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Abstract: We extend the notion of super-Minkowski space-time to include Zn
2 -graded (Majorana)

spinor coordinates. Our choice of the grading leads to spinor coordinates that are nilpotent but
commute amongst themselves. The mathematical framework we employ is the recently developed
category of Zn

2 -manifolds understood as locally ringed spaces. The formalism we present resembles
N -extended superspace (in the presence of central charges), but with some subtle differences due to
the exotic nature of the grading employed.
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1. Introduction

Supersymmetry was independently discovered by three groups of authors: Gervais & Sakita [1],
Gol’fand & Lichtman [2] and Volkov & Akulov [3] in the early 1970s. The first example of an
interacting supersymmetric quantum field theory in four dimensions was due to Wess & Zumino [4].
This non-classical symmetry is more than just a way of relating bosonic and fermionic degrees
of freedom as supersymmetric field theories can have some remarkable properties. For example,
supersymmetry can lead to milder divergences and even ‘non-renormalisation theorems’; offer a
solution to the hierarchy problem in Grand Unified Theories; remove the tachyon from the spectrum of
string theories and naturally leads to a theory of gravity when promoted to a local gauge theory.
However, we stress that no experimental evidence that Nature utilises supersymmetry has yet
been found. More than this, current experimental data suggest that the (constrained) minimal
supersymmetric standard model is disfavoured as a potential realistic model (see Autermann [5]). It is
even said that “supersymmetry is a solution looking for a problem” (see for example Kaku [6] (p. 101)).

Alongside the vast wealth of results from theoretical physics, there has been steady growth in
the mathematical aspects of supersymmetry since its conception. This knowledge accumulates to the
theory of supermanifolds and super Lie groups, with the definition of a supermanifold being due to
Berezin & Leı̆tes [7]. Much of the fundamental work was carried out between 1965 and 1975 by Berezin
and his collaborators. At its ‘bare bones’ supermathematics is the study of Z2-graded structures. The
study of such things is well motivated by physics via the fact that quasi-classical descriptions of
fermions and Faddeev–Popov ghosts both require anticommuting fields. From a pure mathematical
perspective, various ‘sign rules’ appear naturally in algebraic topology and homological algebra (see
Mac Lane [8]).

Some very powerful methods for building supersymmetric actions come under the umbrella of
superspace methods as first developed (operationally) by Salam & Strathdee [9]. These methods allow
for a more geometric picture of supersymmetry as well as giving practical methods of constructing
theories. However, the formalism can become clumsy, and not all supersymmetric theories have a
superspace formulation. For instance, it is well known that there are no off-shell formulations of d = 4,
N = 4 theories with a finite number of auxiliary fields. One has to resort to projective (see [10,11]) or
harmonic superspaces (see [12]) in order to cover this situation .
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At the most basic level, one postulates that standard four-dimensional Minkowski space-time
is extended by appending four anticommuting Majorana spinors. Thus, N = 1 super-Minkowski
space-time is the supermanifold that admits (global) coordinates

(xµ, θα) .

The supersymmetry transformations on this supermanifold are

xµ 7→ xµ +
1
4

εβθα(Cγµ)αβ, θα 7→ θα + εα, (1)

where εα is an anticommuting Majorana spinor-valued parameter. For a detailed introduction to
supersymmetry we suggest West [13], and Wess & Bagger [14]. For an introduction to superspace
and methods of quantising supersymmetric field theories one may consult Gates et al. [15]. One can
also consult the encyclopedia edited by Duplij, Siegel & Bagger [16] for many details pertaining to
supersymmetry and related mathematics, including historical remarks in the section “SUSY Story”
written by the founders of supersymmetry.

Extended supersymmetries are then constructed by appending more and more anticommuting
Majorana spinors. For example, N = 2 super-Minkowski space-time comes with local coordinates
(xµ, θi

α), i = 1, 2. In particular, we still have a supermanifold and thus θ1θ2 = −θ2θ1. The case for
N > 2 is analogous. Moreover, N -extended supersymmetry transformations similar to (1) exist.

However, mathematically there is no reason not to consider appending sets of Majorana spinors
that do not necessarily anticommute. Indeed, non-anticommuting superspaces have long been studied
in the physics literature, see for example [17–22]. The inspiration for many of these works is the
well-known fact that various background fields in string theory lead to noncommutative deformations.
For example, R-R field backgrounds lead to ‘θ − θ’ deformations and gravitino backgrounds lead to
‘x− θ’ deformations. We must also mention the work of Frydryszak who studied nilpotent commuting
variables and the corresponding generalisation of supersymmetry [23–25].

We will consider the very special instance of Majorana spinors that are Zn
2 -graded commutative.

We view this situation as a very mild form of ‘θ − θ’ non-anticommutativity. This should, of
course, be compared with Green’s notion of a parafermion (see Green [26], and also Volkov [27]
who independently introduced the concept). Because of how we will assign the Zn

2 -grading the
supersymmetry algebra ‘[Q, Q]∼P + Z’ where we allow a central charge Z, is not given in terms
of just an anticommutator, some terms will be given in terms of a commutator, collectively we use
Zn

2 -graded commutators. This will complicate the understanding of Bogomol’nyi-Prasad-Sommerfield
(BPS) states, for example. At this juncture, we should also mention the work of Zheltukhin [28] who
defined a ‘para-Fermionic superspace’ in relation to a generalisation of the Neveu–Ramond–Schwarz
superstring. As far as we know, Zheltukhin is the first to consider a ‘superspace’ formed by replacing
standard Grassmann coordinates with a Z2

2-graded version. We must also mention the work of
Vasil’iev [29], in which a Z2

2-Lie algebra structure was uncovered in supergravity with a positive
cosmological constant by modifying spinor conjugation. Moreover, Zn

2 -gradings appear in the context
of parasupersymmetry, see for example Yang & Jing [30] and Yang, Jing & Ping [31]; can be found
behind the symmetries of the Lévy–Leblond equation, see Aizawa, Kuznetsova, Tanaka & Toppan [32];
and Tolstoy’s alternative super-Poincaré symmetries [33].

Technically we enter the world of Zn
2 -manifolds (or coloured supermanifolds) which informally are

‘manifolds’ for which the structure sheaf has a Zn
2 -grading. The n = 1 case is just the standard theory

of supermanifolds. One can view supermanifolds as a mild form of noncommutative geometry, and
similarly one can view Zn

2 -manifolds as a mild form of ‘noncommutative supergeometry’. However, as
almost all of the differential geometry of supermanifolds and Zn

2 -manifolds can be treated as interpreted
using the methods from classical differential geometry and algebraic geometry. Thus, one should
view Zn

2 -manifolds as a starting place for more general noncommutative supergeometries where more
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abstract algebraic methods are needed (see for example de Goursac [34], Grosse & Reiter [35] and
Schwarz [19]).

