of 2-tuple and m > 0, the 2-tuple
linguistic dependent weighted MSM operator of dimension n is mapping 2TLDWMSM(m)

w : (R+)
n → R+ ,

and it is defined as follows:

2TLDWMSM(m)
w ((r1, a1), (r2, a2), . . . , (rn, an)) = ∆




∑
1≤i1<...<im≤n

m
∏
j=1

(
wij ∆

−1
(

rij , aij

))
Cm

n


1
m
 (20)

where w = (w1, w2, . . . , wn)
T is a weight vector which is defined by formula (19); (π(1), π(2), . . . , π(n)) is a

permutation of (1, 2, . . . , n).

By formula (19), we can describe formula (20) as follows.

2TLDWMSM(m)((r1, a1), (r2, a2), . . . , (rn, an))

= ∆




∑

1≤i1<...<im≤n

m
∏
j=1

 sim
(
(rij

,aij
),(r,a)

)
∆−1

(
rij

,aij

)
∑n

j=1 sim
(
(rij

,aij
),(r,a)

)


Cm
n



1
m


(21)

Example 2. Let x = {(s6, 0), (s2, 0), (s4, 0), (s5, 0)} be a set of 2-tuple and S = {s0 = very bad, s1 = bad,
s2 = slightly bad, s3 = f air, s4 = slightly good, s5 = good, s6 = very good} , then the following
results can be obtained:

(r, a) = ∆
(

1
4 ∑4

j=1 ∆−1(rj, aj
))

= 6+2+4+5
4 = ∆(4.25) = (s4, 0.25)

d((s6, 0), (s4, 0.25)) = |6−4.25|
7 = 0.25, d((s2, 0), (s4, 0.25)) = |2−4.25|

7 = 0.3214,

d((s4, 0), (s4, 0.25)) = |4−4.25|
7 = 0.0357, d((s5, 0), (s4, 0.25)) = |5−4.25|

7 = 0.1071

sim((s6, 0), (s4, 0.25)) = 1− 0.25
0.25+0.3214+0.0357+0.1071 = 0.65 ,

sim((s2, 0), (s4, 0.25)) = 1− 0.3214
0.25+0.3214+0.0357+0.1071 = 0.55 ,

sim((s4, 0), (s4, 0.25)) = 1− 0.0357
0.25+0.3214+0.0357+0.1071 = 0.95 ,

sim((s5, 0), (s4, 0.25)) = 1− 0.1071
0.25+0.3214+0.0357+0.1071 = 0.85 ,

w1 = 0.65
3 = 0.2167, w2 = 0.55

3 = 0.1833, w3 = 0.95
3 = 0.3167, w4 = 0.85

3 = 0.2833,

2TLDWMSM(2)
w ((s6, 0), (s2, 0), (s4, 0), (s5, 0))

= ∆




0.2167× 6× 0.1833× 2 + 0.2167× 6× 0.3167× 4 + 0.2167× 6× 0.2833× 5+
0.1833× 2× 0.3167× 4 + 0.1833× 2× 0.2833× 5 + 0.3167× 4× 0.2833× 5

C2
4


1
2


= ∆(1.1239) = (s1, 0.1239)

There is a desirable property of the 2TLDWMSM(m) operator as follows:
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(1) Commutativity. Let {(r1, a1)
′ , (r2, a2)

′ , . . . , (rn, an)
′ } be any premutation of

{(r1, a1), (r2, a2), . . . , (rn, an)}, then 2TLDWMSM(m)((r1, a1)
′ , (r2, a2)

′ , . . . , (rn, an)
′ ) =

2TLDWMSM(m)((r1, a1), (r2, a2), . . . , (rn, an))

Proof. Let

2TLDWMSM(m)((r1, a1), (r2, a2), . . . , (rn, an)) = ∆




∑
1≤i1<...<im≤n

m
∏
j=1

(
sim
(
(rij ,aij ),(r,a)

)
∆−1

(
rij ,aij

)
∑n

j=1 sim
(
(rij ,aij ),(r,a)

)
)

Cm
n


1
m


2TLDWMSM(m)((r1, a1)
′ , (r2, a2)

′ , . . . , (rn, an)
′ ) = ∆




∑
1≤i1<...<im≤n

m
∏
j=1

(
sim
(
(rij ,aij ),(r,a)

