
symmetryS S

Article

Four Operators of Rough Sets Generalized to
Matroids and a Matroidal Method
for Attribute Reduction

Jingqian Wang 1 and Xiaohong Zhang 2,*
1 College of Electrical & Information Engineering, Shaanxi University of Science & Technology, Xi’an 710021,

China; wangjingqianw@163.com
2 School of Arts and Sciences, Shaanxi University of Science & Technology, Xi’an 710021, China
* Correspondence: zhangxiaohong@sust.edu.cn or zxhonghz@263.net

Received: 8 August 2018; Accepted: 14 September 2018; Published: 19 September 2018

Abstract: Rough sets provide a useful tool for data preprocessing during data mining. However,
many algorithms related to some problems in rough sets, such as attribute reduction, are greedy ones.
Matroids propose a good platform for greedy algorithms. Therefore, it is important to study the
combination between rough sets and matroids. In this paper, we investigate rough sets and matroids
through their operators, and provide a matroidal method for attribute reduction in information
systems. Firstly, we generalize four operators of rough sets to four operators of matroids through the
interior, closure, exterior and boundary axioms, respectively. Thus, there are four matroids induced
by these four operators of rough sets. Then, we find that these four matroids are the same one, which
implies the relationship about operators between rough sets and matroids. Secondly, a relationship
about operations between matroids and rough sets is presented according to the induced matroid.
Finally, the girth function of matroids is used to compute attribute reduction in information systems.
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1. Introduction

Rough set theory was proposed by Pawlak [1,2] in 1982 as a mathematical tool to deal with various
types of data in data mining. There are many practical problems have been solved by it, such as
rule extraction [3,4], attribute reduction [5–7], feature selection [8–10] and knowledge discovery [11].
In Pawlak’s rough sets, the relationships of objects are equivalence relations. However, it is well
known that this requirement is excessive in practice [12,13]. Hence, Pawlak’s rough sets have been
extended by relations [14,15], coverings [16–18] and neighborhoods [6,19]. They have been combined
with other theories including topology [20], lattice theory [21,22], graph theory [23,24] and fuzzy set
theory [25,26].

However, many optimization issues related to rough sets, including attribute reduction,
are NP-hard. Therefore, the algorithms to deal with them are often greedy ones [27]. Matroid
theory [28–30] is a generalization of graph and linear algebra theories. It has been used in information
coding [31] and cryptology [32]. Recently, the combination between rough sets and matroids has
attracted many interesting research. For example, Zhu and Wang [33] established a matroidal
structure through the upper approximation number and studied generalized rough sets with matroidal
approaches. Liu and Zhu [34] established a parametric matroid through the lower approximation
operator of rough sets. Li et al. [35,36] used matroidal approaches to investigate rough sets through
closure operators. Su and Zhu [37] presented three types of matroidal structures of covering-based
rough sets. Wang et al. [38] induced a matroid named 2-circuit matroid by equivalence relations, and
equivalently formulated attribute reduction with matroidal approaches. Wang and Zhu used matrix
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approaches to study the 2-circuit matroid [39], and used contraction operation in matroids to study
some relationships between a subset and the upper approximation of this subset in rough sets [40].
Unfortunately, all of these papers never study matroids and rough sets through the positive, negative
and boundary operators of rough sets. Thus, it is necessary to further study rough sets and matroids by
these operators in this paper. In addition, only Wang et al. [38] presented two equivalent descriptions
of attribute reduction by closure operators and rank functions of matroids, respectively. We consider
presenting a novel approach to attribute reduction through the girth function of matroids in this paper.

In this paper, we mainly use the positive operator, the negative operator and the boundary
operator to study matroids and rough sets, and propose a method to compute attribute reduction
in information systems through the girth function of matroids. Firstly, we generalize the positive
(the lower approximation operator), upper approximation, negative and boundary operators of rough
sets to the interior, closure, exterior and boundary operators of matroids respectively. Among them,
the upper and lower approximation operators have been studied in [35]. Thus, there are four matroids
induced by these four operators of rough sets. Then, the relationship between these four matroids
is studied, which implies the relationship about operators between rough sets and matroids. In fact,
these four matroids are the same one. Secondly, a relationship about the restriction operation both in
matroids and rough sets is proposed. Finally, a matroidal approach is proposed to compute attribute
reduction in information systems through the girth function of matroids, and an example about
attribute reduction is solved. Using this matroidal approach, we can compute attribute reduction
through their results “2” and “∞”.

The rest of this paper is organized as follows. Section 2 recalls some basic notions about rough
sets, information systems and matroids. In Section 3, we generalize four operators of rough sets to
four operators of matroids, respectively. In addition, we study the relationship between four matroids
induced by these four operators of rough sets. Moreover, a relationship about operations between
matroids and rough sets is presented. In Section 4, an equivalent formulation of attribute reduction
through the girth function is presented. Based on the equivalent formulation, a novel method is
proposed to compute attribute reduction in information systems. Finally, Section 5 concludes this
paper and indicates further works.