In this paper, we will build, via a Zn
2 -graded generalisation of the super-Poincaré algebra, a

Zn
2 -graded version of super-Minkowski space-time. The methods employed are minor modifications

of the standard methods of coset spaces as applied to standard supersymmetry. The aim of this
paper is to point out that a rather direct generalisation of extended supersymmetry to the setting
of Zn

2 -graded geometry exists. Our methodology is to start from a Zn
2 -graded generalisation of a

Haag-Łopuszański-Sohnius type algebra [36] and formally integrate it to construct a Zn
2 -manifold

(see for example [14] (Section IV) for the standard case). The constructions formally look very similar
to the standard case of N -extended supersymmetry. In part, this is why the starting Zn

2 -Lie algebra
was chosen as it is.

The organisation of this paper is as follows: In Section 2 we review the locally ringed space
approach to Zn

2 -manifolds and establish our conventions with spinors. In Section 3 we start from
a Zn

2 -extended Poincaré algebra, build the corresponding Zn
2 -Minkowski space-time, and consider

some basic consequences of these constructions. Due to the fact that for the n = 2 case some of the
expressions greatly simplify, we present further details of Z2

2-Minkowski space-time including its
canonical Z2

2-SUSY structure. We end this paper with some concluding remarks in Section 4.

2. Preliminaries

2.1. Zn
2 -Manifolds and Their Basic Geometry

We bring the reader’s attention to [37–40] where details of the locally ringed space approach
to Zn

2 -manifolds can be found. Prior to these works is [41], where the functor of points approach
was used to define Zn

2 -manifolds or coloured supermanifolds. We also draw the reader’s attention to
Marcinek [42]. We will draw upon these works heavily and not present proofs of any formal statements.
Moreover, we will largely follow standard notation from the theory of supermanifolds. We restrict our
attention to real structures and do not consider the complex analogues at all.

Definition 1 ([37]). A locally Zn
2 -ringed space, n ∈ N \ {0}, is a pair X := (|X|,OX) where |X| is a

second-countable Hausdorff topological space and a OX is a sheaf of Zn
2 -graded, Zn

2 -commutative associative
unital R-algebras, such that the stalks OX,p, p ∈ |X| are local rings.

In this context, Zn
2 -commutative means that any two sections a, b ∈ OX(|U|), |U| ⊂ |X| open, of

homogeneous degree deg(a) and deg(b) ∈ Zn
2 , respectively, commute with the sign rule

ab = (−1)〈deg(a),deg(b)〉 ba,

where 〈 , 〉 is the standard scalar product on Zn
2 .

One should, of course, be reminded of the definition of a superspace, and indeed standard
superspaces are examples of locally Zn

2 -ringed space for n = 1. To pass from a general superspace to a
supermanifold one needs the standard local model of Rp|q. The definition of a Zn

2 -manifold is similar
to that of a supermanifold, but with some important subtle differences.

First, we need to fix a convention on how we fix the order of elements in Zn
2 , we do this

lexicographically by filling in zeros from the left and ones from the right. We will refer to this
ordering as the standard ordering. For example, with this choice of ordering
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Z2
2 =

{
(0, 0), (0, 1), (1, 0), (1, 1)

}
,

Z3
2 =

{
(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)

}
,

Z4
2 =

{
(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0),

(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0),

(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1) , (1, 1, 1, 0), (1, 1, 1, 1)
}

.

Note that slightly different conventions with the ordering have been employed in the literature.
A tuple q = (q1, q2, · · · , qN), where N = 2n − 1 provides all the information about the non-zero degree
coordinates, which we collectively write as ξ. For example, specifying q = {2, 3, 6} means that we
have two coordinates of degree (0, 1), three of degree (1, 0), and six of degree (1, 1).

Definition 2 ([37]). A (smooth) Zn
2 -manifold of dimension p|q is a locally Zn

2 -ringed space M := (|M|,OM),
which is locally isomorphic to the Zn

2 -ringed space Rp|q :=
(
Rp, C∞

Rp [[ξ]]
)
. Here C∞

Rp is the structure sheaf on
the Euclidean space Rp. Local sections of Rp|q are formal power series in the Zn

2 -graded variables ξ with smooth
coefficients, i.e.,

C∞(U p)[[ξ]] =

{
∞

∑
α∈NN

ξα fα | fα ∈ C∞(U p)

}
,

for any U p ⊂ Rp open. Morphisms between Zn
2 -manifolds are morphisms of Zn

2 -ringed spaces, that is, pairs
(φ, φ∗) : (|M|,OM) → (|N|,ON) consisting of a continuous map φ : |M| → |N| and sheaf morphism
φ∗ : ON(|V|)→ OM(φ−1(|V|)), where |V| ⊂ |N| is open.

Example 1 (The local model). The locally Zn
2 -ringed space U p|q :=

(
U p, C∞

U p [[ξ]]
)
, where U p ⊆ Rp, is

naturally a Zn
2 -manifold, we refer to such Zn

2 -manifolds as Zn
2 -superdomains of dimension p|q. We can employ

(natural) coordinates (xa, ξ i) on any Zn
2 -superdomain, where xa form a coordinate system on U p and the ξ i are

formal coordinates.

Canonically associated with any Zn
2 -graded algebra A is the homogeneous ideal J of A generated

by all homogeneous elements of A having non-zero degree. If f : A → A′ is a morphism of Zn
2

-graded algebras, then f (JA) ⊆ JA′ . The J-adic topology plays a fundamental rôle in the theory of
Zn

2 -manifolds. In particular, these notions can be ‘sheafified’. That is, for any Zn
2 -manifold M, there

exists an ideal sheaf J , defined by J (|U|) = 〈 f ∈ OM(|U|) | f is of non-zero degree〉. The J -adic
topology on OM can then be defined in an obvious way (see [37] for details).

Many of the standard results from the theory of supermanifolds pass over to Zn
2 -manifolds.

For example, the topological space |M| comes with the structure of a smooth manifold of dimension p,
hence our suggestive notation. There exists a canonical projection ε : OM(|M|)→ C∞(|M|), and it can
be shown that J = ker ε.

The immediate problem with Zn
2 -manifolds is that J is not nilpotent—for standard

supermanifolds the ideal sheaf is nilpotent and this is a fundamental property that makes the theory
of supermanifolds so well-behaved. However, this loss of nilpotency is replaced by the Hausdorff
completeness of the J -adic topology.

Proposition 1 ([37]). Let M be a Zn
2 -manifold. Then OM is J -adically Hausdorff complete as a sheaf of

Zn
2 -commutative rings, i.e., the morphism

OM → lim
←k∈N

O \ J k

naturally induced by the filtration of OM by the powers of J is an isomorphism.

The presence of formal power series in the coordinate rings of Zn
2 -manifolds forces one to rely on

the Hausdorff-completeness of the J -adic topology. This completeness replaces the standard fact that
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on supermanifolds, functions of Grassmann odd variables are always polynomials—a result that is
often used in extending results from manifolds to supermanifolds.