)
∆−1

(
rij ,aij

)
∑n

j=1 sim
(
(rij ,aij ),(r,a)

)
)

Cm
n


1
m


Since {(r1, a1)
′ , (r2, a2)

′ , . . . , (rn, an)
′ } is any premutation of {(r1, a1), (r2, a2), . . . , (rn, an)},we can

get sim
(
(rij , aij)

′ , (r, a)
)

∆−1
(

rij , aij

)′
= sim

(
(rij , aij), (r, a)

)
∆−1

(
rij , aij

)
and

sim
(
(rij , aij)

′ , (r, a)
)
= sim

(
(rij , aij), (r, a)

)
Therefore, 2TLDWMSM(m)((r1, a1)

′ , (r2, a2)
′ , . . . , (rn, an)

′ ) = 2TLDWMSM(m)

((r1, a1), (r2, a2), . . . , (rn, an)). �

Definition 14. Let x = {(r1, a1), (r2, a2), . . . , (rn, an)} be a collection of 2-tuple and m > 0, p1, p2, . . . ,
pm ≥ 0, the 2-tuple linguistic dependent weighted generalized MSM operator of dimension n is
mapping 2TLDWGMSM(m)

w : (R+)
n → R+ , and the definition is as follows:

2TLDWGMSM(m,p1,p2,...,pn)
w ((r1, a1), (r2, a2), . . . , (rn, an))

= ∆


 ∑

1≤i1<...<im≤n

m
∏
j=1

(
wij

∆−1
(

rij
,aij

))pj

Cm
n


1

p1+p2+...+pm
 (22)

where w = (w1, w2, . . . , wn)
T is a weight vector which is defined by formula (19); (π(1), π(2), . . . , π(n)) is a

permutation of (1, 2, . . . , n).

By formula (19), we can describe formula (22) as follows:

2TLDWGMSM(m,p1,p2,...,pn)((r1, a1), (r2, a2), . . . , (rn, an))

= ∆




∑

1≤i1<...<im≤n

m
∏
j=1

 sim
(
(rij

,aij
),(r,a)

)
∆−1

(
rij

,aij

)
∑n

j=1 sim
(
(rij

,aij
),(r,a)

)


pj

Cm
n



1
p1+p2+...+pm


(23)

There is a desirable property of the 2TLDWGMSM(m) operator as follows:

(1) Commutativity. Let {(r1, a1)
′ , (r2, a2)

′ , . . . , (rn, an)
′ } be any premutation of

{(r1, a1), (r2, a2), . . . , (rn, an)}, then 2TLDWGMSM(m)((r1, a1)
′ , (r2, a2)

′ , . . . , (rn, an)
′ ) =

2TLDWGMSM(m)((r1, a1), (r2, a2), . . . , (rn, an)).
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Because this property is analogous to the property of 2TLDWMSM(m), the proof is omitted here.

Definition 15. Let x = {(r1, a1), (r2, a2), . . . , (rn, an)} be a collection of 2-tuple and m > 0, p1, p2, . . . ,
pm ≥ 0, the 2-tuple linguistic dependent weighted geometric Maclaurin symmetric mean operator of dimension
n is mapping 2TLDWGeo MSM(m)

w : (R+)
n → R+ , and it is defined as follows:

2TLDWGeo MSMw
(m,p1,p2,...,pm)(x1, . . . , xn)

= ∆

 1
(p1+p2+...+pm)

(
∏

1≤i1<...<im≤n

( (
p1∆−1(ri1 , ai1

))wi1 +
(

p2∆−1(ri2 , ai2
))wi2

+ . . . +
(

pm∆−1(rim , aim)
)win

)) 1
Cm

n

 (24)

where w = (w1, w2, . . . , wn)
T is a weight vector which is defined by formula (19); (π(1), π(2), . . . , π(n)) is a

permutation of (1, 2, . . . , n).