2. Basic Definitions

In this section, we review some notions in Pawlak’s rough sets, information systems and matroids.

2.1. Pawlak’s Rough Sets and Information Systems

The definition of approximation operators is presented in [1,41].
Let R an equivalence relation on U. For any X ⊆ U, a pair of approximation R(X) and R(X) of X

are defined by
R(X) = {x ∈ U : RN(x)

⋂
X 6= ∅},

R(X) = {x ∈ U : RN(x) ⊆ X},

where RN(x) = {y ∈ U : xRy}. R and R are called the upper and lower approximation operators with
respect to R, respectively.

In this paper, U is a nonempty and finite set called universe. Let −X be the complement of X in
U and ∅ be the empty set. We have the following conclusions about R and R.

Proposition 1. Refs. [1,41] Let R be an equivalence relation on U. For any X, Y ⊆ U,
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(1L) R(U) = U,

(2L) R(φ) = φ,

(3L) R(X) ⊆ X,

(4L) R(X
⋂

Y) = R(X)
⋂

R(Y),

(5L) R(R(X)) = R(X),

(6L) X ⊆ Y ⇒ R(X) ⊆ R(Y),

(7L) R(−R(X)) = −R(X),

(8LH) R(−X) = −R(X),

(1H) R(U) = U,

(2H) R(φ) = φ,

(3H) X ⊆ R(X),

(4H) R(X
⋃

Y) = R(X)
⋃

R(Y),

(5H) R(R(X)) = R(X),

(6H) X ⊆ Y ⇒ R(X) ⊆ R(Y),

(7H) R(−R(X)) = −R(X),

(9LH) R(X) ⊆ R(X).

On the basis of the upper and lower approximation operators with respect to R, one can define
three operators to divide the universe, namely, the negative operator NEGR, the positive operator
POSR and the boundary operator BNDR:

NEGR(X) = U − R(X),

POSR(X) = R(X),

BNDR(X) = R(X)− R(X).

An information system [38] is an ordered pair IS = (U, A), where U is a nonempty finite set of
objects and A is a nonempty finite set of attributes such that a : U → Va for any a ∈ A, where Va is
called the value set of a. For all B ⊆ A, the indiscernibility relation induced by B is defined as follows:

IND(B) = {(x, y) ∈ U ×U : ∀b ∈ B, b(x) = b(y)}.

Definition 1. (Reduct [38]) Let IS = (U, A) be an information system. For all B ⊆ A, B is called a reduct of
IS, if the following two conditions hold:

(1) IND(B) 6= IND(B− b) for any b ∈ B,
(2) IND(B) = IND(A).

2.2. Matroids

Definition 2. (Matroid [29,30]) Let U is a finite set, and I is a nonempty subset of 2U (the set of all subsets of
U). (U, I) is called a matroid, if the following conditions hold:
(I1) If I ∈ I and I′ ⊆ I, then I′ ∈ I.
(I2) If I1, I2 ∈ I and |I1| < |I2|, then there exists e ∈ I2 − I1 such that I1

⋃{e} ∈ I, where |I| denotes the
cardinality of I.

Let M = (U, I) be a matroid. We shall often write U(M) for U and I(M) for I, particularly when
several matroids are being considered. The members of I are the independent sets of M.

Example 1. Let U = {a1, a2, a3, a4, a5} and I = {∅, {a1}, {a2}, {a3}, {a4}, {a5}, {a1, a3}, {a1, a4}, {a1, a5},
{a2, a3}, {a2, a4}, {a2, a5}, {a3, a4}, {a3, a5}, {a4, a5}, {a1, a3, a4}, {a1, a3, a5}, {a1, a4, a5}, {a2, a3, a4}, {a2,
a3, a5}, {a2, a4, a5}}. Then, M = (U, I) is a matroid.

In order to make some expressions brief, some denotations are presented. Let A ⊆ 2U . Then,

Min(A) = {X ∈ A : ∀Y ∈ A, Y ⊆ X ⇒ X = Y},
Max(A) = {X ∈ A : ∀Y ∈ A, X ⊆ Y ⇒ X = Y},
Opp(A) = {X ⊆ U : X 6∈ A}.
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The set of all circuits of M is defined as C(M) = Min(Opp(I)). The rank function rM of M is
denoted by rM(X) = max{|I| : I ⊆ X, I ∈ I} for any X ⊆ U. rM(X) is called the rank of X in M.
The closure operator clM of M is defined as

clM(X) = {u ∈ U : rM(X) = rM(X
⋃{u})} for all X ⊆ U.

