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Abstract: The conventional dynamic programming-based track-before-detect (DP-TBD) methods
are usually intractable in multi-target scenarios. The adjacent targets may interfere with each other,
and the computational complexity is increased with the number of targets. In this paper, a DP-TBD
method using parallel computing (PC-DP-TBD) is proposed to solve the above problems. The search
region of the proposed PC-DP-TBD is divided into several parts according to the possible target
movement direction. The energy integration is carried out independently and parallel in each part.
This contributes to reducing the computational complexity in each part, since the divided search
region is smaller than the whole one. In addition, the target energy can only be integrated adequately
in the part in which the search direction matches the target movement. This is beneficial to improve
the ability to detect the targets with various movement directions in different parts with different
search directions. The solution to the problem of the adjacent targets interfering with each other is
discussed. The procedure of the parallel computing in the proposed PC-DP-TBD is presented in
detail. Simulations are conducted to verify the superiority of the proposed PC-DP-TBD in terms of
detection probability and computational complexity.

Keywords: parallel computing; track-before-detect; dynamic programming; weak target;
computational complexity

1. Introduction

Weak target detection and tracking is one of the difficult problems in modern radar systems.
A practical sensor usually provides a data image, wherein each pixel corresponds to the received power
in a particular spatial location (e.g., range bins and azimuth beams). The common approaches apply
a threshold to the data, and to treat those cells that exceed the threshold as point measurements,
interpolation methods are used to improve accuracy generally. This is acceptable when the
signal-to-noise ratio (SNR) is high. However, military targets like aircraft and warships usually
have lower SNR due to their low radar-cross-section (RCS) and complex noise environments. For low
SNR targets, the target echo intensity is too low to exceed the threshold in a procedure of single-frame
detection, which has a miserable influence on the target tracking since the conventional tracking
procedures are usually based on the detected points. The threshold must be low enough to obtain
a sufficient probability of target detection. However, a low threshold also results in a high rate of
false detections, which leads the tracker to form false tracks. To implement weak target detection
and tracking, a more robust technique is proposed, i.e., the track-before-detect (TBD) technique [1].
It can achieve a superior detection performance for the low SNR targets by jointly processing several
consecutive frames of raw data, which is unthresholded. TBD avoids the requirement for the direct
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measurement-to-track association; it combines the target detection and estimation processes, which are
usually sequentially applied to sensor data in a conventional system, and the association procedure is
embedded in the TBD framework.

Existing TBD techniques include dynamic programming-based TBD (DP-TBD) [2–4],
particle filtering-based TBD (PF-TBD) [5–7], Hough transform-based TBD (HT-TBD) [8,9], and so
on. The HT-TBD technique extracts the characteristic parameters of the target signal in the parameter
space by applying the Hough transform. It is naturally not suitable for non-linear motion targets, so few
research works have been devoted to HT-TBD on radar systems, especially multi-target detection
and tracking. In recent years, PF-TBD and DP-TBD have become some of the hot research directions,
but they both face the problem of large computational complexity. Particle filtering is a method
for finding the suboptimal solutions of Bayesian estimation. Unlike the DP-TBD method, PF-TBD
conducts multi-frame data integration in the recursive filtering process. DP-TBD treats target detection
and tracking as a multi-stage decision problem, finds the optimal decision by the merit function,
and obtains the target state and track simultaneously. Although DP-TBD usually has a poor detection
performance for the maneuvering targets, it is easier to implement in practical applications and more
capable in multi-target scenarios than PF-TBD. Therefore, we mainly focus on the DP-TBD technique
in this paper.

Buzzi proposed a dynamic programming-based TBD algorithm [10] for the multi-target problem
firstly. This method achieved a valid detection and tracking when targets were well separated.
A detailed study was carried out in [11,12] to solve the interference problem when targets are in
proximity. The proposed generalized detection procedure achieved a computational complexity that
was almost linear to the number of targets and more efficient than the exponential computational
complexity resulting from the high-dimensional problem. However, the existing methods still suffer a
heavy computational cost. In this paper, a parallel computing-based dynamic programming algorithm
of track-before-detect referred to as PC-DP-TBD is studied. The purpose of PC-DP-TBD is to reduce
the computational cost and detect proximity targets effectively in the meantime. Two contributions are
made towards this problem. Firstly, by utilizing multi-core processor’s parallel computing capabilities,
the computational burden is divided into several cores. Second, as the process of energy integration
is directional, we use different CPU cores to perform the procedures of the technique proposed
in [11] along different directions and several searching spaces, respectively. Simulation results show
that the proposed PC-DP-TBD algorithm effectively improves the performance on target detection
probability and computational expense.