What makes Zn
2 -manifolds a very workable form of noncommutative geometry is the fact that

we have well-defined local models and that the structure of morphisms can (locally) be described
at the level of coordinates. That is, we have the chart theorem ([37] (Theorem 7.10)) that basically
says that morphisms between the local coordinates can be extended uniquely to morphisms of locally
Zn

2 -ringed spaces.
Let M be a Zn

2 -manifold, then an open Zn
2 -submanifold of M is a Zn

2 -manifold defined as

U :=
(
|U|,OM,|U|

)
,

where |U| ⊆ |M| is an open subset. From the definition of a Zn
2 -manifold, we know that for ‘small

enough’ |U| we have an isomorphism

(ϕ, ϕ∗) : U ∼→ U p|q .

This local identification allows us to construct a local coordinate system. Dropping explicit
reference to the local isomorphism, and so via minor abuse of notation, we write the local coordinates
as xA = (xa, ξ i). The commutation rules for these coordinates is determined by the scalar product on
Zn

2 inherited by the standard (Euclidean) scalar product on Rn , i.e.,

xAxB = (−1)〈deg(A),deg(B)〉 xBxA .

Changes of coordinates, i.e., different choices of the local isomorphisms, can be written
(using standard abuses of notation) as xA′ = xA′(x), where we understand the changes of coordinates
to respect the Zn

2 -grading. The subtlety here is that these changes of coordinates need not be polynomial
in coordinates of non-zero degree, generically we have a formal power series. We will refer to global
sections of the structure sheaf of a Zn

2 -manifold as functions and employ the standard notation
C∞(M) := OM(|M|).

Remark 1. It is clear that, much like standard supermanifolds, a Zn
2 -manifold is not ‘simply’ a collection of

topological points. The only topological points of M are the points of the reduced manifold |M|. To regain
some classical intuition one can employ Grothendieck’s functor of points. However, we will not need to do so
in this work. Or rather, we avoid using the functor of points and work formally in the rare instances we need
to—principally in defining group structures on Zn

2 -manifolds.

Example 2 (Zn
2 -graded Cartesian spaces). Directly from the definition, it is clear that Rp|q :=

(Rp, C∞(Rp)[[ξ]]) is a Zn
2 -manifold. Global coordinates (xa, ξ i) can be employed, where the coordinate map

is just the identity. In this paper, we will only meet Zn
2 -manifolds that are globally isomorphic to Rp|q for the

appropriate p and q.

Example 3 (Manifolds and supermanifolds). Rather trivially, smooth manifolds are Z0
2-manifolds. Similarly,

supermanifolds are Z1
2-manifolds. Note that for supermanifolds, Grassmann odd coordinates are nilpotent, and

thus functions are polynomial in odd variables.

Example 4 (Double vector bundles). A double vector bundle D is manifold that has a pair of commuting
actions of the multiplicative monoid of reals: hi : R× D → D (i = 1, 2). This amounts to being able to find
homogeneous (with respect to the natural bi-weight) local coordinates (we suppress indices)

( x︸︷︷︸
(0,0)

, y︸︷︷︸
(0,1)

, z︸︷︷︸
(1,0)

, w︸︷︷︸
(1,1)

),
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see [43,44]. Admissible changes of homogeneous local coordinates are of the form

x′ = x′(x), y′ = yS(x), z′ = zT(x), w′ = wU(x) + zyV(x).

Given any double vector bundle, one can canonically associate, in a functorial way, a Z2
2-manifold by declaring

the commutation rules for the local coordinates to be determined by the bi-weight. The changes of coordinates
remain as given above. For more details consult [37] (Section 6), where the resulting Z2

2-manifold is denoted ΠD.

The notion of a vector field on a Zn
2 -manifold is naturally given as a Zn

2 -derivation acting on
sections of the structure sheaf, i.e., acting on (global) functions. A (homogeneous) vector field is
understood as a linear map X : C∞(M)→ C∞(M), that satisfies the Zn

2 -graded Leibniz rule

X( f g) = X( f )g + (−1)〈deg(X),deg( f )〉 f X(g),

for any f and g ∈ C∞(M). It is a simple exercise to see that we have a (left) module structure
over C∞(M). We denote the module of vector fields as Vect(M). Any vector field can be ‘localised’
(see [39] (Lemma 2.2)) in the sense that given |U| ⊂ |M| there always exists a unique derivation

X||U| : OM(|U|)→ OM(|U|),

such that X( f )||U| = X||U|( f|U|). Because of this local property, it is clear that one has a sheaf
of OM-modules formed by the local derivations—this defines the tangent sheaf of a Zn

2 -manifold
(see [39] (Definition 5)). Moreover, this sheaf is locally free and so admits a local basis. The upshot
of these considerations is that we can always locally write a vector field as one would on a manifold
using a choice of local coordinates, i.e.,

X = XA(x)
∂

∂xA ,

where the partial derivatives are defined as standard for the coordinates of degree zero and are defined
algebraically for the coordinates of degree non-zero. In the above expression, we drop the explicit
reference to the required restriction as is common in standard differential geometry. As for the case of
standard supermanifolds, the order of taking partial derivatives matters, but only up to signs,

∂

∂xA
∂

∂xB = (−1)〈deg(A),deg(B)〉 ∂

∂xB
∂

∂xA .

Under the commutator

[X, Y] := X ◦Y− (−1)〈deg(X),deg(Y)〉 Y ◦ X,

Vect(M) becomes a Zn
2 -Lie algebra (see [45–47]). The grading and symmetry of the Lie bracket are

clear, and one can check that the Jacobi identity (written here in Loday–Leibniz form)

[X, [Y, Z]] = [[X, Y], Z] + (−1)〈deg(X),deg(Y)〉 [Y, [X, Z]],

holds.
Any geometric object—say a function, vector field or tensor field—on a Zn

2 -manifold carries a
natural Zn

2 -grading. We will say that a homogeneous geometric object is even if the total degree
is even, and odd if the total degree is odd. Note that this does not determine the sign factors in
general expressions.

Remark 2. It is known that the structure sheaf of a Zn
2 -manifold is a nuclear Fréchet sheaf of Zn

2 -graded
Zn

2 -commutative associative unital algebras. Moreover, like real manifolds and supermanifolds, the structure
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sheaf can be fully recovered from the algebra of global functions. For example, it can be shown that two
Zn

2 -manifolds are diffeomorphic if and only if their algebras of global functions are isomorphic. Let us also
mention that the category of Zn

2 -manifolds admits finite products—an essential fact in any rigours treatment of
Zn

2 -Lie groups. None of this will feature in the later sections of this paper. For details, the reader should consult
Bruce & Poncin [48,49].