By formula (19), we can describe formula (24) as follows:

2TLDWGeo MSMw
(m,p1,p2,...,pm)(x1, . . . , xn)

= ∆

 1
(p1+...+pm)

 ∏
1≤i1<...<im≤n

 (
p1∆−1(ri1 , ai1

)) sim((ri1
,ai1

),(r,a))

∑n
j=1 sim((rij

,aij
),(r,a))

+ . . . +
(

pm∆−1(rim , aim)
) sim((ri1

,ai1
),(r,a))

∑n
j=1 sim((rij

,aij
),(r,a))




1
Cm

n

 (25)

There is a desirable property of the 2TLDWGeo MSM(m) operator as follows:

(1) Commutativity. Let {(r1, a1)
′ , (r2, a2)

′ , . . . , (rn, an)
′ } be any premutation of

{(r1, a1), (r2, a2), . . . , (rn, an)}, then 2TLDWGeo MSM(m)((r1, a1)
′ , (r2, a2)

′ , . . . , (rn, an)
′ ) =

2TLDWGeo MSM(m)((r1, a1), (r2, a2), . . . , (rn, an)). Because this property is analogous to the
property of 2TLDWMSM(m), the proof is omitted here.

4. MAGDM Based on 2TLDWMSM Operator or 2TLDWGMSM Operator or
2TLDWGeoMSM Operator

In this section, we would introduce methods based on 2TLDWMSM operator, 2TLDWGMSM
operator and 2TLDWGeoMSM operator, which can deal with the MAGDM problems, in which
the weights are in real numbers and the attribute preference values take the form of 2-tuple
linguistic variables.

Let A = {A1, A2, . . . , Am} be a discrete set of alternatives, C = {C1, C2, . . . , Cn} be the set of
attributes, D =

{
D1, D2, . . . , Dp

}
be the set of decision makers and ω = {ω1, ω2, . . . , ωn} be the

weighting vector of the attributes Cj(j = 1, 2, . . . , n), where ωj ∈ [0, 1], ∑n
j=1 ωj = 1. Decision maker

Dk would provide an attribute value xk
ij

for the alternative Ai ∈ A about the attribute Cj ∈ C, and

it is in the form of linguistic variable xk
ij
∈ S. All attribute values xk

ij
constitute the decision matrix

Xk =
[

xk
ij

]
m×n

. Finally, sorting the options.

Next, we employ the 2TLDWMSM, the 2TLDWGMSM and the 2TLDWGeoMSM operator to
handle MAGDM problems in which the attribute values are in 2-tuple.

The main steps of the method are shown below:

Step 1. Normalization

In general, MADM problem has two attribute types: cost-type (we hope that the value is as
small as possible.) and benefit-type (we hope that the value is as large as possible.). For the sake
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of maintaining consistency of the types, we need to normalize the matrix. Xk =
[

xk
ij

]
m×n

will be

converted into the matrix Rk =
[
rk

ij

]
m×n

, where

(1) If the type of Cj is beneficial: rk
ij
= xk

ij

(2) If the type of Cj is cost: rk
ij
= Neg

(
xk

ij

)
Step 2. Converting initial decision matrix Rk =

[
rk

ij

]
m×n

into R =
[(

rk
ij

, 0
)]

m×n
.

Step 3. Aggregating all of the decision matrixes R =
[(

rk
ij

, 0
)]

m×n
(k = 1, 2, . . . , p) into a

decision matrix R =
[(

rij , aij

)]
m×n

using 2TLDWMSM operator or 2TLDWGMSM operator or

2TLDWGeoMSM operator.

Step 4. Calculating each alternative’s comprehensive evaluation value (ri, ai) by the 2TLDWMSM
operator or 2TLDWGMSM operator or 2TLDWGeoMSM operator.

Step 5. Ranking the 2-tuple (ri, ai)(i = 1, 2, . . . , m) in the light of the comparing of 2-tuple in Section 2.1.

Step 6. Sorting alternatives A = {A1, A2, . . . , Am} and select the best choice with the highest
performance value.

Step 7. End.

5. Illustrative Example

5.1. Data and Backdrop

In this section, we adapted an instance from [33] to calculate and compare the methods proposed
in this paper. Firstly, we would introduce the backdrop of the MAGDM: An investment company
intends to have an investment in an industry to get the best benefit. There are four options: (1) A1

represents an automotive industry; (2) A2 represents a food industry; (3) A3 represents a computer
industry; (4) A4 represents an arms industry. The investment company will consider the following
three attributes when making decisions: (1) C1 represents the risk index; (2) C2 represents the growth
index; (3) C3 represents the social-political impact index. The three decision makers evaluated the
four choices Ai(i = 1, 2, 3, 4) based on the above three attributes Ci(i = 1, 2, 3). The decision matrices
Xk =

[
xk

ij

]
4×3

are listed in Tables 1–3, where xij ∈ S, S = (s0, s1, s2, s3, s4, s5, s6, s7, s8,) = (particularly

bad, very bad, bad, slightly bad, fair, slightly good, good, very good, extremely good).

