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1. Introduction

Graph theory has been the focus of many researchers which are used in various areas. In fact,
graph theoretical concept modeled and analyzed systems in different fields. Mathematicians are
becoming aware of the significance of this theory and they combined it with other branches of
mathematics. One of the last and important fields were a fixed point theory. In 2006, Espinola and Kirk
introduced some results on combining fixed point theory and graph theory [1]. In 2008, Jachymski [2]
provided an interesting approach in this direction. His work is considered as a reference in this domain.
Starting from this approach, many researchers have discussed the existence and uniqueness of fixed
points in different metric spaces with a graph and several contractions that are used in several types of
spaces [3–13].

In addition, the fixed point theory on metric spaces endowed with graph represented a favorable
theoretical background for the concept of the network nodes. Depending on its application, this concept
modeled a large variety of functions in different fields such data communications, internet network
nodes, telecommunications network nodes. In order to understand the relationship between the
network nodes and the fixed point theory, we consider the case study theme from a communication
network. In this field, a network node is a connection point that can receive, create store or send
along distributed network routes. Each node can transmit or redistribute data to other network nodes
according to a routing strategy. For example, in internet networks, host computers that are identified
by an IP address are considered as a physical network node. In data communications, a network
node can be data terminal equipment, routers or servers. Hence, by combining all kinds of physical
networks, the node is a vector which allowed us to define a network vector space E [14]. This space can
be treated as a set of nodes and links. The function of links is to spread data provided by those nodes.
Therefore, there exists a characteristic correlation between any two different nodes that can be given
by a certain correlation measure d. In this respect, we notice that (E, d) is a metric space. Knowing
the limited dimension of the space in a real network, we obtain the completeness; then, E is a Banach
space. As stated above, we have transmission of data between nodes. More precisely, the transmitted
information from a network node x belonging to E to another network node y can be obtained using an
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operator T. This operator could be a routing algorithm or a mining algorithm [14]. On the other hand,
in real work and taking into account the increasing of the complexity of nodes correlation, we can
conclude that the measure between two nodes obtained from mapping by the operator T becomes
relatively small. Thus, the network operator T is the compression mapping on E and the compression
coefficient is α such that 0 < α < 1. Therefore, T : E −→ E is a contraction mapping on E and all the
assumptions of Banach fixed point theorem are made. Then, T has a fixed point u satisfying Tu = u
and relative to the network nodes; u is the network path prediction target node.

According to what we mention, it is very interesting to investigate in fixed point theory on metric
spaces with graphs and to prepare a theoretical framework for applications to real cases using different
metrics and contractions that can model different phenomena.

Throughout this paper, we consider the complete rectangular metric-like spaces and we debate
fixed point results for generalized G-contractive type mapping. We will introduce the notion of
Gr-Kannan contraction, G-graphic contraction and (G–φ)-contraction. Some examples are presented
to illustrate the obtained results.

The notion of metric-like is original and very important in real work. Actually, if we consider two
nodes u and v such that u = v, the measure between them is not necessarily equal to zero, which is
the case in several fields. In addition, the rectangular metric that is characterized by its rectangular
inequality plays an important role mainly when the number of nodes increases. In fact, to transmit
information from source node to a target node, we observe that the shortest path contains in general
more than one node.

2. Preliminaries

First, we remind the reader of the concept of metric-like spaces as well as the rectangular
metric-like spaces and the convergence and completeness in this space. We presented also some
basic concepts of graph theory which will be needed in the sequel.

Definition 1. Ref. [15] Let a nonempty set X and σl : X × X −→ R+ be a mapping satisfying the
following conditions

for all a, b, c ∈ X:

(L1) σl(a, b) = 0 =⇒ a = b,
(L2) σl(a, b) = σl(b, a),
(L3) σl(a, c) ≤ σl(a, b) + σl(b, c).

Then, σl is called a metric-like and the pair (X, σl) determine a metric-like space.

Note that metric-like spaces are more general than both metric and partial metric spaces
since σl(a, a) can be different from zero; in addition, σl(a, a) may be bigger than σl(a, b). Thereby,
every partial metric space is a metric-like space.

Example 1. Let X = [0, 1] and σl(a, b) =

{
3, if a = b,
2, otherwise.

It is easy to see that (X, σl) is a metric-like space but not a partial metric space because σl(0, 0) 6≤ σl(0, 1).

Definition 2. Ref. [16] Let there be a nonempty set X and σr : X × X −→ R+ a mapping satisfying the
following conditions for all x, y, z, t ∈ X:

(L1) σr(x, y) = 0 =⇒ x = y,
(L2) σr(x, y) = σr(y, x),
(L3) σr(x, y) ≤ σr(x, z) + σr(z, t) + σr(t, y) for all different z, t ∈ X \ {x, y} (Rectangular inequality).

Then, σr is called a rectangular metric-like and the pair (X, σr) determine a rectangular metric-like space.
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Example 2. Let X = {1, 2, 3, 4, 5} and define the mapping σr : X× X −→ [0, ∞) by

σr(x, y) =


2, for x 6= y,
4, if x = y = 1,
0, otherwise.

It is easy to see that conditions L1 and L2 are satisfied. Let’s verify the rectangular inequality given by L3.
Considering x, y ∈ X and for all distinct u, v ∈ X \ {x, y}, we have

σr(x, u) + σr(u, v) + σr(v, y) = 2 + σr(u, v) + 2 = 4 + σr(u, v) ≥ σr(x, y)∀x, y ∈ X.