2.2. A Toy Z2
2-Superspace

Before giving a more careful description of Zn
2 -Minkowski space-time, we proceed with a simpler

toy superspace in which we have an underlying one-dimensional space-time. This will allow us to
sketch the ideas without the clutter of many indices and in particular spinor indices. Let us consider
the Z2

2-graded Lie algebra with generators P, Q1, Q2 and Z of Z2
2-degrees (0, 0), (0, 1), (1, 0) and (1, 1),

respectively, given by

[Q1, Q1] = [Q2, Q2] =
1
2

P, [Q2, Q1] =
1
2

Z ,

where all other Lie brackets vanish. Up to conventions, this is essentially two copies of supersymmetry
in one-dimension and a central extension. However, one must take care as we have Z2

2-graded Lie
brackets, the first two brackets are ‘anticommutators’ while the third is a ‘commutator’ in ‘non-graded
language’. We want to realise these generators as vector fields on some Z2

2-manifold, or more correctly
we are looking at the associated Z2

2-Lie group and the left-invariant vector fields. In this case, we
can more or less see by eye, i.e., without resorting to coset methods, what the Z2

2-manifold and
left-invariant vector fields should be. With this in mind, consider the Z2

2-manifold, which we denote as

M[2]
1 ' R1|1,1,1, that comes with global coordinates(

t︸︷︷︸
(0,0)

, θ1︸︷︷︸
(0,1)

, θ2︸︷︷︸
(1,0)

, z︸︷︷︸
(1,1)

)
,

where again we have used the standard ordering. In comparison with the case of standard superspace,
note the unusual commutation relations

θ1θ2 = +θ2θ1, zθ1 = −θ1z, zθ2 = −θ2z .

The reader can easily check that the vector fields

P =
∂

∂t
, Q1 =

∂

∂θ1 +
1
4

θ1 ∂

∂t
+

1
4

θ2 ∂

∂z
, Q2 =

∂

∂θ2 +
1
4

θ2 ∂

∂t
−1

4
θ1 ∂

∂z
, Z =

∂

∂z
,

satisfy the given Z2
2-Lie algebra under standard Z2

2-commutators. From these vector fields, we can
then ‘read off’ the (d = 1) Z2

2-supersymmetry transformations

t 7→ t +
1
4
(
ε1θ1 + ε2θ2), θ1 7→ θ1 + ε1, θ2 7→ θ2 + ε2, z 7→ z +

1
4
(
ε1θ2 − ε2θ1),

where ε1 and ε2 are Z2
2-graded parameters of degree (0, 1) and (1, 0), respectively. It is a direct

calculation to derive the covariant derivatives, which can easily be shown to be given by:

D1 =
∂

∂θ1−
1
4

θ1 ∂

∂t
−1

4
θ2 ∂

∂z
, D2 =

∂

∂θ2−
1
4

θ2 ∂

∂t
+

1
4

θ1 ∂

∂z
.

As fully expected, we have [D1, D1] = [D2, D2] = − 1
2 P and [D2, D1] = − 1

2 Z, and all the other possible
Z2

2-commutators vanish.
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In order to construct more ‘realistic’ Zn
2 -superspaces we need to take the underlying space to be

Minkowski space-time and promote the odd coordinates to be spinors. We will discuss the specific
example of d = 4 Z2

2-Minkowski space-time in Section 3.6.
To understand the ‘field content’ encoded here let us first remove the central charge, i.e., we set

z = 0, as this will simplify things—otherwise we will have to deal with a formal power series in z.
A (scalar) superfield of degree (0, 0) is then of the form

Φ(t, θ) = q(t) + θ1χ1(t) + θ2χ2(t) + 4θ2θ1b(t),

where we have included a numerical factor for convenience. Superfields require the use of internal
Homs in order to define them rigorously, i.e., we need to consider some ‘external parametrisations’ so
that the degrees can be properly attributed. However, we will simply proceed formally as is common
in physics. Specifically, the degrees of the components are

deg(q) = (0, 0), deg(χ1) = (0, 1), deg(χ2) = (1, 0), deg(b) = (1, 1).

Clearly, the induced commutation rules between these components are different to what is
encountered in standard supersymmetric mechanics, see for example Bellucci & Krivonos [50].
In particular, we have odd degrees of freedom that commute with each other and anticommute
with one of the even degrees of freedom. At this stage the reader should be reminded of parastatistics
in the sense of Green [26]. We define the component form of the Z2

2-supersymmetry transformations
via δΦ = (ε1Q1 + ε2Q2)Φ. It is a straightforward exercise to deduce the following:

δq(t) = ε1χ1(t) + ε2χ2(t), δχ1(t) = −
1
4
(
ε1q̇(t)− ε2b(t)

)
,

δχ2(t) = −
1
4
(
ε2q̇(t)− ε1b(t)

)
, δb(t) = −

(
ε1χ̇2(t) + ε2χ̇1(t)

)
,

where ‘dot’ means the derivative with respect to t. These transformations should be compared to the
(off-shell) d = 1 N = 2 supersymmetry transformations, see for example [50] (Section 2.2). The reader
should note that we work in a manifestly real setting and so no factors of the imaginary unit appear in
any of our mathematical expressions.

Via dimensional reduction, for d = 0 the Z2
2-graded Lie algebra we should consider is simply

[Q1, Q1] = [Q2, Q2] = 0, [Q2, Q1] =
1
2

Z ,

where the Z2
2-degrees are assigned as previously. Thus,M[2]

0 ' R0|1,1,1 comes with vector fields

Q1 =
∂

∂θ1 +
1
4

θ2 ∂

∂z
, Q2 =

∂

∂θ2−
1
4

θ1 ∂

∂z
, Z =

∂

∂z
,

that realise the d = 0, Z2
2-supersymmetry algebra. Note that in this case Q1 and Q2 are homological,

i.e., they square to zero. We do not obtain a bi-complex in this way as the two homological vector fields
do not commute, unless the central charge Z = 0.

2.3. Majorana Spinors

We take the Minkowski metric to be η = diag(−1,+1,+1,+1) and denote 3 + 1 dimensional
Minkowski space-time asM4 := (R4, η). That is, we will use the relativists’ conventions. We wish to
work with real objects rather than complex ones. As such we will choose the following real Majorana
representation of the Clifford algebra C l(3, 1)
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γ0 =


0 +1 0 0
−1 0 0 0

0 0 0 −1
0 0 +1 0

 , γ1 =


0 +1 0 0

+1 0 0 0
0 0 0 +1
0 0 +1 0

 ,

γ2 =


+1 0 0 0

0 −1 0 0
0 0 +1 0
0 0 0 −1

 , γ3 =


0 0 0 +1
0 0 −1 0
0 −1 0 0

+1 0 0 0

 .

These gamma matrices—by definition—satisfy the Clifford-Dirac relation

{γµ, γν} := γµγν + γνγµ = 2ηµν1.

These 4× 4 real matrices act on R4 in the usual way. With this in mind, we adopt the convention
of spin indices (and for matrices more generally) of (γµ)

β
α . We then define Majorana spinors as the

“things” that these gamma matrices act on. We thus write M ' R4 for the space of all Majorana spinors.
We will conventionally choose the components if a Majorana spinor to have lower spin indices, and
so we write uα for a Majorana spinor. We know that Spin(3, 1) acts on Majorana spinors in a linear
way, i.e.,

uα 7→ u′α = S β
α uβ.

Given an infinitesimal Lorentz transformation

Λ ν
µ = δ ν

µ + ω ν
µ ,

where ωµν = −ωνµ, we know that a Majorana spinor transforms as

u′α = uα +
1
4

ωµν(γ
µν)

β
α uβ,

where γµν := γ[µγν] = 1
2 (γ

µγν − γνγµ). In particular, Σµν = 1
2 γµν give a representation of the

Lorentz algebra
[Σµν, Σρσ] = ηνρΣµσ − ηµρΣνσ + ηµσΣνρ − ηνσΣµρ.

