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Abstract: Physics students are rarely exposed to the style of thinking that goes into theoretical
developments in physics until late in their education. In this work, we present an alternative to the
traditional statement of Newton’s second law that makes theory questions accessible to students
early in their undergraduate studies. Rather than a contrived example, the model considered here
arises from a popular framework for testing Lorentz symmetry used extensively in contemporary
experiments. Hence, this work also provides an accessible introduction to some key ideas in ongoing
tests of fundamental symmetries in physics.
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1. Introduction

Is Newton’s second law obvious? Some introductory physics students respond in the affirmative.
The idea that a force applied to a body results in an acceleration in proportion to the (constant) mass
of the body seems to them a clear description of the way nature must work. Here, we argue that
the answer ought to be “no”. We do so by developing a model that contains violations of rotation
invariance. Though we develop the model from basic Newtonian-physics considerations, we arrive at
the Newtonian limit of a quantum-field-theory based test framework known as the Standard-Model
Extension (SME) [1–3]. The SME has been used extensively in searching for violations of Lorentz
symmetry (invariance under boosts as well as rotations) in nature [4] with the goal of finding evidence
of new physics, such as string theory [5,6].

The construction of physical theories can be thought of as a logical structure, which begins with
primitive notations or undefined terms, defines additional concepts from them, and then makes
assumptions about how the concepts (defined and undefined) behave. These assumptions are then
tested against experimental and observational data to see if the theory so constructed is a description
of a physical effect. It is sometimes hard for students and physicists alike to see theories like Newton’s
laws, which have been around a long time, as fitting this form. This difficulty can make studying
the subject feel separate from doing modern science. Newton’s laws have also been identified as
a particularly challenging example of physical theory [7]. Presenting students with viable alternatives
to standard Newtonian theory can help bring the thought processes involved in doing theoretical
physics into the undergraduate classroom.

Old ideas in physics can also be difficult to test because physicists have trouble imagining
how to do physics without them. Those new to the field of Lorentz-symmetry testing must work to
imagine nature without perfect Lorentz symmetry. Rotation invariance is more visual than boost
invariance, and it can be readily explored with Newtonian physics. Hence, one can build intuition for
symmetry violation with the Newtonian limit of contemporary models of Lorentz-symmetry violation.
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Testing Lorentz symmetry is an active area of contemporary physics research, and this work provides
an accessible introduction to some of its foundational ideas for undergraduates and those new to
the field.

In this work, we develop an alternative version of Newton’s second law by lifting the assumption of
isotropy. In Section 2, we develop the rotation-invariance-violating model from Newtonian considerations,
and we address the use of such models in stimulating classroom discussion about the theoretical-physics
aspects of Newton’s laws. Section 3 introduces the idea of the SME and discusses how our alternative
version of Newton’s second law fits into it. In Section 4, we explore an example that provides some
intuition for how to do physics with the alternative law as well as for how tests of spacetime symmetries
are developed. Finally, Section 5 demonstrates the connection between spacetime symmetries and
conserved quantities using our alternative Newton’s second law as an explicit example.

2. Alternative Newton’s Second Laws

A common statement of Newton’s second law found in introductory physics courses proceeds
as follows: the net force ~F applied to a body is proportional to the acceleration ~a of that body.
The proportionality factor, typically taken as constant at this stage, is known as the mass m. The easiest
way to imagine an alternative to Newton’s second law is to provide a more general form that reduces
to the original in some limit. In this section, we consider such examples.

We frame these alternatives in the language above with unaltered force laws such that the simplest
limits of our examples may be accessible to students at this level. There are a variety of interpretations
of Newton’s second law [8]. Hence, some readers might prefer to use ~F = d~p

dt as the definition of
Newton’s second law, while recasting the examples to follow as proposed alternative forms for the
conserved momentum. Others might wish to interpret the effects we consider as changes to the force
laws. We address some of these possibilities in the sections to follow.