Table 1. The attribute values evaluated by D1.

Options\Attributes C1 C2 C3

A1 s5 s7 s7
A2 s6 s4 s5
A3 s3 s4 s6
A4 s6 s4 s6

Table 2. The attribute values evaluated by D2.

Options\Attributes C1 C2 C3

A1 s4 s5 s4
A2 s7 s6 s5
A3 s4 s5 s6
A4 s5 s4 s5
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Table 3. The attribute values evaluated by D3.

Options\Attributes C1 C2 C3

A1 s3 s5 s4
A2 s7 s6 s5
A3 s5 s4 s7
A4 s7 s6 s5

5.2. The Method Based on the 2TLDWMSM Operator

In general, we set m = 2, according to Section 4 and the procedures of the method are as follows:

Step 1. Normalizing the matrices

Since values of each attribute are benefit-type, we have Rk =
[
rk

ij

]
m×n

=
[

xk
ij

]
m×n

.

Step 2. Converting initial linguistic information decision matrices Rk =
[
rk

ij

]
m×n

given in Tables 1–3

into matrices Rk =
[(

rk
ij

, 0
)]

m×n
which are given in Tables 4–6.

Table 4. 2-tuple linguistic decision matrix R1.

Options\Attributes C1 C2 C3

A1 (s5, 0) (s7, 0) (s7, 0)
A2 (s6, 0) (s4, 0) (s5, 0)
A3 (s3, 0) (s4, 0) (s6, 0)
A4 (s6, 0) (s4, 0) (s6, 0)

Table 5. 2-tuple linguistic decision matrix R2.

Options\Attributes C1 C2 C3

A1 (s4, 0) (s5, 0) (s4, 0)
A2 (s7, 0) (s6, 0) (s5, 0)
A3 (s4, 0) (s5, 0) (s6, 0)
A4 (s5, 0) (s4, 0) (s5, 0)

Table 6. 2-tuple linguistic decision matrix R3.

Options\Attributes C1 C2 C3

A1 (s3, 0) (s5, 0) (s4, 0)
A2 (s7, 0) (s6, 0) (s5, 0)
A3 (s5, 0) (s4, 0) (s7, 0)
A4 (s7, 0) (s6, 0) (s5, 0)

Step 3. Aggregating all the decision matrixes Rk =
[(

rk
ij

, 0
)]

4×3
(k = 1,2,3) obtained in step 2 to a

decision matrix R =
[(

rij
, aij

)]
4×3

by 2TLDWMSM, then following matrix can be obtained:

R


(s1, 0.2829) (s2,−0.1671) (s2,−0.4189)
(s2, 0.2185) (s2,−0.2146) (s2,−0.3333)
(s1, 0.2829) (s1, 0.4142) (s2, 0.0767)
(s2,−0.0689) (s1, 0.5) (s2,−0.2545)
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Step 4. Calculating each alternative’s comprehensive evaluation value ri = (ri, ai) by 2TLDWMSM,
we would get following result:

r1 = (s1,−0.4923), r2 = (s1,−0.3854), r3 = (s1,−0.4899), r4 = (s1,−0.4378)

Step 5. Ranking the 2-tuple ri = (ri, ai)(i = 1, 2, 3, 4), the following sorted result can be obtained:

r2 > r4 > r3 > r1

Step 6. Ranking all the alternatives A = {A1, A2, A3, A4} in conformity to ri, the sorted results are
shown below:

A2 > A4 > A3 > A1

Thus, the best one is A2.

5.3. The Method Based on the 2TLDWGMSM Operator

When m = 2, p1 = 1, p2 = 2 according to Section 4, the procedures of the method are as follows:

Step 1. Normalizing the matrices

Since values of each attribute are benefit-type, we have Rk =
[
rk

ij

]
m×n

=
[

xk
ij

]
m×n

.

Step 2. Converting initial linguistic information decision matrices Rk =
[
rk

ij

]
m×n

given in Tables 1–3

into matrices Rk =
[(

rk
ij

, 0
)]

m×n
which are displayed in Tables 4–6.