By taking the exponential we obtain a finite Lorentz transformation (which by construction is in the
proper Lorentz group)

u′α = exp(
1
4

ωµνγµν)
β

α uβ.

As defined here, the Majorana spinor as commuting objects: they are described by the coordinates
on M considered as a linear manifold. In order to have anticommuting Majorana spinors—which
are more common in physics—we need to employ the parity reversion functor. Thus, we consider
anticommuting Majorana spinors to be described by the coordinates on ΠM. The manifold M (and the
supermanifold ΠM) comes equipped with the charge conjugation tensor—this operator exchanges
particles and antiparticles. The defining property is

CγµC−1 = −(γµ)t.

Or written more explicitly
Cαγ(γµ) δ

γ Cδβ = −(γµ)α
β,

Thus, considered as a matrix, in our chosen representation, C = −γ0. To set some useful notation,
we define (Cγµ)αβ := Cαδ(γµ)

β
δ which a direct computation shows is symmetric in α and β.
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Remark 3. In practice, we will not need the explicit representation of C l(3, 1) that we have chosen. The key
point is that we have a completely real representation. Furthermore, real representations are only possible in the
‘mostly pluses’ convention for the Minkowski metric.

Remark 4. Dirac spinors are understood as the complexification of the Majorana spinors, that is we define
the space of Dirac spinors as D := M⊗R C ' C4. Weyl spinors are then defined in terms of a decomposition
of the Dirac spinors into a direct sum D = W+ ⊕W− defined by chirality. More explicitly, we first define
γ5 := γ0γ1γ2γ3 (where we have used the Minkowski metric to lower the indices). The decomposition is then
defined in terms of the eigenvalues of γ5. That is, u ∈W± if γ5u = ±i u. Via this decomposition, we see that
W± ' C2. We will only consider Majorana spinors in this paper.

2.4. Zn
2 -Graded Majorana Spinors

We can construct Zn
2 -graded Majorana spinors quite directly. From the Batchelor–Gawȩdzki

theorem for Zn
2 -manifolds [38] (Theorem 3.2) we know that any (real) Zn

2 -manifold is noncanonically
isomorphic to a Zn

2 \ {0}-graded vector bundle. In particular, any Zn
2 \ {0}-graded manifold is

noncanonically isomorphic to the direct sum of the appropriate number of vector spaces—where
we assign the appropriate Zn

2 \ {0}-grading to the linear coordinates on each vector space. Each vector
space is then considered as a linear Zn

2 -manifold.

Example 5. Any Z2
2 \ {0}-graded manifold is noncanonically isomorphic to a direct sum of vector spaces

E = E(0,1) ⊕ E(1,0) ⊕ E(1,1), where the labels indicate the assignment of the degree to the coordinates on each
vector space. Note that as coordinate changes are linear, the assignment of the degree is well defined.

Then to define the space of Zn
2 -graded Majorana spinors we simply take the appropriate number

of copies of M, assign the degrees to the linear coordinates, and then take the direct sum. To set
notation, we denote the resulting Zn

2 -manifold as M[n].

Example 6. The n = 1 case is the classical case of anticommuting spinors, M[1] = ΠM.

Example 7. The n = 2 case is as follows: M[2] = M(0,1) ⊕M(1,0) ⊕M(1,1). In terms of coordinates,
we have three ‘species’ of Majorana spinors (ψα, θβ, uγ) of degree (0, 1), (1, 0) and (1, 1) respectively.
The self-commutation rules are

ψαψβ = −ψβψα, θαθβ = −θβθα, uαuβ = +uβuα,

while across the ‘species’ we have

ψαθβ = +θβψ, ψαuβ = −uβψα, θαuβ = −uβθα.

In the next section, we will be interested in odd Majorana spinors. Note that we have the
natural decomposition

M[n] = M[n]
0 ⊕M[n]

1 ,

into even and odd spinors defined by the total degree. We will exclusively be interested in M[n]
1 in the

rest of this paper. It is a simple counting exercise to show that M[n]
1 has 4× 2n−1 coordinates.

3. Zn
2 -Extended Supersymmetry

3.1. A Zn
2 -Extended Poincaré Algebra

We extend the standard Poincaré algebra by adjoining Zn
2 -graded odd Majorana spinor generators

Qα
I and Zn

2 -graded even central charges ZI J . Experimentally we know that the underlying real
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manifold of the resulting Zn
2 -manifold must, locally at least, be Minkowski space-time. Thus, the

resulting algebra must contain the Poincaré algebra as the degree zero component. The Zn
2 -graded Lie

algebra we consider is a generalisation of the N = 2n−1 Haag-Łopuszański-Sohnius type algebra [36],
i.e., we allow a central extension:

[Pµ, Jλσ] = (δ λ
µ ησρ − δ σ

µ ηλρ)Pρ,

[Jµν, Jρσ] = ηνρ Jµσ − ηµρ Jνσ − ηνσ Jµρ + ηµσ Jνρ,

[Jµν, Qα
I ] = −

1
4

Qβ
I (γ

µν) α
β ,

[Qα
I , Qβ

J ] =
1
2

δI J(Cγµ)αβPµ + CαβZI J .

All other Lie brackets are zero. In particular, Z is central. Here P and J are the generators of translations
and rotations on Minkowski space-time. To be clear, the degree of the generators is as follows:

deg(P) = deg(J) = 0 , (even)

deg(QI) = deg(I) ∈ Zn
2 \ {0}, (odd)

deg(ZI J) = deg(I) + deg(J) ∈ Zn
2 \ {0}. (even)

From the symmetry of Zn
2 -Lie brackets and the fact that Cαβ = −Cβα, it is clear that

ZI J = (−1)〈deg(I),deg(J)〉 ZJ I for I 6= J, and that ZI I = −ZI I = 0. Thus, as ZI J and ZJ I are not linearly
independent as elements of the Zn

2 -graded Lie algebra.
To see that we do indeed have a Zn

2 -Lie algebra we need to establish that the necessary Jacobi
identities are satisfied. First, note that all possible Jacobi identities involving just one Qα

I hold as this
situation essentially reduces to the classical N = 1 super-Poincaré algebra.

The Jacobi identities involving Qα
I and Qβ

J require checking. Any nested commutators involving
two Q and one P are identically zero due to [Q, Q] = P + Z and [Q, P] = [Q, Z] = 0 (we suppress the
indices and coefficients). The only non-trivial identity to check is

[Qα
I , [Jµν, Qβ

J ]]
?
= [[Qα

I , Jµν], Qβ
J ] + [Jµν, [Qα

I , Qβ
J ]].

If I = J then we are back to the standard N = 1 super-Poincaré algebra and there is nothing to
check. So we assume I 6= J. Directly from the algebra we have

[Qα
I , [Jµν, Qβ

J ]] = −
1
4

Cαγ(γµν)
β

γ ZI J = −
1
4
(Cγµν)αβZI J .

