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Abstract: The recently introduced technique, namely the generalized exponential rational
function method, is applied to acquire some new exact optical solitons for the generalized
Benjamin–Bona–Mahony (GBBM) equation. Appropriately, we obtain many families of solutions for
the considered equation. To better understand of the physical features of solutions, some physical
interpretations of solutions are also included. We examined the symmetries of obtained solitary
waves solutions through figures. It is concluded that our approach is very efficient and powerful for
integrating different nonlinear pdes. All symbolic computations are performed in Maple package.

Keywords: exact solutions; the generalized Benjamin–Bona–Mahony equation; generalized
exponential rational function method; solitary wave solutions; symbolic computation

1. Introduction

The Benjamin–Bona–Mahony (BBM) equation has been studied by Benjamin, Bona, and Mahony
in 1972 as the improved KdV equation for the description of long surface gravity waves having a
small amplitude. They have also investigated the stability and uniqueness of solutions to the BBM
equation [1]. The description of the drift of waves in plasma physics, the propagation of wave in
semi-conductors and optical devices [2], and the behavior of Rossby waves in rotating fluids [3] are
some other phenomena that are modeled by this equation.

Let us consider the dimensionless form of the (1 + 1) the generalized Benjamin–Bona–Mahony
(GBBM) equation as follows [4]:

ut + αux + (βuϑ + γu2ϑ)ux − δuxxt = 0, (1)

with the unknown function u and the constants of α, δ, n, β and ϑ.
It is also known that the multi-soliton solutions for the Equation (1) only exist with the conditions

γ = 0 and ϑ = 1, i.e., whenever we have

ut + αux + (βu)ux − δuxxt = 0. (2)

The main application of the BBM equation is related to model the hydromagnetic waves
in cold plasma, the acoustic waves in anharmonic crystals and the acoustic-gravity waves in
compressible fluids [5,6].
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Recently, the investigation of exact solutions of nonlinear PDEs has begun to attract
mathematicians and physicists’ attention because of the onset of soliton [7–9]. Therefore,
several efficient techniques for handling NPDEs have been developed. Among them, we can list
the traditional methods: the Hirotas bilinear method [10] and the Darboux transformation method [11].
There are also some recent direct and algebraic methods: the variational iteration method [12],
the exp-function method [13], various extended tanh-function methods [14] and Lie symmetry
analysis [15–17].

The relatively new technique called the generalized exponential rational function method (or
GERFM in short) was firstly suggested by Ghanbari et al. in Ref. [18] to solve the resonance nonlinear
Schrödinger equation as

iψt + αψxx + βF
(
|ψ|2

)
ψ + γ

(
|ψ|xx

|ψ|

)
ψ = 0, i =

√
−1. (3)

Another application of the method has been carried out in Ref. [19] where the authors have
implemented the method to solve the Fokas–Lenells equation in the presence of the perturbation terms,
as follows:

i
∂ψ

∂t
+

∂2ψ

∂x2 + α|ψ|2ψ + i
[

γ1
∂ψ3

∂x3 + γ2
∂ψ

∂x
|ψ|2 + γ3

∂|ψ|2
∂x

ψ

]
= 0. (4)

The method also has been successfully implemented to retrieve traveling wave solutions to the
nonlinear Schrödinger’s equation in the presence of Hamiltonian perturbations [20] as

iψt + aψxx +
(

b1|ψ|+ b2|ψ|2
)

ψ = i{αψx + λ
(
|ψ|2ψ

)
x
+ θ

(
|ψ|2

)
x

ψ}. (5)

In all cases, the authors have declared that the method introduces some new solutions that have
not been reported in previous works. In addition, it deduces that the method can be applied to study
many other nonlinear PDEs in many branches of physics, biology, engineering. This research aims to
integrate the GBBM Equation (1) using the GERFM. For this reason, our paper is organized as below:
Section 2 deals with the presentation of the method. Section 3 is devoted to the application of GERFM
to the GBBM equation. Eventually, the conclusion of the present research is outlined in the last section.

2. The Main Steps of GERFM

In this subsection, we review the routine description of GERFM.

1. Let us take into account the nonlinear PDE in the form:

L(ψ, ψx, ψt, ψxx, . . .) = 0. (6)

Using the transformations ψ = ψ(η) and η = σx − lt, Equation (6) is reduced to following
NODE as:

L(ψ, ψ′, ψ′′, . . .) = 0, (7)

where the values of σ and l will be found later.
2. Now, the structure of the wave solution of Equation (7) is assumed to be

ψ(η) = p0 +
M

∑
k=1

pkΘ(η)k +
M

∑
k=1

qk

Θ(η)k , (8)

where
Θ(η) =

ι1eκ1η + ι2eκ2η

ι3eκ3η + ι4eκ4η . (9)
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The values of constants ιi, κi(1 ≤ i ≤ 4), p0, pk and qk(1 ≤ k ≤ M) are determined, in such a way
that solution (8) always persuade Equation (7). By considering the homogenous balance principle,
the value of M is determined.