Step 3. Aggregating all decision matrixes Rk =
[(

rk
ij

, 0
)]

4×3
(k = 1,2,3) obtained in step 2 to the

decision matrix R =
[(

rij
, aij

)]
4×3

by 2TLDWGMSM, then following matrix can be obtained:

R


(s1, 0.3448) (s2,−0.1667) (s2,−0.4167)
(s2, 0.2535) (s2,−0.1595) (s2,−0.3333)
(s1, 0.3154) (s1, 0.4168) (s2, 0.0837)
(s2,−0.0074) (s1, 0.5) (s2,−0.2498)


Step 4. Calculating each alternative’s comprehensive evaluation value ri = (ri, ai) by 2TLDWGMSM,
we would get following result:

r1 = (s1,−0.4702), r2 = (s1,−0.3701), r3 = (s1,−0.484), r4 = (s1,−0.4223)

Step 5. Ranking the 2-tuple ri = (ri, ai)(i = 1, 2, 3, 4), the following sorted result can be obtained:

r2 > r4 > r1 > r3

Step 6. Ranking all the alternatives A = {A1, A2, A3, A4} in conformity to ri, the sorted results are
shown below:

A2 > A4 > A3 > A1

Thus, the best one is A2.

5.4. The Method Based on the 2TLDWGeoMSM Operator

When m = 2, p1 = 1, p2 = 2, according to Section 4, the procedures of the method are as follows:

Step 1. Normalizing the matrices
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Since values of each attribute are benefit-type, we have Rk =
[
rk

ij

]
m×n

=
[

xk
ij

]
m×n

.

Step 2. Converting linguistic decision information matrices Rk =
[
rk

ij

]
m×n

given in Tables 1–3 into

matrices Rk =
[(

rk
ij

, 0
)]

m×n
which are displayed in Tables 4–6.

Step 3. Aggregating all decision matrixes (k = 1,2,3) obtained in step 2 to the decision matrix
R =

[(
rij

, aij

)]
4×3

by 2TLDWGeoMSM, then following matrix can be obtained:

R


(s1, 0.2089) (s1, 0.3276) (s1,−0.2523)
(s2,−0.4313) (s1, 0.3383) (s1, 0.2881)
(s1, 0.2108) (s1, 0.2209) (s1,−0.2253)
(s2,−4415) (s1, 0.2383) (s1, 0.3122)


Step 4. Calculating each alternative’s comprehensive evaluation value ri = (ri, ai) by 2TLDWGeoMSM,
we would get following result:

r1 = (s1,−0.2179), r2 = (s1,−0.1622), r3 = (s1,−0.2235), r4 = (s1,−0.168)

Step 5. Ranking the 2-tuple ri = (ri, ai)(i = 1, 2, 3, 4), the following sorted result can be obtained:

r2 > r4 > r1 > r3

Step 6. Ranking all the alternatives A = {A1, A2, A3, A4} in conformity to ri, the sorted results are
shown below:

A2 > A4 > A1 > A3

Thus, the best one is A2.

5.5. Comparative Analysis and Discussion

(1) According to the consequences in Sections 5.2–5.4 revealed in Table 7, we first compare our
proposed three methods with two methods proposed by Liu [27] and Yager [34]. This comparison is
revealed in Table 8. As we have seen in Table 8, same ordering of the alternatives would be produced
by using 2TLDWGMSM operator, 2TLDWGeoMSM operator and 2TLBM operator in [34]. However,
using 2TLDWMSM operator and 2TLHM operators in [27], another ordering would be obtained.
It can be interpreted, both the Bonferroni mean (BM) operator and the MSM operator can capture the
interrelationship between input arguments. Although the HM operator also takes the relationships
between each attribute into account, it would ignore the correlations between the Ci and Cj when i
is less than j. Therefore, the comparisons in Tables 7 and 8 indicated that the developed MAGDM
methods in this paper are useful and valid.

Table 7. Aggregation results.

Proposed Operator m p1 p2 Ranking

2TLDWMSM(m) 2 - - A2 > A4 > A3 > A1

2TLDWGMSM(m,p1,p2) 2 1 2 A2 > A4 > A1 > A3

2TLDWGeo MSM(m,p1,p2) 2 1 2 A2 > A4 > A1 > A3
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Table 8. Comparison of different methods.