From the other side

[[Qα
I , Jµν], Qβ

J ] + [Jµν, [Qα
I , Qβ

J ]] = −[[J
µν, Qα

I ], Qβ
J ] + [Jµν, CαβZI J ]

=
1
4

Cγβ(γµν) α
γ ZI J

= −1
4
(Cγµν)βαZI J ,

where we have used Cαβ = −Cβα. Then as (Cγµν)βα = (Cγµν)αβ we obtain the desired result.
The Jacobi identity involving Qα

I , Qβ
J and Qγ

K is trivially satisfied as [Q, Q] = P + Z and [Q, P] =
[Q, Z] = 0 implies that [Q, [Q, Q]] = 0. Thus, the Zn

2 -super translation algebra, i.e, the part not
involving the Lorentz generator Jµν, is two-step nilpotent. This is not unexpected given the classical
case of the N = 1 super-Poincaré algebra. It is important to note that, by construction, the Poincaré
algebra is the degree 0 = (0, 0, . . . , 0) part of the Zn

2 -extended Poincaré algebra and not just the
even part.
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Remark 5. The structures we study are different from the Poincaré parasupergroup of Beckers & Debergh [51]
(also see Nikitin & Galkin [52] where central charges were included) and Jarvis [53], though we will later
comment on the similarities with parasupersymmetry in Section 3.5. In particular, the (extended) Poincaré
parasuperalgebra is defined in terms of a double commutator for the spinor-valued generators. The structures
we study are Zn

2 -Lie algebras.

Example 8. If n = 1 then we recover (up to conventions) the standard N = 1 super-Poincaré algebra. Note
that we cannot have a non-vanishing central extension in this case.

Example 9. Less obvious than the previous example is the case of n = 2. On the face of it, this looks like the
N = 2 super-Poincaré algebra with a central charge. However, the subtlety is in the assignment of the degree,
which are as follows:

deg(P) = deg(J) = (0, 0), deg(Z12) = (1, 1),

deg(Q1) = (0, 1), deg(Q2) = (1, 0).

Example 10. More complicated again—though this example highlights the general features—is the case of
n = 3. Forgetting the obvious assignment of degree to the generators of the Poincaré algebra, we have

deg(Q1) = (0, 0, 1), deg(Z12) = (0, 1, 1),

deg(Q2) = (0, 1, 0), deg(Z13) = (1, 0, 1),

deg(Q3) = (1, 0, 0), deg(Z14) = (1, 1, 0),

deg(Q4) = (1, 1, 1), deg(Z23) = (1, 1, 0),

deg(Z24) = (1, 0, 1),

deg(Z34) = (0, 1, 1).

Remark 6. We could also include a further modification to the extended Poincaré algebra by including a
further term,

[Qα
I , Qβ

J ] =
1
2

δI J(Cγµ)αβPµ + CαβZI J + (Cγ5)
αβYI J ,

where γ5 := γ0γ1γ2γ3. It was shown by Witten & Olive [54] that in the standard case of N ≥ 2 extended
supersymmetry that Z and Y have the interpretation as electric and magnetic charges respectively. Such
central charges can arise as the boundary terms in supersymmetric field theories. One can think of Z in a more
general context as colour charge, or even as a more exotic force charge. In the case of the Zn

2 -extended Poincaré
algebra, we have a further problem with interpreting this charge due to the assignment of non-trivial Zn

2 -degree.
In (1 + 1) dimensions, a related supersymmetry algebra where only Y appears in the anticommutator of the
supersymmetry generators was studied by Duplij, Soroka & Soroka [55].

3.2. Direct Consequences of the Algebra

The standard consequences of supersymmetry upon a quantum theory hold in this higher graded
setting. For immediate simplicity let us drop the central term (not that this actually makes much
difference). Let us suppose that the Zn

2 -super translation algebra (minus central term) can be realised in
terms of Hermitian operators acting on some Hilbert space—the Hilbert space of states of some theory.
We stress that at this point, it is an assumption that such representations exists. Then the algebraic
structure here implies the following:
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1. Positivity of energy: a direct computation shows E := P0 = 1
2 ∑α[Qα

I , Qα
I ] (no sum over I). Then,

passing to the representation as Hermitian operators allow us to write Ê = ∑α(Qα
I )

†Qα
I and thus

for any state
〈ψ|Ê|ψ〉 = 〈ψ|∑

α

(Qα
I )

†Qα
I |ψ〉 = ||∑

α

Qα
I |ψ〉||2 ≥ 0.

2. Irreducible representations of supersymmetry carry the same value of PµPµ = −m2: this follows
from [P, Q] = 0, which implies that P2 is a Casimir.

3. The spin of each state in a multiplet varies in steps of 1/2: this follows from [Q, J] ∼ Q.

Thus, there is no difference between the standard super and Zn
2 -super case with regards to the

positivity of energy, Casimirs and the spin of states in each multiplet. However, the notion of BPS
states seems more complicated, see Section 3.6.

3.3. Zn
2 -Minkowski Space-Time

Armed with the theory of Zn
2 -manifolds, we can more or less follow the standard methods from

supersymmetry to construct the Zn
2 -Lie group associated with the Zn

2 -super translation algebra. That is,
we can exponentiate the Zn

2 -Lie algebra to obtain a Zn
2 -Lie group. To make rigorous mathematical

sense of all these constructions, one needs the functor of points—we will avoid a discussion of this
here and work formally when needed.

With the above comments in mind, we take two even elements of the Zn
2 -super translation algebra

A = xµPµ + θ I
αQα

I +
1
2

zJKZKJ , B = x′µPµ + θ′
I
αQα

I +
1
2

z′JKZKJ ,

where the factor of one half is included to remove the overcounting—we understand z and Z to be
graded symmetric. Then using the Campbell–Baker–Hausdorff formula we obtain

A ◦ B =

(
xµ + x′µ +

1
2

θ′Iβ θ J
αδJ I(Cγµ)αβ

)
Pµ (2)

+ (θ I
α + θ′Iα )Q

α
I

+
1
2

(
zJK + z′JK + θ′

(K
β θ

J)
α Cαβ

)
ZJK,

where θ′
(K
β θ

J)
α := 1

2

(
θ′Kβ θ J

α + (−1)〈deg(K),deg(J)〉 θ′ JβθK
α

)
.

Definition 3. The centrally extended Zn
2 -Minkowski space-time is the Zn

2 -manifold, which we will denote as

M[n]
4 that comes equipped with privileged global coordinates

(xµ, θ I
α, zJK),

where via symmetry we can insist on J < K, and the Zn
2 -Lie group structure defined via (2). By construction,

xµ is a Lorentz vector, θ I
α are Majorana spinors and zI J are Lorentz scalars. The supersymmetry transformations

on centrally extended Zn
2 -Minkowski space-time are given by

xµ 7→ xµ +
1
4

εI
βθ J

αδJ I(Cγµ)αβ, (3)

θ I
α 7→ θ I

α + εI
α, (4)

zJK 7→ zJK +
1
2

ε
(K
β θ

J)
α Cαβ, (5)

where εI
α is a Majorana spinor-valued parameter.
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To be explicit, the degrees of the coordinates are as follows:

deg(xµ) = 0, (even)

deg(θ I
α) = deg(I) ∈ Zn

2 \ {0}, (odd)

deg(zI J) = deg(I) + deg(J) ∈ Zn
2 \ {0}. (even)

In particular, we have nilpotent/odd coordinates θ and non-nilpotent/even coordinates z yet,
in general, we will have non-trivial commutation relations between these coordinates governed by
the Zn

2 -degrees. As we have global coordinates we can construct the sheaf theoretical definition of a
Zn

2 -manifold directly, in particular Zn
2 -Minkowski space-time is isomorphic to a Zn

2 -graded Cartesian
space. That is,

M[n]
4
∼=
(
R4, C∞

R4 [[θ, z]]
)
.