The rest of this paper is organized as follows. Firstly, mathematical models and a brief description
of the DP-TBD technique are introduced in Section 2. Then, we discuss multi-target TBD problems and
give the PC-DP-TBD method in Section 3. In Section 4, simulation experiments and result analysis for
the proposed PC-DP-TBD method are presented. Finally, some conclusions are given in the last section.

2. Models and Method Statement

2.1. Target Dynamic Model and Measurement Model

Different from the point measurement model of conventional tracking algorithms, TBD requires a
statistical model of the echo signal from each sensor pixel. The measurement at each radar scan is an
image of an arbitrary dimensionality with Nx × Ny pixels indexed by i = 1...Nx in the X axis and the
j = 1...Ny in Y axis, respectively. Recent TBD research [13,14] on radar considers extended targets with
Gaussian or non-Gaussian noise, such as Rayleigh noise [15] and KA-distributed noise [16,17]. Due to
the complexity of the multi-target tracking problem, we assume the point target of Constant Velocity
(CV) model with Gaussian noise for simplicity in this paper. TBD is a batch-processing technique
performed in a discrete state space consisting of K measurement frames from K consecutive scans,
and the target state at the kth measurement frame is given by:

xk = [xk, ẋk, yk, ẏk]
′ , (1)



Symmetry 2019, 11, 29 3 of 13

where xk and yk denote the position of the discrete target state at the kth radar scan on the X-Y plane,
while ẋk and ẏk denote the velocity towards the X and Y axis, respectively. Then, the motion of an
individual target can be modeled in a state space R4 [11]. The state evolution can be written as:

xk = Fxk−1 + uk , (2)

where F is the transition matrix and uk is a Gaussian distributed process noise with covariance Q,
and F and Q are presented respectively by:

F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , (3)

Q = q1


T3/3 T2/2 0 0
T2/2 T 0 0

0 0 T3/3 T2/2
0 0 T2/2 T

 , (4)

where T denotes the fixed frame period of the radar and q1 represents the intensity of the process noise.
Then, the target state transition is assumed to be a first-order Markov model and depicted by:

xk|xk−1 ∼ N(·; Fxk−1, Q) , (5)

where N(x; µ, Ω) denotes the Gaussian probability density evaluated at x with mean µ and covariance
matrix Ω. When the radar is scanning K frames, the estimated target track among a processing batch
of K frames can be written as:

X1:K = (x1, x2, . . . , xK) (6)

As previously demonstrated, the surveillance region depicted by a two-dimensional (2D) plane is
divided into a grid of Nx × Ny resolution cells [1]. Then, the kth measurement frame defined as zk is
an Nx × Ny array whose (i, j)th element zk(i, j) denotes the measurement intensity of the (i, j)th cell at
time k, given by:

zk(i, j) =

{
wk(i, j)

Ak + wk(i, j)
no target in cell (i, j)
target exist in (i, j)

, (7)

where i ∈ (1, 2, · · · , Nx) and j ∈ (1, 2, · · · , Ny). Target signal Ak is a complex random variable
whose amplitude is assumed to be constant for simplicity [18], i.e., A = |Ak| undergoes an
unknown phase assumed to be uniformly distributed over 0 ∼ 2π. wk(i, j) is assumed to be n
independent identically-distributed (IID) complex Gaussian white noise with the mean value of zero.
K measurement frames can be expressed as:

Z1:K = (z1, z2, · · · , zK) (8)