Therefore, (X, σr) is a rectangular metric-like space.

Definition 3. Ref. [16] Let (X, σr) be a rectangular metric-like space. Then,

1. A sequence {xn} in (X, σr) converges to x ∈ X if and only if lim
n→∞

σr(xn, x) = σr(x, x).
2. A sequence {xn} in (X, σr) is said to be σr-Cauchy sequence if and only if the limit of σr(xn, xm) exists

and finite as n→ ∞.
3. (X, σr) is said to be σr-complete if any σr-Cauchy sequence {xn} in X converges to some point x such that

lim
n→∞

σr(xn, x) = σr(x, x) = lim
n,m→∞

σr(xn, xm). (1)

Remark 1. The convergence defined in the last definition is the convergence obtained in the sense of the topology
generated by the open balls

Bσr (x, δ) = {y ∈ X such that |σr(x, y)− σr(x, x) < δ}, x ∈ X.

For more details on the topology of rectangular metric-like spaces, we refer to [16].
Next, we present a few basic concepts of graph theory.
According to Jachymski [2], we consider a rectangular metric-like space (X, σr) and ∆ is the

diagonal of X× X. A graph G is defined by the set V = V(G) of vertices coinciding with X and the set
E = E(G) of its edges such that ∆ ⊂ E(G). Assume that the graph G has no parallel edges. Therefore,
G can be identified with the pair (V, E).

In addition, the graph G may be considered as a weighted graph by assigning to each edge the
distance given by the σr-metric between its vertices. We denote by G−1 the graph obtained from G by
reversing the direction of edges in G. Then,

E(G−1) = {(x, y) ∈ X2 : (y, x) ∈ E(G)} and V(G−1) = V(G).

Let G̃ denote the undirected graph built by ignoring the direction of all edges that is

E(G̃) = E(G) ∪ E(G−1). (2)

Definition 4. A subgraph is a graph that consists of a subset of a graph’s edges and associated vertices.

Definition 5. Consider two vertices a and b in a graph G. A path in G from a to b of length k (k ∈ N∪ {0}) is
a sequence (xi)

k
i=0 of k + 1 distincts vertices such that x0 = a, xk = b and (xi, xi+1) ∈ E(G) for i = 1, 2, ..., k.

Definition 6. 1. A graph G is called connected if there is a path between any two vertices of G and it is
weakly connected if G̃ is connected.

2. A graph G is said to be simple if it has neither multiple edges nor loops.

Consider x a vertex in a graph G. The subgraph denoted by Gx and constituted by all edges and
vertices which are contained in some path in G beginning at x is called the component of G containing
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x. In this case, V(Gx) = [x]G, where [x]G denotes the equivalence class of relation R (xRy if there is a
path in G from x to y).

In order to apply the rectangular inequality later to the vertices of the graph, we need to consider
a graph of length bigger than 2 which means that, between two vertices, we can find a path through at
least two other vertices.

3. Main Results

In this section, we consider (X, σr) to be a rectangular metric-like space, and G is a simple graph
of length bigger than 2 without parallel edges such that V(G) = X. Define Fix f = {u ∈ X/ f u = u}.

Now, let us define the Kannan operator on metric space (X, d).

Definition 7. Ref. [17] Let (X, d) be a metric space. f : X −→ X is called a Kannan operator if there exists

a ∈ [0,
1
2
) such that :

d( f x, f y) ≤ a[d(x, f x) + d(y, f y)] ∀x, y ∈ X.

Inspired by the Kannan operator, we introduce the concept of Gr-contraction in rectangular
metric-like spaces with a graph.

Definition 8. Let (X, σr) be a rectangular metric-like space endowed with a graph G. The mapping f : X −→
X is said to be Gr-Kannan contraction if

1.
∀x, y ∈ X, If (x, y) ∈ E(G), then ( f x, f y) ∈ E(G), (3)

2. There exists a ∈ [0,
1
2
) such that

σr( f x, f y) ≤ a(σr(x, f x) + σr(y, f y)) ∀x, y ∈ E(G). (4)

Remark 2. If f is a Gr-Kannan mapping, then f is both a G−1
r -Kannan mapping and G̃r-Kannan mapping.

Lemma 1. Let (X, σr) be a rectangular metric-like space endowed with a graph G and f : X −→ X be
Gr-Kannan mapping with constant a. If the graph G is weakly connected, then, given x, y ∈ X, there exists
r(x, y) ≥ 0 such that

σr( f nx, f ny) ≤ aσr( f n−1x, f nx) + (
a

1− a
)nr(x, y) + aσr( f n−1y, f ny) ∀n ∈ N. (5)

Proof. For every x, y ∈ X, we need to consider the following two cases.

If (x, y) ∈ G̃, then, by induction, ( f nx, f ny) ∈ G̃; therefore, Label (5) is true by taking r(x, y) = 0 for all
n ∈ N.
If (x, y) 6∈ G̃, then there is a path (xi)

N
i=0 in G̃ from x to y such that x0 = x, ..., xN = y with

(xi−1, xi) ∈ E(G̃) for i = 1, ..., N and (xi, f xi) ∈ E(G̃) for i = 1, ..., N − 1.