3. Substituting Equation (8) into Equation (7), an algebraic equation P(S1, S2, S3, S4) = 0 in terms
of Si = eqiη for i = 1, . . . , 4 is constructed. Then, making each coefficient for the powers of P to
zero, we acquire a series of nonlinear equations in terms of pi, qi(1 ≤ i ≤ 4), and σ, l, p0, pk and
qk(1 ≤ k ≤ M) is generated.

4. By solving the above system of equations using any computer package like Maple (18, Waterloo
Maple, Canada), the values of ιi, κi(1 ≤ i ≤ 4), p0, pk, and qk(1 ≤ k ≤ M) are determined,
replacing these values in Equation (8) provides us the exact solutions of the nonlinear PDE (6).

3. Utilization of GERFM for the GBBM Equation

Let us consider the following dependent variable transformation

u (x, t) = ψ(η), η = kx− θt, (10)

where k and θ are constants need to be calculated. Under the transformation of Equation (10),
Equation (1) can be reduced to the following NODE:

(αk− θ)ψη + k
(

βψϑ + γψ2ϑ
)

ψη + δk2θψηηη = 0. (11)

We may now integrate Equation (11) to have

(αk− θ)ψ + k
(

β

ϑ + 1
ψϑ+1 +

γ

2ϑ + 1
ψ2ϑ+1

)
+ δk2θψηη = 0. (12)

Using the transformation ψ = ψn in (12), we attain

ψψηη + σ1ψ2 + σ2ψ3 + σ3ψ4 + σ4
(
ψη

)2
= 0, (13)

where

σ1 =
(αk− θ) ϑ

δk2θ
,

σ2 =
βϑ

δk(ϑ + 1)θ
,

σ3 =
γϑ

δk(2ϑ + 1)θ
,

σ4 =
1− ϑ

ϑ
.

In this section, GERFM will be used to determine solitary wave solutions of (1). To this end, if
we apply the balancing principle for the terms of ψ4 and

(
ψη

)2 in (13), (i.e., 4M = 2(M + 1)), we get
M = 1. This implies that Equation (1) has the solution given by

ψ(η) = p0 + p1Θ(η) +
q1

Θ(η)
. (14)

We now exert the GERFM to derive the following categories of solutions for Equation (1):

Family 1: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) =
−3− 2 eη

1 + eη . (15)
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Case 1:

θ = −
√

2 ϑ + 1
√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,

k = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2

,

p0 =
(−6 ϑ− 3) β

γ (ϑ + 2)
, p1 = 0, q1 =

(−12 n− 6) β

γ (ϑ + 2)
.

These resulting values direct us to have

ψ (η) =
(−6 ϑ− 3) β

γ (ϑ + 2) (3 + 2 eη)
.

Consequently, we can get the following exact wave solution

u1 (x, t) =
(

(−6 ϑ− 3) β

γ (ϑ + 2) (3 + 2 eη)

) 1
ϑ

, (16)

where

η = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2

x+

√
2 ϑ + 1

√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.

Case 2:

θ = −
√

2 ϑ + 1
√

25 (γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2ϑβ

25
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,

k = −
√

2ϑ + 1ϑβ
√
−δ

√
25 (γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2

,

p0 =
(−2 n− 1) β

γ (ϑ + 2)
, p1 = − β (2 ϑ + 1)

5γ (ϑ + 2)
, q1 = −6β (2 ϑ + 1)

5γ (ϑ + 2)

led

ψ (η) =
(−2 ϑ− 1) β eη

(ϑ + 2) (1 + eη) γ (15 + 10eη)
.

Hence, we get the following solitary wave solution for GBBM as

u2 (x, t) =
(

(−2 ϑ− 1) β eη

(ϑ + 2) (1 + eη) γ (15 + 10eη)

) 1
ϑ

, (17)

where

η = −
√

2ϑ + 1ϑβ
√
−δ

√
25 (γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2

x+

√
2 ϑ + 1

√
25 (γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2ϑβ

25
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.
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Family 2: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) = − sin (η)

cos (η)
. (18)

Case 1:

θ =

√
2 ϑ + 1

√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2ϑβ

2
√

δ (γ ϑ + γ) (ϑ + 2)2 ,

k =

√
2ϑ + 1ϑβ

2
√

δ

√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2

,

p0 = − β (2 ϑ + 1)
2γ (ϑ + 2)

, p1 = 0, q1 =
i (2 ϑ + 1) β

2γ (ϑ + 2)
.