2.2. Basic Dynamic Programming Track-before-Detect (TBD) Algorithm

According to the method proposed in [2], DP-TBD is implemented using the measurement data
Z1:K of the first K frames. The dynamic programming algorithm is an equivalent implementation of
the exhaustive search method. DP-TBD adopts a merit function to search a dim target and the optimal
estimation of the target trajectory in the discrete state spaces. Assuming the merit function of former
k − 1 frames is I(xk−1), then the integration merit function of the state xk corresponding to the kth

frame can be derived by:
I(xk) = zk(xk) + max

xk−1∈Γ(xk)
I(xk−1) (9)
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where Γ(xk) denotes the state transition set consisting of possible states at time k − 1, which is
determined by the position and velocity of the target. The merit function of the initial state is I(x1).
The target state transition process is illustrated in Figure 1, and the state transition set of the target is
well described in [18,19] and will not be repeated here. For all xk ∈ R4, the state transition relationship
between frames is given by:

Φxk (k) = arg max
xk−1∈Γ(xk)

I(xk) (10)

where Φxk (k) is used to store the state transition relation of the integrated merit function between
frames and the initial state Φxk (1) = 0.

Figure 1. Target state transition process illustrated by admissible search regions among successive
scans. The target velocity is assumed to be one cell/frame, and its position in the kth frame is given.
The corresponding transition areas in the k− 1th and k− 2th frames are represented by the shadow cells.

3. Multi-Target Dynamic Programming for Track-before-Detect

3.1. Target Cancellation

The multi-target tracking problem is well studied in [11], and a multi-target track-before-detect
algorithm (MT-DP-TBD) was proposed. Unlike the multi-target tracking model (MTT) proposed in [20],
which is a concatenation of N individual target states, i.e., xk = [x1

k , x2
k , ..., xN

k ], MT-DP-TBD considers
the tracking of an unknown number of targets with the single-target model defined in (1), thereby
avoiding the hypothesis testing of N. The key procedure is known as target cancellation. Its main idea
is selecting the maximum value of {I(xK), xK ∈ R4} that exceeds the threshold Vt; the position of this
value in the Kth integration plane represents where the target is most possible. After determining the
trajectory X̂i

1:K of the most possible target i, detach the measurement information related to X̂i
1:K from

the original measurement data Z1:K, then re-run DP procedures to search repeatedly for the maximum
measurement information until the merit function does not exceed the threshold. This method turns
the multi-target dynamic programming problem into the multiple single-target dynamic programming
problem, making the computational dimension lower. At the same time, eliminating the relevant
information of the optimal target solves the merit function interference problem caused by the adjacent
and cross-way targets.

3.2. Parallel Computing-Based DP-TBD

From the analysis of the MT-DP-TBD algorithm [11], it can be concluded that in the process of
cyclical target cancellation, the detection of multiple targets becomes a serial single-target search
process, meaning the execution time of the algorithm is prolonged. Therefore, we propose the
PC-DP-TBD method to detect and track the targets with different motion orientations at the same time,
which achieves superior performance and reduces the time consumption for multi-target tracking
through parallel computing.
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3.2.1. Partition of the Target State Transition Set

Generally, the target states between radar scans have an obvious correlation, which is directly
related to the orientation of the target state transition. Since the target state of the previous frame can
partially determine the target state of the next frame, the target state transition set Γ(xk) can directly
affect the result of DP integration. That is, if Γ(xk) used to perform DP search matches the target motion
orientation, the integration result will be the maximum extent, making it easier to detect the target.

However, due to the fact that the target motion orientation is unknown, as shown in Figure 2,
Γ(xk) is usually assumed to be a discretized state space of the circle area S with the target position as
the center. S is known as the potential target-hidden area of the k− 1th measurement frame, so the
radius of the circle is determined by a predefined maximum allowable target velocity Vmax. In the
rasterized X-Y plane given by zk, we consider that Γ(xk) consists of q ∈ {1, 9, 25, ...} possible states
and the corresponding Vmax(cell/ f rame) ∈ {0, 1, 2, . . . } [18], e.g., q = 9 and Vmax = 1 in Figure 1.

Figure 2. Target state transition area and the corresponding partition adopted in parallel computing
dynamic programming-based track-before-detect (PC-DP-TBD). MT, multi-target.

As shown in Figure 2, the PC-DP-TBD method adopts a partition of the state transition area,
which is given by:

S =
Nc⋃

i=1

Si

s.t. {|Si| = |Sj|; i, j ∈ [1, Nc]} ,

(11)

where each Si corresponds to a target state transition subset Γi(xk). Each Γi(xk) is used by an individual
CPU core to perform DP integration, which means Nc implementations towards Nc target motion
orientations. Thereby, target energy can be well integrated in the DP procedures performed by a typical
implementation with Si that matches target motion orientation.