Since f is a G̃r-Kannan contractive, then, by induction in Label (3), we get

( f nxi−1, f nxi) ∈ E(G̃). (6)

Now, by using the second property of Gr-Kannan contraction given by (4), we obtain

σr( f 2xi, f xi) ≤ a[σr( f xi, f 2xi) + σr(xi, f xi)].
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By induction, we obtain

σr( f n−1xi, f nxi) ≤ (
a

1− a
)n−1σr(xi, f xi), (7)

knowing that the considered graph G is simple and from (6) we can conclude that f n−1xi 6= f nxi for
all n ∈ N, which allow us to use the rectangular inequality below.

Now, in order to use the rectangular inequality, we need to consider the cases N odd and N even:

Case 1: N = 2p + 1 (i.e., N odd)

σr( f nx, f ny) = σr( f nx0, f nxN)

≤ σr( f nx0, f nx1) + σr( f nx1, f nx2) + σr( f nx2, f nx3) + ...σr( f nxN−1, f nxN)

≤ a[σr( f n−1x0, f nx0) + σr( f n−1x1, f nx1) + σr( f n−1x1, f nx1)

+ σr( f n−1x2, f nx2) + ... + σr( f n−1xN−1, f nxN−1) + σr( f n−1xN , f nxN)]

≤ a[σr( f n−1x0, f nx0) + 2
N−1

∑
k=1

σr( f n−1xk, f nxk) + σr( f n−1xN , f nxN)].

Using (7), we get

σr( f nx, f ny) ≤ aσr( f n−1x, f nx) + (
a

1− a
)Nr(x, y) + aσr( f n−1y, f ny),

where r(x, y) = 2(1− a)
N−1

∑
k=1

σr(xk, f xk).

Case 2: N = 2p (i.e., N even)

σr( f nx, f ny) = σr( f nx0, f nxN)

≤ σr( f nx0, f nx1) + σr( f nx1, f nx2) + ... + σr( f nxN−3, f nxN−2) + σr( f nxN−2, f nxN)

≤ a[σr( f n−1x0, f nx0) + σr( f n−1x1, f nx1) + σr( f n−1x1, f nx1)

+ σr( f n−1xN−2, f nxN−2) + σr( f n−1xN−2, f nxN) + σr( f n−1xN , f nxN)]

≤ a[σr( f n−1x0, f nx0) + 2(
a

1− a
)n−1

N−2

∑
k=1

σr( f n−1xk, f nxk) + σr( f n−1xN , f nxN)]

≤ aσr( f n−1x, f nx) + (
a

1− a
)nr(x, y) + aσr( f n−1y, f ny),

where r(x, y) = 2(1− a)
N−2

∑
k=1

σr(xk, f xk).

Finally, we obtain

σr( f nx, f ny) ≤ aσr( f n−1x, f nx) + (
a

1− a
)nr(x, y) + aσr( f n−1y, f ny),

where

r(x, y) =


2(1− a)

N−1

∑
k=1

σr(xk, f xk), if N = 2p + 1,

2(1− a)
N−2

∑
k=1

σr(xk, f xk), if N = 2p.
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Theorem 1. Let (X, σr) be a σr-complete rectangular metric-like space endowed with a graph G and f : X −→
X be a continuous Gr-Kannan contraction. We suppose that:

1. G is weakly connected,
2. for any (xn)n∈N, if xn −→ x as n −→ ∞ and (xn, xn+1) ∈ E(G) ∀n ∈ N, then there is a subsequence

(xkn)n∈N such that (xkn , x) ∈ E(G) ∀n ∈ N.

Then, f has a unique fixed point and lim
n−→∞

f nx = x∗.

Proof. Let x ∈ X. By taking y = f x in lemma 1, we obtain

σr( f nx, f n+1x) ≤ aσr( f n−1x, f nx) + (
a

1− a
)nr(x, f x) + aσr( f ny, f n+1x) ∀n ∈ N∗.

Therefore,

σr( f nx, f n+1x) ≤ a
1− a

σr( f n−1x, f nx) +
an

(1− a)n+1 r(x, f x).

Now, using (7), we get

σr( f nx, f n+1x) ≤ (
a

1− a
)nσr(x, f x) + n

an

(1− a)n+1 r(x, f x). (8)

Let α =
a

1− a
; then, α ∈ [0, 1). From (8), we have

n

∑
k=0

σr( f kx, f k+1x) ≤
n

∑
k=0

αkσr(x, f x) +
1

1− a

n

∑
k=0

r(x, f x)kαk

= σr(x, f x)
1− αn+1

1− α
+

r(x, f x)
1− a

n

∑
k=0

kαk.

Since α < 1, and the sequence
∞

∑
k=0

kαk is equivalent to o(
1
n2 ) that is convergent. Then,

∞

∑
k=0

σr( f kx, f k+1x) < ∞. (9)

Let’s prove that ( f nx)n≥0 is a σr-Cauchy sequence; that is, lim
n,p→∞

σr( f nx, f n+px) = 0 for all

n, p ∈ N.
To use the rectangular inequality, we need to consider the following two cases:

Case 1: p = 2s + 1

σr( f nx, f n+px) ≤ σr( f nx, f n+1x) + σr( f n+1x, f n+2x) + ...σr( f n+p−1x, f n+px)

≤
n+p−1

∑
k=n

σr( f kx, f k+1x) (10)

=
n+p−1

∑
k=0

σr( f kx, f k+1x)−
n−1

∑
k=0

σr( f kx, f k+1x).