We call clM(X) the closure of X in M. X is called a closed set if clM(X) = X, and we denote
the family of all closed sets of M by F(M). The closure axiom of a matroid is introduced in the
following proposition.

Proposition 2. (Closure axiom [29,30]) Let cl be an operator of U. Then, there exists one and only one matroid
M such that cl = clM iff cl satisfies the following four conditions:
(CL1) X ⊆ cl(X) for any X ⊆ U;
(CL2) If X ⊆ Y ⊆ U, then cl(X) ⊆ cl(Y);
(CL3) cl(cl(X)) = cl(X) for any X ⊆ U;
(CL4) For any x, y ∈ U, if y ∈ cl(X

⋃{x})− cl(X), then x ∈ cl(X
⋃{y}).

Example 2. (Continued from Example 1) Let X = {a3, a4}. Then,
C(M) = Min(Opp(I)) = {{a1, a2}, {a3, a4, a5}},
rM(X) = max{|I| : I ⊆ X, I ∈ I} = 2,
clM(X) = {u ∈ U : rM(X) = rM(X

⋃{u})} = {a3, a4, a5},
F(M) = {∅, {a3}, {a4}, {a5}, {a1, a2}, {a1, a2, a3}, {a1, a2, a4}, {a1, a2, a5}, {a3, a4, a5}, {a1, a2, a3, a4, a5}}.

Based on F(M), the interior operator intM of M is defined as

intM(X) =
⋃{Y ⊆ X : U −Y ∈ F(M)} for any X ⊆ U.

intM(X) is called the interior of X in M. X is called a open set if intM(X) = X. The following
proposition shows the interior axiom of a matroid.

Proposition 3. (Interior axiom [29,30]) Let int be an operator of U. Then, there exists one and only one matroid
M such that int = intM iff int satisfies the following four conditions:
(INT1) int(X) ⊆ X for any X ⊆ U,
(INT2) If X ⊆ Y ⊆ U, then int(X) ⊆ int(Y),
(INT3) int(int(X)) = int(X) for any X ⊆ U,
(INT4) For any x, y ∈ U, if y ∈ int(X)− int(X− {x}), then x 6∈ int(X− {y}).

Example 3. (Continued from Example 2) intM(X) =
⋃{Y ⊆ X : U −Y ∈ F(M)} = {a3, a4}.

Based on the closure operator clM, the exterior operator exM and the boundary operator boM of
M are defined as

exM(X) = −clM(X) and boM(X) = clM(X)
⋂

clM(−X) for all X ⊆ U.

exM(X) is called the exterior of X in M, and boM(X) is called the boundary of X in M.
The following two propositions present the exterior and boundary axioms, respectively.

Proposition 4. (Exterior axiom [42]) Let ex be an operator of U. Then, there exists one and only one matroid
M such that ex = exM iff exM satisfies the following four conditions:
(EX1) X

⋂
ex(X) = ∅ for any X ⊆ U;

(EX2) If X ⊆ Y ⊆ U, then ex(Y) ⊆ ex(X);
(EX3) ex(−ex(X)) = ex(X) for any X ⊆ U;
(EX4) For any x, y ∈ U, if y ∈ ex(X)− ex(X

⋃{x}), then x 6∈ ex(X
⋃{y}).
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Proposition 5. (Boundary axiom [42]) Let bo be an operator of U. Then, there exists one and only one matroid
M such that bo = boM iff bo satisfies the following five conditions:
(BO1) bo(X) = bo(−X) for any X ⊆ U;
(BO2) bo(bo(X)) ⊆ bo(X) for any X ⊆ U;
(BO3) X

⋂
Y
⋂
(bo(X)

⋃
bo(Y)) ⊆ X

⋂
Y
⋂

bo(X
⋂

Y) for any X, Y ⊆ U;
(BO4) For any x, y ∈ U, if y ∈ bo(X

⋃{x})− bo(X), then x ∈ bo(X
⋃{y});

(BO5) bo(X
⋃

bo(X)) ⊆ bo(X) for any X ⊆ U.

Example 4. (Continued from Example 2) exM(X) = U − {a3, a4, a5} = {a1, a2},
boM(X) = clM(X)

⋂
clM(−X) = {a3, a4, a5}

⋂{a1, a2, a5} = {a5}.

The following proposition shows some relationships between these above four operators, namely
clM, intM, exM and boM.

Proposition 6. Ref. [42] Let M = (U, I) be a matroid. For all X ⊆ U, the following statements hold:
(1) intM(X) = −clM(−X) and clM(X) = −intM(−X);
(2) clM(boM(X)) = boM(X);
(3) boM(exM(X)) = boM(−X).