Methods Operator Ranking

Methods in this paper 2TLDWMSM(m) m = 2 A2 > A4 > A3 > A1
Methods in this paper 2TLDWGMSM(m,p1,p2) p1 = 1 p2 = 2 A2 > A4 > A1 > A3
Methods in this paper 2TLDWGeo MSM(m,p1,p2) p1 = 1 p2 = 2 A2 > A4 > A1 > A3

Method in [27] 2TLHM(m,p1,p2) p1 = 1 p2 = 2 A2 > A4 > A3 > A1
Method in [34] 2TLBM(m,p1,p2) p1 = 1 p2 = 2 A2 > A4 > A1 > A3

(2) Furthermore, a comparison of results is conducted to discuss the impact of the choice of
parameters on the ordering.

Firstly, there are the comparisons for 2TLDWGMSM operator and 2TLDWGeoMSM operator with
different values of p1 and p2 when m = 2, which are displayed in Table 9. The data in Table 9 indicate the
best option is A2 and the worst option is A1 or A3 when the operator is selected. With respect to Table 9,
we can discover that when m = 2, we can get the same ranking results. Except when p1 = p2 = 0.5, the
result of ranking by 2TLDWGMSM is the same as the 2TLDWMSM when m = 2. Therefore, the results
in Table 9 prove the stability of the proposed method.

Table 9. Comparison results when m = 2.

p1 p2 Ranking by 2TLDWGMSM(m,p1,p2) Ranking by 2TLDWGeoMSM(m,p1,p2)

0.5 0.5 A2 > A4 > A3 > A1 A2 > A4 > A1 > A3
1 0 A2 > A4 > A1 > A3 A2 > A4 > A1 > A3
0 1 A2 > A4 > A1 > A3 A2 > A4 > A1 > A3
1 2 A2 > A4 > A1 > A3 A2 > A4 > A1 > A3
1 3 A2 > A4 > A1 > A3 A2 > A4 > A1 > A3
2 1 A2 > A4 > A1 > A3 A2 > A4 > A1 > A3
2 2 A2 > A4 > A1 > A3 A2 > A4 > A1 > A3
2 3 A2 > A4 > A1 > A3 A2 > A4 > A1 > A3
3 1 A2 > A4 > A1 > A3 A2 > A4 > A1 > A3
3 2 A2 > A4 > A1 > A3 A2 > A4 > A1 > A3
3 3 A2 > A4 > A1 > A3 A2 > A4 > A1 > A3
4 4 A2 > A4 > A1 > A3 A2 > A4 > A1 > A3
5 5 A2 > A4 > A1 > A3 A2 > A4 > A1 > A3

Next, there are the comparisons for the 2TLDWGMSM operator and the 2TLDWGeoMSM operator
with different values of p1, p2 and p3 when m = 3, which are displayed in Table 10. When p1 = 0 or
p2 = 0 or p3 = 0, the impact of one of the attributes is not considered. So, the ranking results is different
from others when p1, p2 and p3 are not equal to zero. In addition, when the values of p1, p2, and p3 are
equal, we can get the ranking by 2TLDWGMSM is the same as the ranking by 2TLDWMSM. At the
same time, the sorting results obtained by the 2TLDWGeoMSM are also the same. Furthermore, when
two parameters are set the unchanged and equal value, the other parameter is incremented and not
equal to the others, we can get two kinds of results based on the 2TLDWGMSM operator and the
2TLDWGeoMSM operator, the ordering in each class is the same. Therefore, the organizations can
choose appropriate parameters and operators according to their interests and practical needs.
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Table 10. Comparison results when m = 2.

p1 p2 p3 Ranking by 2TLDWGMSM(m,p1,p2) Ranking by 2TLDWGeoMSM(m,p1,p2)