Thus, from (9), we obtain

lim
n→∞

σr( f nx, f n+px) = 0 for all odd p ∈ N. (11)
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Case 2: p = 2s

σr( f nx, f n+px) ≤ σr( f nx, f n+1x) + σr( f n+1x, f n+2x) + ... + σr( f n+p−2x, f n+px)

≤
n+p−1

∑
k=n

σr( f kx, f k+1x) + σr( f n+p−2x, f n+px) (12)

=
n+p−1

∑
k=0

σr( f kx, f k+1x)−
n−1

∑
k=0

σr( f kx, f k+1x) + σr( f n+p−2x, f n+px).

Similarly, in case 1, we have
n+p−1

∑
k=0

σr( f kx, f k+1x) −
n−1

∑
k=0

σr( f kx, f k+1x) −→ 0 as n −→ ∞.

Let’s prove that σr( f n+p−2x, f n+px) −→ 0.
Using the second condition of the Gr-Kannan contraction, we obtain

σr( f n+p−2x, f n+px) ≤ a[σr( f n+p−3x, f n+p−2x) + σr( f n+p−1x, f n+px)]

≤ a
n+p

∑
k=0

σr( f kx, f k+1x) −→ 0 as n −→ ∞.

Then,
σr( f nx, f n+px) −→ 0 as n −→ ∞ for all even p ∈ N. (13)

Therefore, from (11) and (13), we obtain that σr( f nx, f n+px) converges to 0 as n, p −→ ∞. Thus,
( f nx)n≥0 is a σr-Cauchy sequence. From the completeness of (X, σ), there exists some x∗ ∈ X such
that lim

n→∞
f nx = x∗.

Now, let’s prove that x∗ is a fixed point of f . Since the graph G is weakly connected, there is at
least x0 ∈ X such that (x0, f x0) ∈ E(G̃); then, ( f nx0, f n+1x0) ∈ E(G̃) ∀n ∈ N.

Using the second assertion of the theorem and given the fact that lim
n→∞

f nx0 = x∗, there is a

subsequence ( f kn x0)n≥0 such that ( f kn x0, f x∗) ∈ E(G) for all n ∈ N.
Now, let’s apply the rectangular inequality to σr(x∗, f x∗). Due to the Definition 2, we need to

consider the following cases:

Case 1: If x∗ 6= f kn+1x0, x∗ 6= f kn+2x0, f x∗ 6= f kn+2x0 and f x∗ 6= f kn+1x0,

we obtain

σr(x∗, f x∗) ≤ σr(x∗, f kn+1x∗0) + σr( f kn+1x∗0 , f kn+2x∗0) + σr( f kn+2x∗0 , f x∗)

≤ σr(x∗, f kn+1x∗0) + σr( f kn+1x∗0 , f kn+2x∗0) + a[σr( f kn+1x∗0 , f kn+2x∗) + σr(x∗, f x∗)].

Then,

σr(x∗, f x∗) ≤ 1
1− a

σr(x∗, f kn+1x∗0) +
2

1− a
σr( f kn+1x∗0 , f kn+2x∗0). (14)

Using the fact that lim
n→∞

f nx = x∗, we get

σr(x∗, f x∗) ≤ 1
1− a

σr(x∗, x∗) +
2

1− a
σr(x∗, x∗)

=
3

1− a
σr(x∗, x∗). (15)

Since in rectangular metric-like space σr(x∗, x∗) is not necessarily zero, we need to prove it.
Let x ∈ X, by taking y = x in Lemma 1, we obtain:

σr( f nx, f nx) ≤ aσr( f n−1x, f nx) + (
a

1− a
)nr(x, x) + aσr( f n−1x, f nx).
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Letting n −→ ∞ and knowing that lim
n→∞

f nx = x∗ and (
a

1− a
)n −→ 0, we get

σr(x∗, x∗) ≤ aσr(x∗, x∗) + 0r(x, x) + aσr(x∗, x∗).

Since r(x, x) is constant, then σr(x∗, x∗) ≤ 2aσr(x∗, x∗). Therefore,

σr(x∗, x∗) = 0. (16)

Finally, from (15) and (16), we get σr(x∗, f x∗) = 0; then, f x∗ = x∗ that is x∗ is a fixed point of f .

Case 2: If x∗ = f kn+1x0 and then f x∗ = f kn+2x0,

from (4), we obtain

σr(x∗, f x∗) = σr( f kn+1x0, f kn+2x0)

≤ a[σr( f kn x0, f kn+1x0) + σr( f kn+1x0, f kn+2x0)].

Then,
σr( f kn+1x0, f kn+2x0) ≤

a
1− a

σr( f kn x0, f kn+1x0). (17)

Letting n −→ ∞ in (17) and knowing that lim
n→∞

f nx0 = x∗, we get

σr(x∗, f x∗) ≤ σr( f kn+1x0, f kn+2x0) < σr(x∗, x∗). (18)

Therefore, similarly to the precedent case, we obtain from (16) that f x∗ = x∗.

Case 3: If x∗ = f kn+2x0,

it is similar to Case 2.

Case 4: If f x∗ = f kn+2x0,

since lim
n→∞

f nx0 = x∗, then there exists N ∈ N such that x∗ = f N x0:

σr(x∗, f x∗) = σr( f N x0, f kn+2x0)

≤ a[σr( f N−1x0, f N x0) + σr( f kn+1x0, f kn+2x0)] (19)

< σr( f N−1x0, f N x0) + σr( f kn+1x0, f kn+2x0).

Letting n −→ ∞ in (20), we get

σr( f N−1x0, f N x0) + σr( f kn+1x0, f kn+2x0) −→ 2σr(x∗, x∗) as n −→ ∞.