3. The Relationship about Operators between Rough Sets and Matroids

In this section, four matroids are induced by four operators of rough sets. These four matroids are
induced by the lower approximation operator R (because R = POSR, we only consider R), the upper
approximation operator R, the negative operator NEGR and the boundary operator BNDR through
the interior axiom, the closure axiom, the exterior axiom and the boundary axiom, respectively.
Among them, the upper approximation operator R has been studied in [35]. Then, the relationship
between these four matroids are studied, and we find that these four are the same one. According to
this work, we present the relationship about operators between rough sets and matroids.

3.1. Four Matroids Induced by Four Operators of Rough Sets

In this subsection, we generalize the positive operator (the lower approximation operator),
the upper approximation operator, the negative operator and the boundary operator of rough sets to
the interior operator, the closure operator, the exterior operator and the boundary operator of matroids,
respectively. Firstly, the following lemma is proposed.

Lemma 1. Refs. [1,41] Let R be an equivalence relation on U. For any x, y ∈ U, if x ∈ RN(y), then
y ∈ RN(x).

The following proposition shows that the lower approximation operator R satisfies
the interior axiom of matroids.

Proposition 7. Let R be an equivalence relation on U. Then, R satisfies (INT1), (INT2), (INT3) and
(INT4) of Proposition 3.

Proof. By (1L), (6L) and (5L) of Proposition 1, R satisfies (INT1), (INT2) and (INT3), respectively.
(INT4): For any x, y ∈ U, if y ∈ R(X)− R(X − {x}), then y ∈ R(X) but y 6∈ R(X − {x}). Hence,
RN(y) ⊆ X but RN(y) 6⊆ X− {x}. Therefore, x ∈ RN(y). According to Lemma 1, y ∈ RN(x). Hence,
RN(x) 6⊆ X− {y}, i.e., x 6∈ R(X− {y}).

Inspired by Proposition 7, there is a matroid such that R is its interior operator.
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Definition 3. Let R be an equivalence relation on U. The matroid whose interior operator is R is denoted by
M(R). We say M(R) is the matroid induced by R.

Corollary 1. Let R be an equivalence relation on U. Then, intM(R) = POSR.

Proof. According to Definition 3, intM(R) = R. Since POSR = R, so intM(R) = POSR.

The upper approximation operator R satisfies the closure axiom in [35,38].

Proposition 8. Refs. [35,38] Let R be an equivalence relation on U. Then, R satisfies (CL1), (CL2), (CL3)
and (CL4) of Proposition 2.

Proposition 8 determines the second matroid induced by R.

Definition 4. Let R be an equivalence relation on U. The matroid whose closure operator is R is denoted by
M(R). We say that M(R) is the matroid induced by R.

The negative operator NEGR satisfies the exterior axiom.

Proposition 9. Let R be an equivalence relation on U. Then, NEGR satisfies (EX1), (EX2), (EX3) and
(EX4) of Proposition 4.

Proof. (EX1): For any X ⊆ U, NEGR(X) = U− R(X). According to (3H) of Proposition 1, X ⊆ R(X).
Therefore, X

⋂
NEGR(X) = ∅;

(EX2): According to (6H) of Proposition 1, if X ⊆ Y ⊆ U, then R(X) ⊆ R(Y). Therefore,
U − R(Y) ⊆ U − R(Y), i.e., NEGR(Y) ⊆ NEGR(X);
(EX3): For any X ⊆ U, NEGR(X) = U − R(X). Hence, −NEGR(X) = U − NEGR(X) = U − (U −
R(X)) = R(X). Therefore, NEGR(−NEGR(X)) = NEGR(R(X)) = U − R(R(X)). According to (5H)

of Proposition 1, R(R(X)) = R(X). Hence, NEGR(−NEGR(X)) = U − R(X) = NEGR(X);
(EX4): For any x, y ∈ U, if y ∈ NEGR(X) − NEGR(X

⋃{x}), then y ∈ NEGR(X) but y 6∈
NEGR(X

⋃{x}), i.e., y ∈ U − R(X) but y 6∈ U − R(X
⋃{x}). Since R(X) ⊆ U and R(X

⋃{x}) ⊆ U,
so y ∈ R(X

⋃{x}) but y 6∈ R(X). Hence, RN(y)
⋂
(X

⋃{x}) 6= ∅ but RN(y)
⋂

X = ∅. Therefore,
RN(y)

⋂{x} 6= ∅, i.e., x ∈ RN(y). According to Lemma 1, y ∈ RN(x). Hence, RN(x)
⋂
(X

⋃{y}) 6= ∅,
i.e., x ∈ R(X

⋃{y}). Therefore, x 6∈ U − R(X
⋃{y}), i.e., x 6∈ NEGR(X

⋃{y}).
Proposition 9 determines the third matroid such that NEGR is its exterior operator.