These resulting values help us to have

ψ (η) = − k sinh (η)√
2 γ2k2 − γ2q2 + 2 qγ− 1

√
ϑ cosh (η)

.

Consequently, the following exact wave solution is determined

u3 (x, t) =

(
− k sinh (η)√

2 γ2k2 − γ2q2 + 2 qγ− 1
√

ϑ cosh (η)

) 1
ϑ

, (19)

where

η =

√
2ϑ + 1ϑβ

2
√

δ

√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2

x−

√
2 ϑ + 1

√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2ϑβ

2
√

δ (γ ϑ + γ) (ϑ + 2)2 t.

Family 3: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) =
sin (η) + cos (η)

cos (η)
. (20)

Case 1:

θ = −
√

2 ϑ + 1
√
(γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,

k = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2

,

p0 =
(−2 ϑ− 1) β

γ (ϑ + 2)
, p1 =

β (2 ϑ + 1)
2γ (ϑ + 2)

, q1 =
β (2 ϑ + 1)
γ (ϑ + 2)

.

These resulting values led us to obtain

ψ (η) =
β (2 ϑ + 1)

2 (ϑ + 2) γ cos (η) (sin (η) + cos (η))
.
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Hence, one arrives to the following exact wave solution:

u4 (x, t) =
(

β (2 ϑ + 1)
2 (ϑ + 2) γ cos (η) (sin (η) + cos (η))

) 1
ϑ

, (21)

where

η = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2

x+

√
2 ϑ + 1

√
(γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.

Family 4: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) =
− sin (η) + cos (η)

sin (η)
. (22)

Case 1:

θ = −
√

2 ϑ + 1
√
(γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2ϑβ

2
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,

k = −
√

2ϑ + 1ϑβ

2
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2

,

p0 =
(−2 ϑ− 1) β

γ (ϑ + 2)
, p1 = − β (2 ϑ + 1)

2γ (ϑ + 2)
, q1 =

(−2 ϑ− 1) β

γ (ϑ + 2)
.

These solutions direct us to get

ψ (η) =
β (2 ϑ + 1)

2γ (ϑ + 2) sin (η) (sin (η)− cos (η))
.

As a result, we can get the following exact wave solution:

u5 (x, t) =
(

β (2 ϑ + 1)
2γ (ϑ + 2) sin (η) (sin (η)− cos (η))

) 1
ϑ

, (23)

where

η = −
√

2ϑ + 1ϑβ

2
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2

x+

√
2 ϑ + 1

√
(γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2ϑβ

2
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.

Family 5: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) = − 1
1 + eη . (24)

Case 1:

θ = −
√

2 ϑ + 1
√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,

k = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2

,
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p0 = 0, p1 =
β (2 ϑ + 1)
γ (ϑ + 2)

, q1 = 0.

Then, we arrived to

ψ (η) =
(−2 ϑ− 1) β

γ (ϑ + 2) (1 + eη)
.

Therefore, the following exact wave solution for the equation is achieved

u6 (x, t) =
(

(−2 ϑ− 1) β

γ (ϑ + 2) (1 + eη)

) 1
ϑ

, (25)

where

η = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2

x+

√
2 ϑ + 1

√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.

Family 6: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) =
3 eη + 2
1 + eη . (26)

Case 1:

θ = −
√

2 ϑ + 1
√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,

k = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2

,

p0 =
(−4 n− 2) β

γ (ϑ + 2)
, p1 = 0, q1 =

(−4 n− 2) β

γ (ϑ + 2)
.

These values let us to consider

ψ (η) =
(−4 n− 2) β

γ (ϑ + 2) (eη + 2)
.

Thus, we obtain

u7 (x, t) =
(

(−4 n− 2) β

γ (ϑ + 2) (eη + 2)

) 1
ϑ

, (27)

where

η = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2

x+

√
2 ϑ + 1

√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.

Family 7: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) =
−eη − 2
1 + eη . (28)
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Case 1:

θ = −
√

2 ϑ + 1
√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,

k = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2

,

p0 =
(−6 ϑ− 3) β

γ (ϑ + 2)
, p1 = 0, q1 =

(12 n + 6) β

γ (ϑ + 2)
.

These resulting values help us to consider

ψ (η) =
(−6 ϑ− 3) β eη

γ (ϑ + 2) (3 eη + 2)
.

Accordingly, we can get the following exact wave solution

u8 (x, t) =
(

(−6 ϑ− 3) β eη

γ (ϑ + 2) (3 eη + 2)

) 1
ϑ

, (29)

where

η = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2

x+

√
2 ϑ + 1

√
(γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.