Therefore, σr(x∗, f x∗) < 2σr(x∗, x∗) and, from (16), we obtain f x∗ = x∗.

Case 5: If f x∗ 6= f kn+2x0 and x∗ = f kn+1x0, this leads to a contradiction

Case 6: If f x∗ 6= f kn+1x0 and x∗ = f kn+2x0, it is the same reasoning in Case 5.

Let’s prove the uniqueness of x∗. Consider two fixed points x∗ and y∗ in X such that x∗ = lim
n→∞

f nx

and y∗ = lim
n→∞

f ny. By letting n −→ ∞ in (5) and using (16), we obtain that σr(x∗, y∗) ≤ 0; therefore,

x∗ = y∗.
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Example 3. Let X = [0, 1] be endowed with the following rectangular metric-like

σr(x1, x2) =

 1, if x1 = x2,
x1 + x2

2
, otherwise.

Define the graph G by E(G) = {(x1, x2) ∈ [0, 1]× [0, 1] : x1 ≥ x2} and let f self-map on [0, 1] such that
f x =

x
2

.

It is easy to verify that (X, σr) is a σr-complete rectangular metric-like space, G is weakly connected and f
is a Gr-Kannan contraction with a = 2

5 . Then, by Theorem 1, f has a unique fixed point that is u = 0.

Next, we prove the existence of a fixed point under another G-contraction called G-graphic contraction.

Definition 9. Let (X, σr) be a rectangular metric-like space endowed with a graph G. The mapping f : X −→
X is a G-graphic contraction if the following conditions hold:

• f preserve edge of G: (x, y) ∈ E(G) =⇒ ( f x, f y) ∈ E(G) ∀x, y ∈ X,
• there exists α ∈ [0, 1) such that

σr( f x, f 2x) ≤ ασr(x, f x) ∀x ∈ X f , (20)

σr( f x, f 3x) ≤ ασr(x, f 2x) ∀x ∈ X f , (21)

where X f = {x ∈ X : (x, f x) ∈ E(G) or ( f x, x) ∈ E(G)}.

Definition 10. A mapping f : X −→ X is called orbitally G-continuous if for all a, b ∈ X and any
sequence (kn)n∈N,

( f kn a) convergents to b and ( f kn a, f kn+1a) ∈ E(G)∀n ∈ N implies f ( f kn a) −→ f b.

Lemma 2. Let (X, σr) be a rectangular metric-like space endowed with a graph G. Let f : X −→ X be a
G-graphic contraction. If x ∈ X f , then there exists r(x) ≥ 0, r1(x) ≥ 0 such that

σr( f n, f n+1x) ≤ αnr(x) ∀n ∈ N, (22)

σr( f n, f n+2x) ≤ βnr1(x) ∀n ∈ N. (23)

Proof. Consider x ∈ X f , and let’s discuss the two cases (x, f x) ∈ E(G) and ( f x, x) ∈ E(G).
If (x, f x) ∈ E(G), then, by induction, we obtain ( f nx, f n+1x) ∈ E(G). Thus, using (20), we get

σr( f n, f n+1x) ≤ αnr(x),

where r(x) = σr(x, f x). If ( f x, x) ∈ E(G), we have ( f n+1x, f nx) ∈ E(G). By the same procedure
above, we obtain the desired result.

Similarly, we prove the inequality (23) where r1(x) = σr(x, f 2x).

Theorem 2. Let (X, σr) be a σr-complete rectangular metric-like space endowed with a graph G. Let f : X −→
X be a G-graphic contraction and orbitally G-continuous.

Suppose that the triplet (X, σr, G) satisfies the following condition (P):
For any (xn)n∈N in X, if xn −→ x and (xn, xn+1) ∈ E(G) (or respectively (xn+1, xn) ∈ E(G)) ∀n ∈ N,

then there is a subsequence (xkn)n∈N with (xkn , x) ∈ E(G) (or respectively (x, xkn) ∈ E(G) ).
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Then, the following statements hold:

1. For any x ∈ X f , the restriction of f to [x]G̃ has a fixed point.
2. If G is weakly connected and X f 6= ∅, f has a fixed point.

Proof. 1. Let x ∈ X f . Then, from lemma 2, there exists r(x) ≥ 0 such that σr( f nx, f n+1) ≤ αnr(x)
∀n ∈ N.

Let n, m ∈ N m > n; we claim that σr( f nx, f n+mx) −→ 0 as n, m −→ ∞. To prove the claim,
we need to consider the following cases.

Case 1 : If there exists n ∈ N such that f nx = f n+1x.
Then, f n+mx = f n+1x and σr( f nx, f n+mx) = σr( f nx, f n+1x) ≤ αnr(x) −→ 0 as n −→ ∞.

Case 2 : n + m = 2p + 1 (n + m is odd) and for all n ∈ N f nx 6= f n+1x.

σr( f nx, f n+mx) ≤ σr( f nx, f n+1x) + σr( f n+1x, f n+2x) + ... + σr( f 2p−1x, f 2px)

+ σr( f 2p−1x, f 2p+1x)

≤ αnr(x) + αn+1r(x) + ... + αn+m−1r(x) (24)

≤
m

∑
k=1

αn+k−1r(x).

Case 3 : n + m = 2p (n + m is even) and f nx 6= f n+1x ∀n ∈ N.