Definition 5. Let R be an equivalence relation on U. The matroid whose exterior operator is NEGR is denoted
by M(NEGR). We say M(NEGR) is the matroid induced by NEGR.

In order to certify the boundary operator BNDR satisfies the boundary axiom, the following two
lemmas are proposed.

Lemma 2. Refs. [1,41] Let R be an equivalence relation on U. For all X, Y ⊆ U, R(X
⋂

Y) ⊆ R(X)
⋂

R(Y).

Lemma 3. Let R be an equivalence relation on U. If X ⊆ Y ⊆ U, then X
⋂

BNDR(Y) ⊆ BNDR(X).

Proof. For any x ∈ X
⋂

BNDR(Y), X
⋂

BNDR(Y) = X
⋂
(R(X) − R(X)) = X

⋂
R(X)

⋂
R(−X)).

Since X ⊆ Y ⊆ U, so −Y ⊆ −X ⊆ U. According to (6H) of Proposition 1, X
⋂

R(X)
⋂

R(−X)) =

X
⋂

R(−X) ⊆ R(X)
⋂

R(−X) = BNDR(X). Hence, x ∈ BNDR(X), i.e., X
⋂

BNDR(Y) ⊆
BNDR(X).

The boundary operator BNDR satisfies the boundary axiom.
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Proposition 10. Let R be an equivalence relation on U. Then, BNDR satisfies (BO1), (BO2), (BO3), (BO4)
and (BO5) of Proposition 5.

Proof. (BO1): According to (8LH) of Proposition 1, R(−X) = −R(X). For any X ⊆ U,

BNDR(−X) = R(−X)− R(−X)

= R(−X)
⋂
(U − R(−X))

= (−R(X))
⋂

R(X)

= R(X)
⋂
(−R(X))

= R(X)− R(X)

= BNDR(X).

(BO2): For any X ⊆ U,

BNDR(BNDR(X)) = R(BNDR(X))− R(BNDR(X))

= R(BNDR(X))
⋂
(U − R(BNDR(X)))

= R(BNDR(X))
⋂
(−R(BNDR(X)))

= R(BNDR(X))
⋂
(R(−BNDR(X)))

⊆ R(BNDR(X))

= R(R(X)− R(X))

= R(R(X)
⋂
(−R(X))).

According to Lemma 1, we know

R(R(X)
⋂
(−R(X))) ⊆ R(R(X))

⋂
R(−R(X))

= R(X)
⋂

R(−R(X))

= R(X)− R(X)

= BNDR(X).

Hence, BNDR(BNDR(X)) ⊆ BNDR(X);
(BO3): For any X, Y ⊆ U, X

⋂
Y
⋂
(BNDR(X)

⋃
BNDR(Y)) = X

⋂
Y
⋂
((R(X) −R(X))

⋃
(R(Y) −

R(Y))) = X
⋂

Y
⋂

((R(X)
⋂

R(−X))
⋃
(R(Y)

⋂
R(−Y))) ⊆ X

⋂
Y
⋂
(R(−X)

⋃
R(−Y)). According

to (4H) of Proposition 1, we know X
⋂

Y
⋂

(R(−X)
⋃

R(−Y)) = X
⋂

Y
⋂

R((−X)
⋃
(−Y)) =

X
⋂

Y
⋂

R(−(X
⋂

Y)). According to (6H) of Proposition 1, we know X
⋂

Y ⊆ R(X
⋂

Y). Therefore,
X

⋂
Y
⋂

R(−(X
⋂

Y)) = X
⋂

Y
⋂

R(−(X
⋂

Y))
⋂

R(X
⋂

Y) = X
⋂

Y
⋂

BNDR(X
⋂

Y).
(BO4): When x = y or x ∈ X, it is straightforward. When y ∈ X, it does not hold. (In fact, we suppose
y ∈ X. If y ∈ BNDR(X

⋃{x}), according to Lemma 3, we know y ∈ X
⋂

BNDR(X
⋃{x}) ⊆ BNDR(X),
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which is contradictory with y ∈ BNDR(X
⋃{x})− BNDR(X). Hence, y 6∈ X.) We only need to prove

it for x 6= y and x, y 6∈ X. If y ∈ BNDR(X
⋃{x})− BNDR(X), since

BNDR(X
⋃ {x})− BNDR(X)

= (R(X
⋃{x})− R(X

⋃{x}))− (R(X)− R(X))

= (R(X
⋃{x}) ⋂ R(−(X

⋃{x})))− (R(X)
⋂

R(−X))

= (R(X
⋃ {x})⋂ R(−(X

⋃{x})))⋂((− R(X))
⋃
(−R(−X)))

= (R(X
⋃{x})⋂ R(−(X

⋃{x}))⋂(−R(X)))
⋃
(R(X

⋃{x})⋂
(R(−(X

⋃{x})))⋂(−R(−X)))