Family 8: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) =
2 eη + 1
1 + eη . (30)

Case 1:

θ = −
√

2 ϑ + 1
√

9 (γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2ϑβ

9
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,

k = −
√

2ϑ + 1ϑβ
√
−δ

√
9 (γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2

,

p0 =
(−2 ϑ− 1) β

γ (ϑ + 2)
, p1 =

β (2 ϑ + 1)
3γ (ϑ + 2)

, q1 =
2β (2 ϑ + 1)
3γ (ϑ + 2)

.

From these results, one has

ψ (η) =
(−2 ϑ− 1) β eη

3γ (ϑ + 2) (1 + eη) (2eη + 1)
.

Thus, we can get the following exact wave solution

u9 (x, t) =
(

(−2 ϑ− 1) β eη

3γ (ϑ + 2) (1 + eη) (2eη + 1)

) 1
ϑ

, (31)

where

η = −
√

2ϑ + 1ϑβ
√
−δ

√
9 (γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2

x+



Symmetry 2019, 11, 20 9 of 12

√
2 ϑ + 1

√
9 (γ ϑ + γ) (ϑ + 2)2 α− (2ϑ + 1) β2ϑβ

9
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.

Family 9: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) =
cos (η)− 2 sin (η)

sin (η)
. (32)

Case 1:

θ = −
√

2 ϑ + 1
√

4 (γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2ϑβ

8
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,

k = −
√

2ϑ + 1ϑβ

2
√
−δ

√
4 (γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2

,

p0 =
(−2 ϑ− 1) β

γ (ϑ + 2)
, p1 = − β (2 ϑ + 1)

4γ (ϑ + 2)
, q1 = −5β (2 ϑ + 1)

4γ (ϑ + 2)
.

These results suggest us to have

ψ (η) =
(2 ϑ + 1) β

4 (ϑ + 2) γ sin (η) (cos (η) + 2 sin (η))
.

At this point, the following exact wave solution is formulated

u10 (x, t) =
(

(2 ϑ + 1) β

4 (ϑ + 2) γ sin (η) (cos (η) + 2 sin (η))

) 1
ϑ

, (33)

where

η =

√
2ϑ + 1ϑβ

2
√
−δ

√
4 (γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2

x−

√
2 ϑ + 1

√
4 (γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2ϑβ

8
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.

To analyze the dynamic behavior of the obtained solutions, some three-dimensional figures have
been depicted in some special cases. The moduli of s u3(x, t), u4(x, t), u6(x, t), u8(x, t), u9(x, t) and
u10(x, t) are depicted in Figures 1–6, respectively. The analytical results and profiles obtained in this
contribution provide us a different physical interpretation for the considered equation. As we observe,
the absolute value of solutions displayed in Figure 1 is a bright solitary wave, in Figure 2 is a periodic
wave, in Figure 3 is a kink solitary wave, in Figure 4 is a dark wave, in Figure 5 is a periodic wave
soliton, and finally in Figure 6 is a singular periodic wave.
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Figure 1. Perspective view of the modulus of u3(x, t) with α = 0.5, β = 2, δ = 1, γ = −0.5 and ϑ = 1.5.

Figure 2. Perspective view of the modulus of u4(x, t) with α = 1, β = 1, δ = 1, γ = 0.5, and ϑ = 3.

Figure 3. Perspective view of the modulus of u6(x, t) with α = 0.5, β = 1, δ = 2.0, γ = −0.5, and
ϑ = 1.1.
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Figure 4. Perspective view of the modulus of u8(x, t) with α = 0.5, β = 1, δ = 1, γ = −1.5, and ϑ = 1.5.

Figure 5. Perspective view of the modulus of u9(x, t) with α = 0.5, β = 1, δ = 0.5, γ = 2, and ϑ = 3.

Figure 6. Perspective view of the modulus of u10(x, t) with α = 1, β = 1, δ = 1, γ = −0.5, and ϑ = 3.

4. Conclusions

The study in this paper was devoted to the derivation of new exact solitary wave solutions of the
generalized BBM equation through the GERFM. The correctness of the whole solutions u1(x, t)-u10(x, t)
has been verified with a symbolic Maple package, and it is found that all are satisfied with their
corresponding original equations. The obtained solutions could be classified as periodic solutions
and soliton solutions. Some graphical representations reveal the fact that the wave profile u behaves
as bright and kink, multi-soliton solutions. These new obtained solutions could help for a deeper
understanding of systems described by the BBM equation. All obtained solutions in the present work
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are new, and have not been previously reported in the literature. This is the main advantage of the
GERFM over existing methods for solving GBBM equations, and indicates that GERFM is an efficient
and easy to use tool that can help physicists and mathematicians handle and explore various sets of
nonlinear PDEs.
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