0.5 0.5 0.5 A2 > A4 > A3 > A1 A2 > A4 > A1 > A3
1 1 0 A4 > A2 > A1 > A3 A4 > A2 > A1 > A3
0 1 0 A2 > A4 > A1 > A3 A2 > A1 > A4 > A3
0 0 1 A1 > A4 > A3 > A2 A1 > A3 > A4 > A2
1 1 2 A2 > A4 > A1 > A3 A1 > A4 > A2 > A3
1 1 3 A4 > A2 > A1 > A3 A1 > A4 > A2 > A3
1 1 4 A4 > A1 > A2 > A3 A1 > A4 > A3 > A2
1 1 5 A4 > A1 > A2 > A3 A1 > A3 > A4 > A2
1 2 1 A2 > A3 > A1 > A4 A2 > A4 > A1 > A3
1 3 1 A2 > A1 > A3 > A4 A2 > A1 > A3 > A4
1 4 1 A2 > A4 > A1 > A3 A2 > A1 > A4 > A3
1 5 1 A2 > A4 > A1 > A3 A2 > A1 > A4 > A3
2 1 1 A4 > A2 > A1 > A3 A4 > A3 > A2 > A1
3 1 1 A4 > A2 > A1 > A3 A4 > A3 > A2 > A1
4 1 1 A4 > A2 > A1 > A3 A4 > A3 > A2 > A1
5 1 1 A4 > A2 > A1 > A3 A2 > A4 > A3 > A1
1 1 1 A2 > A4 > A3 > A1 A2 > A4 > A1 > A3
2 2 2 A2 > A4 > A3 > A1 A2 > A4 > A1 > A3
3 3 3 A2 > A4 > A3 > A1 A2 > A4 > A3 > A1
4 4 4 A2 > A4 > A3 > A1 A2 > A4 > A3 > A1

(3) Compared with other similar methods in a real scenario. Aiming at the problem of
the large amount of information in modern multi-criterion group decision-making environment,
Morente-Molinera et al. [35,36] proposed a method of using fuzzy ontologies: Experts determine the
importance of each criteria and use fuzzy ontology to calculate the alternatives ranking automatically.
In another method, Bagga et al. [37] calculated a Spearman’s Rank Correlation Coefficient for different
MCDM methods to show the least deviation in the MCDM methods. Shang [38] investigated resilient
multiscale coordination algorithms which could withstand the compromise of a subset of nodes in
directed networks. Furthermore, Shang [39] demonstrated how to provide resilience against such
non-cooperative behaviors in opinion dynamics and established varied necessary and sufficient
conditions for the hybrid opinion network to reach consensus in mean in the presence of globally and
locally bounded non-rational agents based on a filtering strategy which removes some fixed number
of opinion values. Unlike above methods, the method proposed in this paper presents a new solution
from the aspect of decision operators. In this paper, the computational objects of operators take the form
of 2-tuple, that is more comfortable for decision-maker when they provide the required information.
In addition, the operators proposed in the paper can not only emphasize the relationship between any
two attributes but also mitigate the unequitable parameters’ impact on the overall outcome.

From the above comparison, it is important to select approximate parameters in the processes of
solving the problem. In addition, it is obvious that methods proposed in this paper are advisable and
feasible for MAGDM. Furthermore, they are more reliable than other existing methods.

6. Conclusions

In this paper, in order to deal with the MAGDM problems in which the attribute values are
in 2-tuple linguistic information, some new operators and methods are studied. For the sake of
solving the problem well, we proposed three operators based on dependent aggregation operators
and MSM operators: The 2TLDWMSM, 2TLDWGMSM and 2TLDWGeoMSM operator, respectively.
Different from other operators, MSM operators clarify the correlation among multiple input parameter
by multiplication between ∆−1(sij , aij) and ∆−1(sik , aik )(j 6= k) in the formula when i = 1, 2, . . . , n.
Beyond that, the common of the above operators are the weights of each attribute value merely rely on
the integrated 2-tuple linguistic parameters and they could mitigate the unequitable parameters’ impact
on the overall outcome in which those “wrong” and “prejudiced” parameters are distributed with low
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weights. Then a method for the MAGDM with 2-tuples linguistic information based on developed
operators are developed. In the end, there is an illustrative instance to describe the procedures of the
studied methods.

In the future, we would continue investigating and use our developed operators to address some
practical decision-making problems, such as business investment and environmental evaluation and
so on. In addition, in some special cases, 2-tuple linguistic information is not enough to express the
fuzziness of human thought and the uncertainty of objects. Therefore, with respect to future research,
we would discuss the effect of different operational laws on the final sort and extend our research from
the MAGDM in 2-tuple linguistic information to picture fuzzy sets.
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