= R(X
⋃{x})⋂ R( −(X

⋃{x}))⋂(−R(X))

= R(X
⋃{x})⋂(−R(X))

⋂
R(−(X

⋃{x}))
= (R(X

⋃ {x})− R(X))
⋂

R(−(X
⋃ {x})),

then y ∈ R(X
⋃{x}) − R(X) and y ∈ R(−(X ⋃ {x})). According to Proposition 8, we have x ∈

R(X
⋃{y}). Since y ∈ R(−(X ⋃ {x})), so x ∈ R(−(X ⋃{y})). Hence, y ∈ R(X

⋃{y})⋂ R(−(X ⋃{y})),
i.e., y ∈ BNDR(X

⋃{y}).
(BO5): For any X, Y ⊆ U,

BNDR(X
⋃

BNDR(X)) = R(X
⋃

BNDR(X))− R(X
⋃

BNDR(X))

= R(X
⋃

BNDR(X))
⋂

R(−(X
⋃

BNDR(X)))

= R(X
⋃

BNDR(X))
⋂

R((−X)
⋂
(BNDR(−X)))

⊆ R(X
⋃

BNDR(X))
⋂

R(−X)

= R(X
⋃
(R(X)

⋂
R(−X)))

⋂
R(−X)

= R(R(X)
⋂

U)
⋂

R(−X)

= R(R(X))
⋂

R(−X).

According to (5H) and (8LH) of Proposition 1, R(R(X))
⋂

R(−X) = R(X)
⋂

R( −X) = R(X)−
R(X) = BNDR(X). Therefore, BNDR(X

⋃
BNDR(X)) ⊆ BNDR(X).

Proposition 8 determines the fourth matroid such that BNDR is its boundary operator.

Definition 6. Let R be an equivalence relation on U. The matroid whose boundary operator is BNDR is denoted
by M(BNDR). We say that M(BNDR) is the matroid induced by BNDR.

3.2. The Relationship between These Four Matroids

This subsection studies the relationship between these four matroids in the above subsection.
In fact, these four matroids are the same one.

Theorem 1. Let R be an equivalence relation on U. Then,

M(R) = M(R) = M(NEGR) = M(BNDR).

Proof. (1) On one hand, M(R) and M(R) have the same grand U. On the other hand, according
to Definition 3, we know intM(R)(X) = R(X) for any X ⊆ U. By Proposition 6, clM(R)(X) =

−intM(R)(−X) = −R(−X). According to (8LH) of Proposition 1, −R(−X) = R(X). Hence,
clM(R)(X) = R(X). According to Definition 4, clM(R)(X) = R(X). Therefore, clM(R)(X) = clM(R)(X),
i.e., M(R) = M(R).
(2) On one hand, M(R) and M(NEGR) have the same grand U. On the other hand, according to
Definition 4, we know clM(R) = R. For any X ⊆ U, exM(R)(X) = −clM(R)(X) = −R(X) = U −
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R(X) = NEGR(X). By Definition 5, exM(NEGR)
(X) = NEGR(X). Hence, exM(R)(X) = exM(NEGR)

(X),
i.e., M(R) = M(NEGR).
(3) On one hand, M(R) and M(NEGR) have the same grand U. On the other hand, according
to Definition 4, we have clM(R) = R. For all X ⊆ U, boM(R)(X) = clM(R)(X)

⋂
clM(R)(−X) =

R(X)
⋂

R(−X) = R(X)
⋂

R(−X) = R(X) − R(X) = BNDR(X). According to Definition 6,
boM(NEGR)

(X) = BNDR(X). Therefore, boM(R)(X) = boM(NEGR)
(X), i.e., M(R) = M(NEGR).

Definition 7. Let R be an equivalence relation on U. The matroid whose interior operator, closure operator,
exterior operator and boundary operator are R, R, NEGR and BNDR is defined as M(R). We say that M(R) is
the matroid induced by R.

According to the above definition, we have the relationship about operators between rough sets
and matroids as Table 1:

Table 1. The relationship about operators between rough sets and matroids.

M(R) Is the Matroid Induced by R

intM(R) = R = POSR
clM(R) = R
exM(R) = NEGR
boM(R) = BNDR

3.3. The Relationship about Operations between Matroids and Rough Sets

In this subection, a relationship about the restriction operation both in matroids and rough
sets is proposed. First of all, two definitions of these two operations are presented in the following
two definitions.

Definition 8. (Restriction [29,30]) Let M = (U, I) be a matroid. For X ⊆ U, the restriction of M to X is
defined as M|X = (X, IX), where IX = {I ⊆ X : I ∈ I}.