Consider first a rotation-invariance-violating (RIV) model with a constant mass. Suppose one
applies a given force to a body at rest. One could imagine, for example, that our standard force
is defined by stretching a given spring a particular distance. Suppose that the body experiences
an instantaneous acceleration a in response to our applied force. Now, suppose that the system
is rotated 90 degrees, such that our standard force is applied in a new direction, and in the new
configuration a different acceleration, a′, results. If such an observation were made, one could imagine
modeling it with two Newton’s second laws, one for the east–west direction

F = ma, (1)

and one for the north–south direction
F = m′a′, (2)

with bodies now having two properties, east–west mass m and north–south mass m′. This is a clear
violation of rotation invariance. One is then faced with the question of what happens when the system
is rotated, not by 90 degrees, but by some other angle. The natural extension is to write Newton’s
second law in the form

Fj = mjkak, (3)

where Einstein summation convention has been used. In this model, we take mjk as symmetric.
While one can consider antisymmetric contributions to mjk here at the level of Newton’s second law,
such contributions prevent the definition of a kinetic term and hence such models appear to lie outside
of action-based theory. We also assume this matrix is invertible. Under these conditions, one finds that
forces exerted along three special directions produce accelerations aligned with the force while forces
exerted in other directions produce no such alignment. Note that coordinates can always be found
that diagonalize the matrix. In these special coordinates, forces aligned with the coordinate axes will
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produce accelerations aligned with the force and the full model reduces to the original idea introduced
in Equations (1) and (2).

Introducing this model to students in mechanics courses produces stimulating discussion that
simulates the thinking that happens in theoretical physics. Such discussions can be provoked by asking
questions such as, “is this alternative experimentally viable, or has it been ruled out?”, “is it internally
consistent?”, or “how could it be distinguished experimentally from the ‘usual’ form?”. Depending
on the level of the course, the presentation can be simplified by using matrix form, and/or using
diagonalizing coordinates up front.

Though it has not been confirmed by experiment to date, the RIV model is not pure fiction as it
has a clear connection to ongoing efforts in contemporary physics as we discuss in the next section.
Such connections can be used to bring recent literature into the classroom. Using notation suggestive
of the development to follow, the RIV can be rewritten in the form:

Fj = m(δjk + 2cjk)ak. (4)

Here, an overall factor m equal to 1/3 of the trace of mjk has been pulled out of mjk, and the
remaining matrix has been written as the identity (Kronecker delta) plus a traceless matrix 2cjk.
Though we could always choose to write mjk in the form above, this form is particularly convenient
when thinking of cjk as a small anisotropic correction to the usual isotropic mass as is typically
demanded by existing experimental constraints such as spectroscopy measurements. This form also
makes it clear that the model will always be viable for sufficiently small cjk.

The discussion around physical theories and Newton’s second law in mechanics courses can be
further enhanced by introducing additional examples, which, rather than rotation invariance violation,
introduce other modifications. Consider a proportionality factor between the force and acceleration
that is a function of some quantity, say the velocity. Hence experimentally, when the same force is
applied to a given body (in the lab frame), different accelerations result depending on the velocity the
body has at the instant when the force is applied. Consider the following example:

Fi = m
(

γδij +
1
c2 γ3vivj

)
aj, (5)

where
γ =

1√
1− v2

c2

, (6)

and c is a constant with units of velocity. Note that in the limit v << c, this alternative would be
experimentally indistinguishable from the ordinary case. Hence, for a sufficiently large value of c,
this model would remain experimentally viable even if no such velocity dependence were present
in nature. Some readers may recognize Equation (5) as a special-relativistic version of Newton’s
second law [9] common in undergraduate treatments [10]. Introducing this result, or perhaps more
appropriately one of its simpler limiting forms such as the case where ~v and~a are aligned,

F = mγ3a, (7)

to students not familiar with special relativity (without saying initially that it’s special relativity)
produces another model to which the above discussion questions can be applied. Moreover,
it demonstrates convincingly that the original notion of Newton’s second law is not obvious. For the
implication involved in calling something obvious, is that it is obviously right. Since Equation (5) is
more correct than the original version, it seems that the original version cannot be obvious. Note that
Equation (5) fits the basic form of Equation (3), but the mjk are no longer constant. Note also that,
although this match can be made, the directionality in the effective mass in the case of Equation (5)
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originates from the velocity of the particle in the lab frame, rather than a fundamental violation of
rotation invariance. This distinction can be further clarified using the methods to follow in Section 4.