In order to facilitate the implementation of PC-DP-TBD, the partition of S is even and symmetrical,
as defined in (11). Therefore, the obtained target state transition subsets contain an identical number
of cells, and the neighboring subsets share common boundary cells, which means a target moving
along the boundary of the subset may be detected by two computing cores. Therefore, we adopt a
track fusion procedure as the last step of the PC-DP-TBD method.

3.2.2. Implementation Steps Based on Parallel Computing

Figure 3 shows the schematic diagram of the parallel computing dynamic programming algorithm.
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Figure 3. Schematic diagram of PC-DP-TBD.

By partitioning the transition space Γ(xk) into Nc subsets as previously proposed, Nc implementations
of MT-DP-TBD are performed in Nc computing cores, respectively. Each CPU core results in an
integration data map and backtracks the detected target tracks. Then, the estimated trajectories of all
targets are obtained through the tracks’ fusion procedure. The complete procedures of PC-DP-TBD are
given as follows:

Step 1: According to (11), partition the state transition set Γ(xk) by:

Γ(xk) =
Nc⋃

i=1

Γi(xk)

Γi(xk) = {xk−1 = [xk−1, ẋk−1, yk−1, ẏk−1]
∣∣xk−1 ∈ [xk, xk + δi

x] , yk−1 ∈ [yk, yk + δi
y]}

(12)

where δi
x and δi

y are the numbers of cells contained in Γi(xk) towards the X-axis and Y-axis,
respectively, which are determined by Vmax.

Step 2: Implement MT-DP-TBD in Nc computing cores with Nc transition subset Γi(xk),
respectively. For 1 ≤ i ≤ Nc:

Step 2.1: DP integration: For 1 ≤ k ≤ K and all xk ∈ R4:

Ii(xk) = zk(xk) + max
xk−1∈Γi(xk)

Ii(xk−1) (13)

This procedure is a recursive process of DP-TBD demonstrated in Section 2.2
Step 2.2: Obtain a candidate target state xm

K at the Kth scan:

xm
K = arg max

xK∈R4
Ii(xK)

s.t. Ii(xK) > VDT

(14)

Step 2.3: Target cancellation: Backtrack the trajectory X̂m
1:K by Φxm

K
defined in (10), and detach

the measurement information related to X̂m
1:K from the original measurement data Z1:K,

then go to Step 2.1. Step 2 is a recursive process and ends when Ii(xK) < VDT . Then,
each computing core gets a track collection X̂i = [

(
X̂1

1:K
)i ,
(
X̂2

1:K
)i , . . . ,

(
X̂m

1:K
)i
].

Step 3: Merge the Nc track collections. If the coincidence of every two tracks exceeds 50%, they will
be merged and considered to belong to one target. Then, the final estimation of all tracks is
given as X̂ = [X̂1

1:K, X̂2
1:K, . . . , X̂M

1:K]. This method avoids the trajectories’ repetition caused
by the operation of different transition sets and eliminates the false trajectories generated
due to the spread of target energy.
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4. Simulations and Analysis

In this section, simulations are performed to verify the tracking performance of the PC-DP-TBD
algorithm previously proposed in different scenarios. Comparisons towards MT-DP-TBD are also
carried out in some typical scenarios: two parallel targets and two cross targets.

4.1. Interference of Cross Targets

As shown in Figure 4, here, we assume a scenario with two cross targets in a surveillance region
divided into a 50× 50 grid of cells, 50 cells in the X- and Y-axis, respectively.
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50
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s

Figure 4. Two target tracks with a target SNR of 10 dB; the solid circles represent the position of targets
among K = 6 frames of measurement.