Not that C(M|X) = {C ⊆ X : C ∈ C(M)}. For an equivalence relation R on U, there is also a
definition of restriction of R. For any X ⊆ U, R|X is an equivalence relation called the restriction of R
to X, where R|X = {(x, y) ∈ X× X : (x, y) ∈ R}, X× X is the product set of X and X. According to
Definition 7, M(R|X) is a matroid on X.

In [38], the set of independent sets of M(R) is proposed in the following lemma.

Lemma 4. Ref. [38] Let R be an equivalence relation on U. Then,

I(M(R)) = {X ⊆ U : ∀x, y ∈ X, x 6= y⇒ (x, y) /∈ R}.

Example 5. Let R be an equivalence relation on U with U = {a, b, c, d, e}, and U/R = {{a, b}, {c, d, e}}.
According to Lemma 4, I(M(R)) = {∅, {a}, {b}, {c}, {d}, {e}, {a, c}, {b, c}, {a, d}, {b, d}, {a, e}, {b, e}}.

Proposition 11. Let R be an equivalence relation on U and X ⊆ U. Then, M(R|X) = M(R)|X.

Proof. For any X ⊆ U, R|X is an equivalence relation on X. Thus, M(R|X) is a matroid on X.
By Definition 8, M(R)|X is a matroid on X. Therefore, we need to prove only I(M(R|X)) = I(M(R)|X).
According to Lemma 4, I(M(R|X)) = {Y ⊆ X : ∀x, y ∈ Y, x 6= y ⇒ (x, y) /∈ R|X}, I(M(R)|X) =

{Y ⊆ X : ∀x, y ∈ Y, x 6= y ⇒ (x, y) /∈ R}. On one hand, since R|X ⊆ R, I(M(R)|X) ⊆ I(M(R|X)).
On the other hand, suppose Y ∈ I(M(R|X))− I(M(R)|X). For any x, y ∈ Y, if x 6= y, then (x, y) /∈ R|X
but (x, y) ∈ R. Therefore, x, y /∈ X but x, y ∈ U, i.e., x, y ∈ U − X. Hence, Y ⊆ U − X, which is
contradictory with Y ⊆ X, i.e., Y ∈ I(M(R|X))− I(M(R)|X). Thus, I(M(R|X)) ⊆ I(M(R)|X).
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Example 6. (Continued from Example 5) Let X = {a, b, c}. According to Definition 8,
I(M(R)|X) = {∅, {a}, {b}, {c}, {a, c}, {b, c}}, and M(R)|X = (X, I(M(R)| X)). Since R|X =

{(a, a), (b, b), (c, c), (a, b), (b, a)}, so X/(R|X) = {{a, b}, {c}}. According to Lemma 4, I(M(R|X)) =

{∅, {a}, {b}, {c}, {a, c}, {b, c}}, and M(R|X) = (X, I(M(R|X)). Therefore, M(R|X) = M(R)|X.

4. A Matroidal Approach to Attribute Reduction through the Girth Function

In this section, a matroidal approach is proposed to compute attribute reduction in information
systems through the girth function of matroids.

4.1. An Equivalent Formulation of Attribute Reduction through the Girth Function

Lemma 5. Ref. [15] Let R1 and R2 be two equivalence relations on U, respectively. Then, R1 = R2 if and only
if R1 = R2.

Based on Lemma 5, we propose a necessary and sufficient condition for two equivalence relations
induce the same matroids.

Proposition 12. Let R1 and R2 be two equivalence relations on U, respectively. Then, M(R1) = M(R2) if
and only if R1 = R2.

Proof. According to Definition 7, M(R1) and M(R2) have the same grand U. According to
Proposition 3, Proposition 7 and Lemma 5,

M(R1) = M(R2) ⇔ intM(R1)
= intM(R2)

⇔ R1 = R2

⇔ R1 = R2.

An equivalent formulation of attribute reduction in information systems is presented from the
viewpoint of matroids.

Proposition 13. Let IS = (U, A) be an information system. For all B ⊆ A, B is a reduct of IS if and only if it
satisfies the following two conditions:

(1) For all b ∈ B, M(IND(B)) 6= M(IND(B− b));
(2) M(IND(B)) = M(IND(A)).

Proof. Since IND(A), IND(B) and IND(B − b) are equivalence relations on U, M(IND(A)),
M(IND(B)) and M(IND(B− b)) are matroids on U. According to Proposition 12,

(1) For all b ∈ B, M(IND(B)) 6= M(IND(B− b))⇔ IND(B) 6= IND(B− b);
(2) M(IND(B)) = M(IND(A))⇔ IND(B) = IND(A).

According to Definition 1, it is immediate.

In Proposition 13, the equivalent formulation of attribute reduction is not convenient for us to
compute the attribute reduction. We consider to use the girth function of matroids to compute it.