3. The Standard-Model Extension

Among the most fundamental goals of contemporary theoretical physics is the unification of the
gravitational interaction with the other three interactions in nature into a single quantum-consistent
theory. Several decades ago, the realization that some such unification efforts could generate violations
of Lorentz symmetry [5,6] triggered an intense renewed interest in tests of this fundamental spacetime
symmetry [4] and the development of a comprehensive test framework for organizing the search [1,2].
This framework is the SME. The idea behind the SME is to add all Lorentz-violating terms to the
equations of known physics to form a structure similar to a series expansion about our current best
theories. The additional terms can then be sought in experiment. Though the SME expansion is
quantum field theory based, the idea is analogous to the addition of cjk to Newton’s second law in
Equation (4). One could imagine a researcher in Newtonian times proposing Equation (4) as a test
framework for deviations for Newtonian physics and seeking cjk in experiments. Such an effort could
in principle have discovered either of the models of Section 2. This connection is more than an analogy
as the RIV model arises as a subset of the Newtonian limit of the SME. In the remainder of this section,
we provide some comments on the connections between the RIV model of Section 2 and the SME,
and provide some SME-inspired insights on the RIV model. Some more advanced discussion of the
SME is provided in the Appendix A.

In developing the RIV model, we simply imagined the motion of a particle governed by different
masses when moving in different directions as modeled by the matrix mjk or equivalently cjk. However,
one can visualize objects such as cjk as providing an anisotropy [11] to empty spacetime itself, and the
existence of such a condensate of tensors in empty spacetime can be triggered by spontaneous
symmetry breaking [12] in analogy with the scalar Higgs field in the Standard Model. The background
ovals in Figure 1 illustrate this background condensate.

Figure 1. Block on an inclined plane with gravitational field ~g and background field cjk: (left) the
systemwith the original coordinates (unprimed) and the observer-rotated coordinates (primed); (right)
the particle rotated system with the original coordinates. In each case, ~g points toward the center of
the Earth.

Via the SME connection, it is straightforward to read off the current experimental limits [4] on how
anisotropic the mass in the RIV model can be. The current limits on cjk would permit mass anisotropies
(differences in inertia among experiments performed in different directions) at roughly the parts in
1017 level in Newtonian experiments in an Earth-based laboratory with conventional macroscopic
matter. The least constrained contribution to this number comes from the electron contribution in
matter as limited by ion trapping and atomic spectroscopy experiments [13,14]. Proton and neutron
contributions are more tightly constrained by a number of tests. Magnetometer experiments [15,16],
a type of clock comparison [17–20], are currently the most sensitive.
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4. An Example

In this section, we consider one of the most famous examples in physics, the problem of a block
on an inclined plane without friction, as a simple example that illustrates some of the interesting
features that arise when Newton’s second law is generalized to allow rotation-invariance violation [21].
In addition to providing some intuition for the RIV model, the example is of interest for several
reasons. It provides what is perhaps the simplest example of some of the conceptual challenges that
arise throughout the field of spacetime symmetry testing, some of which are quite foundational to
theoretical-physics work more broadly. It is also an interesting example for mechanics students because
it forces one to apply a theory without relying on potentially erroneous intuitions.

4.1. Basics

We begin with the simplest case as a starting point for working with nontrivial mjk and as a point
of comparison for the extensions to follow. This simplest case is generated when the problem is
aligned with the background such that the coordinates that diagonalize mjk are aligned with the plane,
as shown in the left-hand diagram of Figure 1, with the x-axis pointing down the plane while the y-axis
is perpendicular to the surface. In such coordinates, the gravitational field vector can be expressed
as follows:

~g = g(sin θx̂− cos θŷ), (8)

where θ is the angle between the surface of the ramp and the horizontal and g = 9.81 m/s2 as usual.
The gravitational force is then ~F = m~g. Solving for the magnitude of the particle’s acceleration down
the ramp (x-component here) under the constraint that the acceleration perpendicular to the ramp is
zero (ay = 0 here) yields

ax = aR = (1− 2cxx)g sin θ + O(c2), (9)

at leading order in the cjk coefficients, which are known to be small. Note that the only difference
from the conventional case is the presence of cxx, and qualitatively the motion remains the same.
The particle moves down the ramp in a straight line with constant acceleration.