σr( f nx, f n+mx) ≤ σr( f nx, f n+1x) + σr( f n+1x, f n+2x) + ... + σr( f n+m−3x, f n+m−2x)

+ σr( f n+m−2x, f n+mx)

≤ αnr(x) + αn+1r(x) + ... + αn+m−3r(x) + σr( f n+m−2x, f n+mx)

≤
m−2

∑
k=1

αn+k−1r(x) + σr( f n+m−2x, f n+mx)

≤
m+1

∑
k=1

αn+k−1r(x) + σr( f n+m−1x, f n+m+1x) (25)

≤
m+1

∑
k=1

αn+k−1r(x) + σr( f n+m−1x, f n+mx) + σr( f n+mx, f n+m+2x)

+ σr( f n+m+2x, f n+m+1x)

≤
m+1

∑
k=1

αn+k−1r(x) + αn+m−1r(x) + αn+mr1(x) + αn+m+1r(x).

Using the fact that 0 ≤ α < 1 and taking the limits in (24) and (25), we obtain

σr( f nx, f n+mx) −→ 0 as n, m −→ ∞. (26)

Hence, ( f nx)n∈N is a σr-Cauchy sequence.

From the σr-completeness of the rectangular metric-like space, there exists u ∈ X such that
f nx −→ u, −→ ∞.

Given that x ∈ X f , we get f nx ∈ X f for all n ∈ N.

Now, assume that (x, f x) ∈ E(G) (which can be done also if ( f x, x) ∈ E(G)). By the property (P),
there exists a subsequence ( f kn x)n∈N of ( f nx)n∈N such that ( f kn x, u) ∈ E(G) ∀n ∈ N. Thereby,
a path in G from x to u can be formed by the points: x, f x, ..., f k1 x, u; then, u ∈ [x]G̃.
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Since f is orbitally G-continuous, we obtain that f ( f kn x) −→ f u, which gives f u = u. Thus, u is
a fixed point for f|[x]G̃

.

2. Let x ∈ X f . Since G is weakly connected, we have X = [x]G̃ and, using 1, we get that f has a
fixed point.

Example 4. Let X = [0, 1] be endowed with the following rectangular metric-like

σr(a, b) =

 1, if a = b,
a + b

2
, otherwise.

Consider E(G) = {(0, 0)} ∪ {(0, a), a ≥ 1
2} ∪ {(a, b), a, b ∈ (0, 1)}, and the mapping

f : [0, 1] −→ [0, 1] as f ollows : f x =


x
2

, if x ∈ (0, 1),

0, if x = 0,
1, if x = 1.

Then, G is weakly connected and f is a G-graphic contraction. Indeed, f preserves edges of G and
satisfies (20). In addition to this, f is orbitally G-continuous. Thereby, all conditions of theorem 2 are satisfied;
then, the mapping f has two fixed points that is f (0) = 0 and f (1) = 1.

Inspired by the work of [15], we introduce the notion of (G–φ)-contraction and we state a new
fixed point theorem.

Definition 11. Let (X, σr) be a rectangular metric-like space endowed with a graph G. A map f is called to be
a (G–φ)-contraction if

1. for all x, y ∈ X,
(x, y) ∈ E(G) implies ( f x, f y) ∈ E(G), (27)

2. for all (x, y) ∈ E(G),
σr( f x, f y) ≤ σr(x, y)− φ(σr(x, y)), (28)

where φ : [0, ∞) −→ [0, ∞) is a nondecreasing continuous function such that φ(t) = 0 if and only if t = 0.

Lemma 3. Let (X, σr) be a rectangular metric-like space and f : X −→ X a (G–φ)-contractive mapping.
Then, for any x ∈ X and y ∈ [x]G̃, we have

lim
n→∞

σr( f nx, f ny) = lim
n→∞

r( f nx, f ny) = 0, (29)

where r(x, y) =
m

∑
i=1

σr(si−1, si), {si}m
i=0 is a path from x to y.

Proof. Consider x ∈ X and y ∈ [x]G̃. Then, there exists a path {si}k
i=0 from x to y in the graph G.

From (27) and (28), we get ( f nsi−1, f nsi) ∈ E(G) for all i = 1, 2, ..., k and n ∈ N and

σr( f nsi−1, f nsi) ≤ σr( f n−1si−1, f n−1si)− φ(σr( f n−1si−1, f n−1si)), (30)

≤ σr( f n−1si−1, f n−1si). (31)

Thereby, {σr( f nsi−1, f nsi)} is a nonincreasing sequence.
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Since σr( f nsi−1, f nsi) ≥ 0, then the sequence is bounded by 0 and converges to some l. By taking
the limit as n −→ ∞ in (30), we get l ≤ l − φ(l) ≤ l =⇒ φ(l) = 0; then, using the property of the
mapping φ, we get l = 0. Therefore,

lim
n→∞

σr( f nsi−1, f nsi) = 0 ∀i = 1, ..., k ∀n ∈ N. (32)

Now, we use the rectangular inequality; for that, we need to distinguish the two cases k odd and
k even where k is the length of the path between x and y.

Case 1: k = 2p + 1

σr( f nx, f ny) = σr( f ns0, f nsk) = σr( f ns0, f ns2p+1)

≤ σr( f ns0, f ns1) + σr( f ns1, f ns2) + σr( f ns2, f ns2p+1)

≤ σr( f ns0, f ns1) + σr( f ns1, f ns2) + ... + σr( f ns2p, f ns2p+1)

=
k

∑
i=1

σr( f nsi−1, f nsi) = r( f nx, f ny).