According to (7) and the measurement model demonstrated in Section 2.1, the mean value of
Gaussian white noise in the simulated surveillance is zero, and we assume the variance σ2 = 1 and the
signal rate A2 = 10. The signal to noise ratio (SNR) is denoted as:

SNR (dB) = 10 log
A2

σ2 (15)

The state updating of the target is determined by (5); the time period T between measurements
in the target state transition matrix and the process noise matrix is 1 s, and we use six frames of
measurements for one batch processing. The initial states of two cross targets are x1

1 = [30.8 0.9 13.1 1.0]
and x2

1 = [30.8 1.0 20.1 −1.0], respectively.
The data plane of DP integration result is shown in Figure 5. We can see apparently the energy of

two cross targets clustered together, meaning it is hard to distinguish. MT-DP-TBD is developed to
deal with this case by performing single-target DP search circularly and wiping out the measurement
data of the target once declared to be detected until the integration result does not exceed the detection
threshold. However, MT-DP-TBD is computationally prohibitive due to the repeated procedures of
DP search.
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Figure 5. Merit function integration result of two cross targets.

4.2. Simulation of PC-DP-TBD

As shown in Figure 6, we set up a scenario wherein six numbered targets are arbitrarily located.
The arrows around each track denote target motions. Target 1 and Target 2 are considered a scenario
wherein two adjacent cross targets, Target 4 and Target 5, are close and parallel moving, while Target
3 and Target 6 are mutually isolated and away from each other. The simulations were carried out
with the Parallel Computing Toolbox of MATLAB. The hardware platform was a quad-core computer,
which means NC = 4 in our implementations.
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Trajectories of real targets

Figure 6. Target trajectories and directions in simulation.
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Similar to the previous simulation, the state transition of targets is defined in (5). The time period
T for the transition matrix and process noise matrix was 1 s. The targets were always present in one
batch process of measurement frames K = 6 and SNR = 8 dB. The initial target states were x1

1 = [13.1
1.0 30.8 0.9], x2

1 = [20.1 −1.0 30.8 1.0], x3
1 = [10.1 1.0 10.8 0.9], x4

1 = [30.1 1.0 10.8 0], x5
1 = [30.1 1.0 8.2 0],

x6
1 = [35.1 −0.9 35.8 1.0], respectively. We partitioned the state space of the potential target-hidden

area in the k− 1 frame into four partitions according to (12): δ1
x ∈ [0, M], δ1

y ∈ [−M, 0], δ2
x ∈ [−M, 0],

δ2
y ∈ [−M, 0], δ3

x ∈ [−M, 0], δ3
y ∈ [0, M], δ4

x ∈ [0, M], δ4
y ∈ [0, M], and M = 1.

Figure 7 shows the merit function integration result of one processing batch of the PC-DP-TBD
method, including four data plane sketch of the merit function value obtained from four parallel
implementations of DP integration. It is obvious that the two cross targets are well separated by two
independent CPUs’ processing. The integration value map shown in Figure 7b resulted from the
implementation with state space towards δ2

x ∈ [−M, 0], δ2
y ∈ [−M, 0] having no apparent merit peak

and the others having at least one peak value, respectively. In addition, Figure 7 indicates that there
are peak values in some same positions, because four transition state spaces are not isolated from each
other absolutely; the common boundary may lead to identical tracks, as mentioned in Section 3.2.1.
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Figure 7. This figure shows the DP integration result of one PC-DP-TBD batch process from four
processors respectively. (a) δ1

x, δ1
y ; (b) δ2

x, δ2
y ; (c) δ3

x, δ3
y ; (d) δ4

x, δ4
y .
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After performing track recovering through the repeatedly searching and target cancellation
procedures of MT-DP-TBD, each processing of the CPU cores obtained tracks towards the direction
decided by the corresponding δx and δy. To deduce the whole tracks of all targets, as previously
demonstrated, track fusion was adopted to merge the potential identical tracks from several tracks.
Figure 8 shows the result of the tracks’ fusion procedures.

0 10 20 30 40 50

x-axis

0
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20
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40

50
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target1
target2
target3
target4
target5
target6

Figure 8. Estimated tracks after track fusion.

4.3. Performance Analysis

The performances of the previously-proposed PC-DP-TBD and MT-DP-TBD [11] was investigated
using the following performance measurements: (1). the probability of target detection Pd:
the probability that the last stage positions of the estimated state are within two cells of the actual
position, as given in [11], derived by the Monte Carlo method. (2); the root mean squared position
error (RMSE) of the valid tracks: the average position difference between the estimated trajectory and
the discretized trajectory of the real target.