4.2. Rotations

When a spacetime symmetry is present, transforming the coordinates and the observer’s
perspective along with them is equivalent to applying the inverse transformation to the items
that make up a physical system. When the symmetry is broken, these transformations become
inequivalent. Consistent with much of the literature [3], we call the former an observer transformation
and the latter a particle transformation. Physical observables should not be affected by observer
transformations, while physical violations of spacetime symmetries should be apparent by comparing
the results of experiments before and after particle transformations on the experiment. In this section,
we apply both transformations in turn and demonstrate that they produce inequivalent results in
symmetry-violating models.

First, perform an observer rotation on the original experiment as shown in Figure 1 (left); that
is, consider the same problem in new coordinates. Here, we’ll consider a rotation by θ such that the
gravitational field vector now takes the form

~g = −gŷ′. (10)

Schematically, the effective inertial mass will take the form

mj′k′ = m

 1 + 2cx′x′ 2cx′y′ 0
2cx′y′ 1 + 2cy′y′ 0

0 0 1 + 2cz′z′

 . (11)
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Again solving for the acceleration down the ramp subject to the constraint that the perpendicular
acceleration is zero yields the components of the acceleration in the new coordinates, which take
the form

ax′ = (1− 2cx′x′ cos2 θ − 2cy′y′ sin2 θ + 4cx′y′ sin θ cos θ)g sin θ cos θ + O(c2), (12)

ay′ = −(1− 2cx′x′ cos2 θ − 2cy′y′ sin2 θ + 4cx′y′ sin θ cos θ)g sin2 θ + O(c2). (13)

However, this is precisely the acceleration down the ramp found in Equation (9). The match can
be made explicit by expressing the components cj′k′ in terms of the components cjk via the application
of an appropriate rotation matrix:

mj′k′ = Rj′ jmjkRk′k (14)

and noting that the acceleration is still purely down the ramp with magnitude aR =
√

a2
x′ + a2

y′ . Hence,

this example explicitly maintains observer rotation invariance, with both observers agreeing on the
outcome of the experiment.

A particle rotation here means that we should pick up and rotate the elements of the experiment
(the block, the plane, and the Earth) leaving the coordinates unchanged as shown in Figure 1 (right).
Hence, the components of the gravitational field vector change while the components of the background
remain the same as we continue to use the original unprimed coordinates that made the mass matrix
diagonal. Solving for the motion of the particle in this new rotated configuration yields

ax = (1− 2cxx cos2 θ − 2cyy sin2 θ)g sin θ cos θ + O(c2),

ay = −(1− 2cxx cos2 θ − 2cyy sin2 θ)g sin2 θ + O(c2). (15)

Here, the magnitude of the acceleration along the ramp is

aR = (1− 2cxx cos2 θ − 2cyy sin2 θ)g sin θ + O(c2). (16)

Note that this is different from the earlier cases, revealing observable spacetime-symmetry
violation. The idea of rotating an experiment illustrated above is a common way of searching for
Lorentz violation, most often (though not exclusively) taking advantage of Earth’s rotation.

4.3. Discussion

Note that in the above example the form of cjk (as with all vectors and tensors) is coordinate
dependent, while physical results are not. This is a general feature. The form of the coefficients for
Lorentz violation change under coordinate changes (observer rotations and boosts). Hence, when
reporting experimental results, it is convenient to pick a standard frame such that all researchers give
the measured coefficients the same name. This standard frame is discussed in Ref. [4]. Occasionally,
coordinates can be found that make the symmetry-violating background look special. Such coordinates
are sometimes called a preferred frame. The coordinates that diagonalize cjk above can be understood
as an example. Often the idea of a preferred frame refers to coordinates in which the physics is
rotationally invariant and only boost-symmetry is violated. In general, such preferred frames cannot
be found and models in which they exist are special limits of general Lorentz-violating theories.

Some readers might wonder why the mass in the gravitational force law is taken as normal here
as opposed to replacing it with mjk as well. There are several related reasons for this choice. First,
the mass in Newton’s second law and the mass in the law of gravitation reflect two rather different
properties in the context of Newtonian physics: the inertia of the body (inertial mass) and the amount
of interaction with the gravitational field (gravitational mass). The notion that that inertial mass
and gravitational mass are the same is key to the Weak Equivalence Principle [22] and a part of the
foundation of General Relativity. Particle-species dependent Lorentz violation typically introduces
effective Weak Equivalence Principle violation [23]. Possible violations of the Weak Equivalence
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Principle are the subject of much ongoing experimental work [24]. Hence, at this level, independent
decisions can be made about their structure.