By taking the limit as n −→ ∞ and using (32), we obtain

0 ≤ lim
n→∞

σr( f nx, f ny) ≤ lim
n→∞

r( f nx, f ny) = 0.

Then, lim
n→∞

σr( f nx, f ny) = lim
n→∞

r( f nx, f ny) = 0.

Case 2: k = 2p

σr( f nx, f ny) = σr( f ns0, f nsk) = σr( f ns0, f ns2p)

≤ σr( f ns0, f ns1) + σr( f ns1, f ns2) + σr( f ns2, f ns2p)

≤ σr( f ns0, f ns1) + σr( f ns1, f ns2) + ... + σr( f ns2p−3, f ns2p−2) + σr( f ns2p−2, f ns2p)

=
2p

∑
i=1

σr( f nsi−1, f nsi)− σr( f ns2p−2, f ns2p−1)− σr( f ns2p−1, f ns2p) + σr( f ns2p−2, f ns2p (33)

≤
2p

∑
i=1

σr( f nsi−1, f nsi) + σr( f nsk−2, f nsk).

= r( f nx, f ny) + σr( f ns2p−2, f nsy).

Similar to the result obtained in (32), we obtain that lim
n→∞

σr( f nsi−2, f nsi) = 0 for all i = 1, ..., k and

n ∈ N. Then, lim
n→∞

σr( f ns2p−2, f nsy) = lim
n→∞

σr( f ns2p−2, f ns2p) = 0. Therefore, from (33), we get

lim
n→∞

σr( f nx, f ny) = lim
n→∞

r( f nx, f ny) = 0.

Theorem 3. Let (X, σr) be a σr-complete rectangular metric-like space endowed with a graph G. Let f : X −→
X a (G–φ)-contractive mapping. Suppose that the following conditions hold:

(i) for any sequence { f nx} in X such that f nx −→ y ∈ X with ( f n+1, f nx) ∈ E(G), there exists a
subsequence { f nk x} of { f nx} and n0 ∈ N such that (y, f nk x) ∈ E(G) for all k ≥ n0.

(ii) There exists some x0 ∈ X f := {x ∈ X/(x, f x) ∈ E(G)}.

Then, f|[x0]G̃
has a unique fixed point x∗ ∈ [x0]G̃ and f ny converges to x∗ for all y ∈ [x0]G̃.

Proof. Let x0 ∈ X f i.e ( f x0, x0) ∈ E(G) then f x0 ∈ [x0]G̃. Let’s prove that the sequence { f nx0} is
σr-Cauchy.
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Using Lemma 3, we obtain lim
n→∞

r( f n+1x0, f nx0) = 0. Then, for ε > 0, there exists n0 ∈ N such

that
r( f n0+1x0, f nx0) ≤ inf{ ε

2
, φ(σr(xj, f nx0))}, (34)

where the vertex xj ∈ X is adjacent to f nx0 with a direct edge. Since f x0 ∈ [x0]G̃, for example,
there exists a path between x0 and f x0. By induction, we built a path between f n0 x0 and f n0+1x0 in G̃.
Subsequently, we get the existence of at least one vertex xj ∈ X adjacent to f nx0.

Let’s denote for any x ∈ X and any a ∈ R+ the following balls:

Ba(x) = {x′ ∈ [x]G̃ : r(x, x′) < a for at least one path in G̃ from x to x′}, (35)

Ba(x) = {x′ ∈ [x]G̃ : r(x, x′) ≤ a for at least one path in G̃ from x to x′}. (36)

Now, we claim that f (Bε( f n0 x0)) ⊂ Bε( f n0 x0), which leads us to get f n0+kx0 ∈ [ f n0 x0]G̃.
Let y ∈ Bε( f n0 x0). Let {zi}k

i=0 be a path between z and f n0 x0 such that z0 = y and zk = f n0 x0.
Then, { f zi}k

i=0 is a path between f y and f f n0 x0. Therefore, f y ∈ [ f n0+1x0]G̃. Since we proved above
that there exists a path between f n0 x0 and f n0+1x0, then f y ∈ [ f n0 x0]G̃.

Thus, two cases arise:

Case 1: If 0 < r(y, f n0 x0) ≤
ε

2

Since y ∈ [ f n0 x0]G̃, there exists a path { f y, ..., f n0+1x0, ..., f n0 x0} between f y and f n0 x0. Then,

r( f y, f n0 x0) = r( f y, f n0+1x0) + r( f n0+1x0, f n0 x0)

=
k

∑
i=1

σr( f zi−1, f zi) + r( f n0+1x0, f n0 x0).

Using (28), we get

r( f y, f n0 x0) ≤
k

∑
i=1

σr(zi−1, zi)− φ(σr(zi−1, zi)) + r( f n0+1x0, f n0 x0)

≤
k

∑
i=1

σr(zi−1, zi) + r( f n0+1x0, f n0 x0)

= r(y, f n0 x0) + r( f n0+1x0, f n0 x0)

≤ ε

2
+

ε

2
= ε.

Case 2: If
ε

2
< r(y, f n0 x0) ≤ ε

Similarly, we have

r( f y, f n0 x0) ≤
k

∑
i=1

σr(zi−1, zi)− φ(σr(zi−1, zi)) + r( f n0+1x0, f n0 x0)

≤
k

∑
i=1

σr(zi−1, zi)− φ(σr(zk−1, zk)) + r( f n0+1x0, f n0 x0).