PC-DP-TBD is proposed for valid and efficient detection of multi-target scenarios with cross dim
targets, so we performed simulations of the PC-DP-TBD method in the scenario depicted in the last
subsection to deduce Pd. In contrast, we performed simulations of the MT-DP-TBD method in the
same way. The Pd and RMSE of each target in the scenario evaluated over 1000 Monte Carlo runs with
an SNR range of 4 dB–15 dB for Pf a = 10−1 are plotted in Figures 9 and 10, respectively. The legend
shows the particular marks of each target to distinguish them from each other.

It can be seen that the two methods can achieve valid detection when SNR was high, and Pd
of the PC-DP-TBD method was larger than the MT-DP-TBD generally. When SNR ranged from
5 dB–9 dB, the RMSE of the target position from PC-DP-TBD simulations was much smaller than
MT-DP-TBD, and PC-DP-TBD had a better performance on Pd obviously, especially Target 1 and Target
2. As demonstrated in the preceding section, Target 1 and Target 2 are in proximity and move in
intersecting directions. Therefore, the MT-DP-TBD method cannot integrate target energy individually;
as for PC-DP-TBD method, it runs DP integration in multiple CPU cores with partitioned target state
transition sets towards particular motion orientations, making the merit function of Target 1 and Target
2 integrate along tracks closer to the actual tracks.
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Figure 9. The detection probability Pd of all six targets against SNR from 4 dB–15 dB for Pf a = 10−1.
The Pd of PC-DP-TBD method is indicated by the solid lines, and the dotted lines indicate the Pd of
MT-DP-TBD for comparison.
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Figure 10. The RMSE of all six targets against SNR from 4 dB–15 dB for Pf a = 10−1. The RMSE
of PC-DP-TBD method is indicated by the solid lines, and the dotted lines indicate the RMSE of
MT-DP-TBD for comparison.

4.4. Computational Expense

Generally, the computational expense of PC-DP-TBD is spent on the procedures embed in the
Nc implementations of MT-DP-TBD: the recursive DP integration. Consider Mt targets moving in
the surveillance; the computational cost of MT-DP-TBD is about O(MtK|R4(Γ)|) [11]; R4(Γ) denotes
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the target state space determined by the rasterized measurements data plane and discretized state
transition set Γ(xk). The number of R4(Γ) is calculated as:

|R4(Γ)| = Nx × Ny × (2Vmax
x + 1)× (2Vmax

y + 1) (16)

By utilizing the parallel computing capability of the multi-core processor, PC-DP-TBD performs
DP integration and target cancellation towards the Nc subsets of the Γ(xk) defined in (12). Besides,
the implementations of different computing cores may result in a different number of detected targets,
as mentioned in Section 3.2.2. Consequently, the computational expense of PC-DP-TBD is about
O(θ(i, Mt)K|R4(Γi)|). θ(i, Mt) ∈ [0, Mt] denotes the target count detected by the ith computing core.
The number of R4(Γi) is calculated as:

|R4(Γi)| =
|R4(Γ)|

Nc
(17)

Therefore, the computational expense of PC-DP-TBD compared to MT-DP-TBD is:

O(θ(i, Mt)K|R4(Γi)|)
O(MtK|R4(Γ)|) =

θ(i, Mt)

MtNc
(18)

It can be seen that the proposed PC-DP-TBD achieves at least Nc-times reduction of the
computational time expense. Besides, the computational expense of both MT-DP-TBD and PC-DP-TBD
become more conspicuous as the increase of K, Vmax, Mt, and the surveillance area size, i.e., Nx × Ny.

5. Conclusions

Although the MT-DP-TBD algorithm effectively solves the problem of approximate targets’
tracking and detection, the computational expense is still large. In this paper, to detect approximately
cross targets and improve the computational efficiency, we proposed the PC-DP-TBD method. The main
advantage is that PC-DP-TBD makes full use of the feature that different state transition sets result in
different integration values of the merit function. Moreover, with the utilization of parallel computing,
PC-DP-TBD achieves an improvement of operation efficiency because the computational expense is
shared by several CPU cores.

The simulation results show that the PC-DP-TBD method does have a good performance of
multi-target TBD and less operation time burden, especially better than the MT-DP-TBD method in
conditions like approximate and cross targets.
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