Second, if the gravitational force contains the same anisotropic effects as the inertial mass,
the effects cancel. Hence, even though the equations look more complicated, no observable anisotropy
is present in the theory and the laws so written are equivalent to the standard laws. This highlights
one of the pitfalls of spacetime-symmetry testing and perhaps of theoretical work more generally:
just because a theory is written in a different form this does not necessarily imply a difference in its
physical predictions.

Finally, as a limit of the SME, cjk appears only as an effective modification to the inertial mass
and not as a modification to the gravitational mass at this level [23]. Another symmetry-violating
background in the gravitational sector of the SME quantifies possible Lorentz violation in the
gravitational field [25]. In the Newtonian limit, this background generates effective anisotropy of the
gravitational mass. It has been shown that a coordinate change can remove the relevant part of cjk
from the description of matter, while simultaneously causing it to appear in the gravity sector as an
addition to the gravitational field anisotropy [23]. If a special proportionality exists between cjk and
the gravitational sector anisotropy, the coordinate redefinition can remove all anisotropic effects from
the theory, a result compatible with the cancellation from the Newtonian limit noted above. We note in
passing that experimental investigations of gravitational-sector Lorentz violation are also of interest.
Recent work by the LIGO, Virgo, Fermi GBM, and INTEGRAL collaborations has placed impressive
new constraints via measurements of the speed of gravitational waves [26]. Readers might also have
wondered if the spring force law could have been modified instead of the mass during the motivating
comments of Section 2. In certain cases, the answer is yes, as these choices are related by a coordinate
change analogous to the gravitational force discussion above.

5. Noether’s Theorem

Continuous symmetries and conservation laws are intimately connected by Noether’s theorem [27].
Since the RIV model violates rotation invariance but maintains spacetime translation invariance, it lacks
angular momentum conservation while retaining energy and momentum conservation. In this section,
we provide a specific and familiar example that highlights these implications of Noether’s theorem.

The system under consideration is a dumbbell composed of a rigid massless rod of length 2l and
two identical point masses mjk in the RIV model. The system is constrained to the x–y plane with the
origin at the midpoint of the system. This set up is a simplified model of the standard “ice-skater-spin”
lecture demonstration in which a student spins on a stool holding masses in outstretched arms [28].
For convenience, we work with the Lagrangian formulation. In the RIV model, the kinetic energy T of
each mass takes the form

T = 1
2 mjkvjvk. (17)

For the system in question, the Lagrangian, the Hamiltonian, the kinetic energy, and the total
energy are all equal. Hence, the Lagrangian for the two-dimensional system can be written

L = mθ̇2l2(1 + 2cxx sin2 θ − 4cxy sin θ cos θ + 2cyy cos2 θ), (18)

after implementing the constraints and introducing the plane-polar angle θ in the x–y plane as
a generalized coordinate.

Angular momentum is the generalized momentum conjugate to θ, pθ = ∂L
∂θ̇

. As usual,
the Euler–Lagrange equations

dpθ

dt
=

∂L
∂θ

(19)

imply that pθ is conserved only if the Lagrangian is independent of θ. Calculation demonstrates that
indeed angular momentum is not constant
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dpθ

dt
= 2ml2θ̇2 ((cxx − cyy) sin 2θ − 2cxy cos 2θ

)
, (20)

assuming a nonzero angular speed and at least one nonzero component of cjk in the plane of rotation.
We also see on general grounds that energy is conserved since there is no explicit time dependence in L.

To make these conclusions more concrete, we plot angular speed, angular momentum, and energy
as a function of time in Figure 2 for a specific choice of parameters. The equation of motion is
complicated, but lends itself well to numerical solution. For definiteness and simplicity in this example,
we consider the case of cxx = 0.4 with all other components of cjk being zero. This large but still
perturbative value for cjk provides easily visible results in the plot. Calling the initial angular speed

ω0, we plot the dimensionless angular speed Ω = θ̇
ω0

, the dimensionless energy E = L
ml2ω2

0
, and the

dimensionless angular momentum Pθ = pθ

2ml2ω0
vs. the dimensionless time T = ω0t for the initial

conditions θ(0) = 0, Ω(0) = 1. In conventional physics, the skaters pull their arms closer to the
axis of rotation to increase their angular speed and extend their arms to slow their angular speed.
Here, we see the perhaps entertaining result that when rotation invariance is violated in this way,
the angular speed of the skater varies periodically without changes in the skater’s body configuration.
We also see explicitly that energy is conserved while angular momentum is not. An animation of these
results can be found at https://people.carleton.edu/~jtasson/animations.html.