Using (34), we get r( f n0+1x0, f n0 x0) ≤ φ(σr(xj, f n0 x0)) = φ(σr(xj, f n0 zk)), where xj is a vertex
adjacent to zk. Let xj = zk−1. Then, we obtain r( f n0+1x0, f n0 x0) ≤ φ(σr(zk−1, zk). Therefore,
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r( f y, f n0x0) ≤
k

∑
i=1

σr(zi−1, zi)− φ(σr(zk−1, zk)) + φ(σr(zk−1, zk))

≤ r(y, f n0 x0)

≤ ε.

Thus, we proved that, for y ∈ Bε( f n0 x0), r( f y, f n0x0) ≤ ε i.e., f y ∈ Bε( f n0 x0), which implies that
f (Bε( f n0 x0)) ⊂ Bε( f n0 x0); thereafter, the claim was proved.

Since f n0+1x0 ∈ Bε( f n0 x0), then f n0+2x0 = f n0+1x0 ⊂ Bε( f n0 x0). By repeating this procedure for
k = 1, 2, ... and knowing that f n0+kx0 ∈ [ f n0 x0]G̃, it follows that f nx0 ∈ Bε( f n0 x0) for all n ≥ n0. Thus,

σr( f nx0, f n0 x0) ≤ r( f nx0, f n0 x0) ≤ ε,

which gives us that f nx0 ∈ Bε( f n0 x0) ∀n ≥ n0. Finally, { f nx0} is a σr-Cauchy sequence in X. Since X
is σr-complete, there exists l ∈ X such that f nx0 −→ l, n −→ ∞.

From condition i, there exists a subsequence { f nk x0} of { f nx0} and n0 ∈ N such that (l, { f nk x0}) ∈
E(G) ∀k ∈ N and k ≥ n0.

Using (28), we get

σr( f l, f nk+1x0) ≤ σr(l, f nk x0) + φ(σr(l, f nk x0)) (37)

= σr(l, f f nk−1x0) + φ(σr(l, f f nk−1x0)). (38)

Since f nk x0 −→ l as n −→ ∞ for all n ∈ N, then we obtain lim
→∞

f nk−1x0 = lim
→∞

f nk+1x0 = 0 Letting

k −→ ∞ in (38), we get
σr( f l, l) ≤ σr(l, f l) + φ(σr(l, f l)).

Thus, φ(σr(l, f l)) = 0 and, from the property of φ, we have σr(l, f l) = 0. Then, f l = l; that is, l is
a fixed point of f .

Let’s prove that f ny −→ l, as n −→ ∞. We consider the path {x0, f x0, ..., f n1 x0, ..., f n0 x0, l}
between x0 and l in G̃. Then, l ∈ [x0]G̃. Let y ∈ [x0]G̃ arbitrary. Then, from Lemma 3, we obtain

lim
n→∞

σr( f ny, f nx0) = 0 =⇒ lim
n→∞

f ny = l.

Now, suppose that f has two fixed points u and v. Then, from Lemma 3, σr(u, v) =

σr( f nu, f nv) −→ 0 as n −→ ∞. Hence, u = v and we get the uniqueness of the fixed point.

Example 5. Consider X = [0, ∞) and the rectangular metric-like σr(x, y) = max{x, y}. Then, it is easy to
verify that (X, σ) is a complete rectangular metric-like space. Let us define the mapping f for each x ∈ X by

f x =
x2

x + 1
and φ(t) =

t
t + 1

.

Let E(G) = {(x, y) ∈ [0, ∞)× [0, ∞)|x ≥ y}.
We may assume w.l.o.g that y ≤ x. Then, it is easy to prove that f is a (G–φ)-contraction and satisfies the

conditions of Theorem 3. Thus, f has a fixed point (u = 0).

4. Conclusions

In closing, the author would like to bring to the reader’s attention that the following question is
still open.

Question 1. Let (X, σr) be a σr-complete rectangular metric-like space endowed with a graph G and g : X −→
X be a continuous mapping such that
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1.
∀x, y ∈ X, If (x, y) ∈ E(G), then (gx, gy) ∈ E(G), (39)

2. There exists 0 ≤ a <
1
2

such that

σr(gx, gy) ≤ a max{σr(x, gx) + σr(y, gy), σr(x, y)} ∀x, y ∈ E(G). (40)

In addition, assume that:

1. G is weakly connected.
2. For any (tn)n∈N, if (tn, tn+1) ∈ E(G) ∀n ∈ N and lim

n→∞
tn = t; then, there is a subsequence (tkn)n∈N

with (tkn , t) ∈ E(G) ∀n ∈ N.

Given all the above conditions, does g have a unique fixed point?

Note that, if the above conjecture is true, then it will have a variety of interesting applications.

Question 2. Let (X, σr) be a σr-complete rectangular metric-like space endowed with a graph G and g : X −→
X be a continuous mapping such that

1.
∀x, y ∈ X, If (x, y) ∈ E(G), then (gx, gy) ∈ E(G), (41)

2. There exists 0 ≤ a <
1
2

such that

σr(gx, gy) ≤ a max{σr(x, y),
σr(x, x) + σr(y, y)

2
} ∀x, y ∈ E(G). (42)

In addition, assume that:

1. G is weakly connected.
2. For any (tn)n∈N, if (tn, tn+1) ∈ E(G) ∀n ∈ N and lim

n→∞
tn = t, then there is a subsequence (tkn)n∈N

with (tkn , t) ∈ E(G) ∀n ∈ N.

Given all the above conditions, does g have a unique fixed point?
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