Naturally, we see that the underlying smooth manifold is just standard Minkowski space-time.

Remark 7. A Z3
2-graded generalisation of the supersymmetry algebra was given by Le Roy [56] who had

applications to the strong interaction in mind. However, he did not present a geometric understanding thereof.

3.4. Invariant Differential Forms

A direct calculation shows that we have a basis of the left-invariant differential forms given by

eµ = dxµ +
1
4

dθ I
βθ J

αδJ I(Cγµ)αβ, ψI
α = dθ I

α, eJK = dzJK − θ
(K
β dθ

J)
α Cαβ.

We consider differential forms on Zn
2 -manifolds to be functions on the Zn+1

2 -manifold built from
the tangent bundle, and we then append an additional component to the degree which is zero for the
base coordinates and one for the fibre coordinates (see [37]). In particular, we have

deg(deµ) = (0, 1), deg(dψI
α) = (I, 1), deg(dzJK) = (J + K, 1),

where for notational ease we set I := deg(I) ∈ Zn
2 , etc.

Note that these conventions are similar to the Deligne–Freed conventions for superdifferential
forms [57]. The left-invariant differential forms we can, as a standard, consider as canonical vielbeins.
Choosing these vielbeins is no more than a change of basis of the space of one-forms. In particular, the
canonical vielbeiens are not all closed and so we have torsion:

deµ =
1
4
(Cγµ)αβψI

βψJ
βδJ I , dψI

α = 0, deJK = 0.

Thus, Zn
2 -Minkowski space-time—just like the standard case—is flat, but has a non-vanishing torsion.

3.5. Superfields

To fully and correctly understand superfields, one must employ the categorical notion of the
internal Homs—loosely we need to consider maps between Zn

2 -manifolds that are parametrised by
arbitrary Zn

2 -manifolds. However, formally we can proceed as in the standard super-case (see for
example [13,14]).

Note that we have to understand maps between Zn
2 -manifolds when written in terms of local

coordinates as formal power series in coordinates of non-zero degree. However, for the case at hand,
all the Majorana spinor coordinates are odd and so are nilpotent. The complication—as with the
standard case of extended supersymmetry—is the fact that power series in z does not truncate. Thus,
an unconstrained superfield will be a formal power series, i.e., the theory will have an infinite number
of axillary fields.
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Expanding any superfield in terms of the formal coordinates, we have

ΦA(x, θ, z) = φA(x) + θ I
αχαA

I (x) + higher terms,

where A is some extra index or collection of indices, that may be related to spin, isospin, etc. We will
not be more specific here. The degree of a superfield can be arbitrary, though homogeneous (if not, then
we can decompose the superfield into homogeneous pieces). To lowest order the Zn

2 -supersymmetry
transformations are

δφA(x) ' εI
αχαA

I (x),

δχαA
I (x) ' −1

4
εJ

βδJ I(Cγµ)βα ∂φA

∂xµ (x).

The form of the Zn
2 -supersymmetry transformations is of course expected by comparison with the

standard case of extended supersymmetry. Note that the transformations mix fields whose degrees
are related by deg(I), which we have taken to be odd. Thus, we have a generalisation of standard
(quasi-classical) supersymmetry. The similarity here with Green’s parastatistics should be noted
(see [26]). In particular, if we take the superfield to be degree zero, i.e., deg

(
Φ
)
= 0, then φA(x) is

also degree zero and so could represent a physical boson. Similarly, χαA
I (x) are then odd and thus

interpreted to be nilpotent Majorana spinor fields. However, in general pairs of such Majorana spinor
fields need not anticommute due to the Zn

2 -grading. Thus, the ‘physical content’ of the theory resembles
(to lowest order) a system consisting of bosons and parafermions (written in terms of their ‘Green
components’) together with a ‘parasupersymmetry’.

Remark 8. To our knowledge, the first work on parasupersymmetry in the context of quantum mechanics
was that of Rubakov & Spiridonov [58]. The earliest work that we are aware of that discusses a parafermion
generalisation of supersymmetry in a field theoretical setting is Jarvis [53].

Remark 9. It is known that ‘reasonable’ systems of paraparticles in relativistic quantum field theory are
equivalent to systems of particles with standard statistics that carry an extra quantum number, see for example
Araki [59], Doplicher & Roberts [60], and Drühl, Haag & Roberts [61]. Generically, given an algebra of physical
observables, there will always be some ambiguity in the non-observable field content. Very loosely, the ambiguity
in field content allows a redefinition (a Klein transformation) of the fields such that the redefined fields obey
standard statistics. Thus, the general belief is that the difference between parastatistics and normal statistics is a
matter of choice with regards to the field content of the theory under study. In particular, via field redefinitions,
we can keep the well known spin-statistics theorem. However, the known equivalence of paraparticles and
standard particles only holds for theories that satisfy the DHR superselection constraints, which loosely say that
all observable events are localised in space and time. These constraints are not satisfied long-range interactions
such as those found in electromagnetic theory. Moreover, interacting field theories and their superselection
rules are far less well understood than free theories—this is a current generic problem with algebraic field
theory. A good discussion of the equivalence of paraparticles and particles, together with the limitations of what
is mathematically established, can be found in [62]. Thus, there is still some possibility of, as of yet unseen
(c.f. [63]), fundamental parabosons and parafermions. Indeed, it has even been suggested that paraparticles may
be associated with dark matter, see [64,65]. Even more remarkable is the suggestion that parastatistics can be
used to solve the problem of the cosmological constant, see [66].

3.6. Z2
2-Minkowski Space-Time

As a specific and illustrative example let us considerM[2]
4 . This simplifies some of the expressions

and resembles N = 2 extended superspace closely. However, one has to be careful with the signs
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involved with Z2
2-graded commutators. Because of the symmetry of ZI J for the n = 2 case, we can

rewrite the non-trivial part of the Z2
2-super translation algebra as

[Qα
I , Qβ

J ] =
1
2

δI J(Cγµ)αβPµ +
1
2

Cαβ(σ1)I J Z,

where

σ1 :=

(
0 1
1 0

)
is the first Pauli matrix. Here I, J ∈ {1, 2}. Note that when I = J we have an anticommutator in the
‘ungraded’ language. This is of course in parallel with standard N = 2 supersymmetry. When I 6= J
we have a commutator and this is in contrast to the standard case.