0 5 10 15 20 25

0.8

0.9

1.0

1.1

1.2

1.3

time (T)

Figure 2. Rigid rotor results vs. dimensionless time: dimensionless angular speed (solid), dimensionless
energy (dashed), dimensionless angular momentum (dotted).

6. Conclusions

In this work, we introduced an extension to Newton’s second law that permits a generic
anisotropic mass. We discussed the use of this model in demonstrating foundational ideas in theoretical
physics, and we develop its connection with contemporary efforts to test Lorentz symmetry in the
context of the general test framework provided by the SME. We solved the block on the inclined
plane as an example to make the ideas concrete and the spinning dumbbell as an illustration of the
connection between symmetries and conservation laws. The material presented is useful in teaching
theoretical physics ideas in classical mechanics and as an introduction to contemporary efforts to test
spacetime symmetries.

https://people.carleton.edu/~jtasson/animations.html
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Appendix A

As discussed in Section 3, the RIV model arises as a special limit of the SME framework for testing
Lorentz symmetry. In this appendix, we display the SME Lagrange density explicitly such that more
advanced readers may see the origin of the object cjk in Equation (4) at this level.

The SME Lagrange density for a free fermion [1,2] can be written as follows:

L = 1
2 iψ(γν − cµνγµ − dµνγ5γµ + . . .)

↔
∂ν ψ− ψ(m + aµγµ + bµγ5γµ + . . .)ψ. (A1)

Here, Greek indices run over the four spacetime dimensions, m is the fermion mass, ψ is the
fermion field, ψ is the Dirac adjoint fermion field, and the γµ are the Dirac matrices. The action of

the derivative along with a generic operator Γν is defined by ψ
↔
∂ν Γµψ = ψΓµ(∂µψ) − (∂µψ)Γµψ.

The objects aµ, bµ, cµν, and dµν are coefficients for Lorentz violation, which can be identified with the
background condensates. They are typically taken as spacetime constants. These coefficients quantify
the amount of Lorentz violation in nature and are constrained in experimental and observational
searches. The ellipsis contains additional coefficients for Lorentz violation. The object cjk, which has
been the primary focus of this work, is the spacial components of the coefficient for Lorentz violation
cµν. In the limit that the coefficients for Lorentz violation go to zero, the conventional fermion Lagrange
density is recovered. Variation of the Lagrange density in this limit yields the Dirac equation, originally
developed as an extension of the Schrodinger equation to provide a description of fermions that
incorporated the principles of Special Relativity and quantum mechanics.

Since one could imagine the possibility that Lorentz-violating behavior might be observed in
association with just one type of particle, and the goal is a general test framework, the coefficients
for Lorentz violation are particle-species dependent. The terms explicitly displayed in Equation (A1)
are a part of what is known as the minimal SME: terms involving operators with the same mass
dimension [29] as found in the Standard Model and General Relativity. Terms with additional
derivatives have also been considered in the fermion [30] sector as well as in the photon [31] and
gravity [32] sectors. These nonminimal operators can generate additional effects such as vacuum
dispersion. We note in passing that in addition to searches for fundamental symmetry violation,
the SME has also been used to constrain and explore fields that can mimic Lorentz violation [33–35].

Several approaches to finding the Newtonian limit of this field theory can be found in the
literature [23,36]. In this work we focus on the Newtonian limit generated by the cjk coefficient at
leading order in the coefficients for Lorentz violation, as it provides the match to the RIV model as
written in Equation (4). In the limit used here, when a macroscopic body that contains many particle
species is considered, the effective cµν coefficient for the body is found to be the mass-weighted sum
of the cµν coefficients for the species contained in the body [23]. Many of the other coefficients have
been sought in observations and experiments [4] and have interesting implications in their own right,
though their Newtonian implications are beyond our present scope. Additional classical implications
can be explored via the Lagrangian formulation [36] as well as a geometric formulation based on
Finsler geometry [37,38].
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