Remark 10. Interestingly, there seems to be no direct analogue of the Bogomol’nyi-Prasad-Sommerfield (BPS)
bound: there is no direct inequality like ‘m ≥ |z|’, where m is the mass of a particle. For one, such an inequality
is hard to understand for formal variables: we have to understand z as being of degree (1, 1) and so cannot
simply be a real or complex number. Secondly, there is a subtle sign change in the commutator [Qα

I , Qβ
J ] when

I 6= J as compared with the standard case. This implies that we cannot use the standard reasoning to deduce the
BPS bound as we do not have a positive definite operator when I 6= J. BPS states in standard supersymmetric
theories are generically important as they can be determined using non-perturbative methods. They are one of
the ‘gifts’ of supersymmetry. However, the situation for Zn

2 -graded theories is far less clear.

Using constructions of Section 3.3, we see that Z2
2-Minkowski space-time comes equipped with

global coordinates
( xµ︸︷︷︸
(0,0)

, θ1
α︸︷︷︸

(0,1)

, θ2
β︸︷︷︸

(1,0)

, z︸︷︷︸
(1,1)

).

Explicitly the Z2
2-commutation rules are:

θ1
αθ2

β = +θ2
βθ1

α, zθ I
α = −θ I

αz,

with all other commutation rules being the same as the standard case of N = 2 supersymmetry.
Naturally, we still have

(
θ I

α

)2
= 0, and while z picks up a minus sign when commuted with any θ, it is

not nilpotent (it is a formal coordinate).
The supersymmetry transformations (3)–(5) simplify to

xµ 7→ xµ +
1
4

εI
βθ J

αδJ I(Cγµ)αβ,

θ I
α 7→ θ I

α + εI
α,

z 7→ z +
1
4

εI
βθ J

α(σ1)J ICαβ.

The left-invariant vector fields of the related group action are easily derived and are given by
(using standard notation)

Pµ =
∂

∂xµ ,

Qα
I =

∂

∂θ I
α
+

1
4

θ J
βδJ I(Cγµ)βα ∂

∂xµ +
1
4

θ J
β(σ1)J ICβα ∂

∂z
,

Z =
∂

∂z
.
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As a standard, we will call the vector fields Q the SUSY generators We can also directly find the
right-invariant vector fields, and doing so leads to the SUSY covariant derivatives

Dα
I =

∂

∂θ I
α
−1

4
θ J

βδJ I(Cγµ)βα ∂

∂xµ−
1
4

θ J
β(σ1)J ICβα ∂

∂z
.

The reader can directly check that the SUSY covariant derivatives graded commute with the SUSY
generators, i.e., [D, Q] = 0. Moreover, a direct computation gives the expected result (as it should as
we are using right-invariant vector fields)

[Dα
I , Dβ

J ] = −
1
2

δI J(Cγµ)αβPµ−
1
2

Cαβ(σ1)I J Z = −[Qα
I , Qβ

J ] . (6)

Note that
D := Span {Dα

I } ,

is a distribution, i.e., a local direct factor of Vect(M[2]
4 ), (see [40] for details of distributions on

Zn
2 -supermanifolds). One can see that we have a distribution by verifying that

(
∂x, D, ∂z

)
form a

local basis for the vector fields onM[2]
4 . Following Manin [67], we refer to this distribution as the

canonical Z2
2-SUSY structure onM[2]

4 .
Given D, (or any distribution in fact) we can construct the short exact sequence of modules

0 −→ D ι
↪−→ Vect(M[2]

4 )
ϕ−→ E ,

where E := Vect(M[2]
4 ) \ D. Locally the map ϕ is just dropping the components of the vector field that

lie in the distribution. The Frobenius curvature of D is defined as

R :D ×D −→ E
(X, Y) 7→ R(X, Y) := ϕ

(
[X, Y]

)
.

The characteristic distribution of D, denoted C, consists of all X ∈ D such that R(X,−) = 0. As C
consists of only the zero vector, D is said to be maximally non-integrable. To see this we just need to
consider the commutator

[X, Dβ
J ] = X I

α[D
α
I , Dβ

J ]± Dβ
J
(
X I

α

)
Dα

I , (7)

where the coefficients X I
α may depend on all the coordinates. The second term in the above is clearly

an element of D, and so it dropped when looking at the Frobenius curvature. The first term, due
to (6), is in E and so to construct the characteristic distribution we need to examine when this vanishes.
This condition reduces to a set of linear equations

(Cγµ)αβX I
β = 0, CαβX I

β = 0.

Due to the fact that the Dirac gamma matrices are non-singular, the only solution to the above is
X I

β = 0, as required.

4. Closing Remarks

In this paper, we have suggested one reasonable (if somewhat ad hoc) way to construct a
Zn

2 -manifold version of extended super-Minkowski space-time. We fixed the dimension of the
underlying manifold to be four, though one can consider other dimensions. We have not attempted to
build any models here. In the standard theory, one needs to use constraints to obtain a finite expansion
of the superfield. This is usually done in terms of the SUSY covariant derivatives—mathematically
these are the right invariant vector fields of the associated super Lie group. It is expected that one
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can mimic this for Zn
2 -case (for low n anyway). Currently, the obstruction to model building is the

lack of a workable integration theory on Zn
2 -manifolds (see Poncin [68] for progress in this direction).

However, even with all the mathematical tools in place, it is not clear what the physical relevance
of such theories would be. Moreover, it is fair to say that Zn

2 -graded objects are not so well-known
throughout the theoretical physics community.

It is recognised that for standard N -extended supersymmetry, the automorphism group of the
algebra plays an important rôle. This is especially so in the context of N -extended superconformal
algebras. It is thus a natural question to seek to understand the automorphism group of the
Zn

2 -extended Poincaré algebra, which due to the grading could have a richer structure than the
standard case. Currently this structure remains to be uncovered. Moreover, defining the Zn

2 -conformal
algebra could lead to further novel structures. For example, the notion of a Zn

2 -Riemannian surface is,
so far, completely unexplored.

We have not touched upon the notion of R-symmetry in this paper. In the standard context
of extended supersymmetry, the R-symmetry transforms different supercharges into each other.
The immediate problem for the Zn

2 -case is the charges are assigned a different degree and so the
corresponding R-symmetries would themselves need to carry Zn

2 -degree. This highlights another
subtle difference when extending the grading from Z2 to Zn

2 . However, given the importance of
R-symmetry in the standard case, the ‘higher’ analogue requires investigation.

Another related avenue for future exploration is the study of Zn
2 -graded versions of extended

de Sitter and anti-de Sitter superalgebras and their integration to Zn
2 -Lie groups. The reader should

note the absence of Majorana spinors on de Sitter space-time, though this only means that we need
to accept spinor objects along with their charge-conjugates in the constructions. Importantly, there is
increasing observational evidence that the expansion of the Universe is accelerating and that a positive
cosmological constant fits the data well. Thus, having a handle on de Sitter Zn

2 -supergravity could
shed light on the problem of dark energy. Of course, we are being speculative, but this definitely
motivates further work.
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