Definition 9. (Girth function [29,30]) Let M = (U, I) be a matroid. The girth g(M) of M is defined as:

g(M) =

{
min{|C| : C ∈ C(M)}, C(M) 6= ∅;
∞, C(M) = ∅.

For all X ⊆ U, the girth function gM is defined as gM(X) = g(M|X). gM(X) is called the girth of X in M.
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According to Definition 9, the girth function is related to circuits. Thus, the following lemma
presents the family of all circuits of M(R).

Lemma 6. Ref. [38] Let R be an equivalence relation on U. Then,

C(M(R)) = {{x, y} ⊆ U : x 6= y ∧ (x, y) ∈ R}.

Example 7. (Continued from Example 5) C(M(R)) = {{a, b}, {c, d}, {c, e}, {d, e}}.

Based on the characteristics of the matroid induced by an equivalence relation, a type of matroids
is abstracted, which is called a 2-circuit matroid. M is called a 2-circuit matroid if |C| = 2 for all
C ∈ C(M). Note that, if C(M) = ∅, then M is also a 2-circuit matroid. In this section, we don’t
consider this case. The matroid M(R) is a 2-circuit matroid.

Proposition 14. Let R be an equivalence relation on U and X ⊆ U. Then,

g(M(R)) =

{
2, C(M(R)) 6= ∅;
∞, C(M(R)) = ∅;

gM(R)(X) =

{
2, C(M(R)|X) 6= ∅;
∞, C(M(R)|X) = ∅.

Proof. Since M(R) is a 2-circuit matroid, |C| = 2 for all C ∈ C(M(R)). According to Definition 9,
it is immediate.

Corollary 2. Let R be an equivalence relation on U and X ⊆ U. Then,

g(M(R)) =

{
2, ∃x ∈ U, s.t., |RN(x)| ≥ 2;
∞, otherwise,

gM(R)(X) =

{
2, ∃x ∈ X, s.t., |RN(x)

⋂
X| ≥ 2;

∞, otherwise.

Proof. According to Lemma 6,

C(M(R)) 6= ∅ ⇔ ∃x, y ⊆ U, s.t., x 6= y ∧ (x, y) ∈ R

⇔ ∃x ∈ U, s.t., |RN(x)| ≥ 2.

Hence,

g(M(R)) =

{
2, ∃x ∈ U, s.t., |RN(x)| ≥ 2;
∞, otherwise.

Since C(M(R)|X) = {C ⊆ X : C ∈ C(M(R))} = {{x, y} ⊆ X : x 6= y ∧ (x, y) ∈ R},

C(M(R)|X) 6= ∅ ⇔ ∃x, y ⊆ X, s.t., x 6= y ∧ (x, y) ∈ R

⇔ ∃x ∈ U, s.t., |RN(x)
⋂

X| ≥ 2.

Hence,

gM(R)(X) =

{
2, ∃x ∈ X, s.t., |RN(x)

⋂
X| ≥ 2;

∞, otherwise.
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Lemma 7. Refs. [1,41] Let R1 and R2 be two equivalence relations on U, respectively. Then, for any x ∈ U,

(R1
⋂

R2)N(x) = R1N(x)
⋂

R2N(x).

According to Corollary 2, the girth function of the matroid induced by attribute subsets is
presented in the following proposition.

Proposition 15. Let IS = (U, A) be an information system and X ⊆ U. Then, for all B ⊆ A,

g(M(IND(B))) =

 2, ∃x ∈ U, s.t., | ⋂
Ri∈B

Ri N(x)| ≥ 2;

∞, otherwise,

gM(IND(B))(X) =

 2, ∃x ∈ X, s.t., |( ⋂
Ri∈B

Ri N(x))
⋂

X| ≥ 2;

∞, otherwise.

Proof. According to Lemma 7 and Corollary 2, it is immediate.

Note that Ri in Ri N denotes the equivalence relation induced by attribute Ri ∈ A. According to
the girth axiom, we know that a matroid is corresponding to one and only one girth function.

Proposition 16. (Girth axiom [29,30]) Let g : 2U → Z+ ⋃{0, ∞} be a function. Then, there exists one and
only one matroid M such that g = gM iff g satisfies the following three conditions:
(G1) If X ⊆ U and g(X) < ∞, then X has a subset Y such that g(X) = g(Y) = |Y|.
(G2) If X ⊆ Y ⊆ U, then g(X) ≥ g(Y).
(G3) If X and Y are distinct subsets of U with g(X) = |X|, g(Y) = |Y|, then g((X

⋃
Y)− {e}) < ∞ for any

e ∈ X
⋂

Y.

Inspired by Propositions 13 and 16, we can use the girth function in matroids to compute
attribute reduction.

Theorem 2. Let IS = (U, A) be an information system. For all B ⊆ A, B is a reduct of IS if and only if it
satisfies the following two conditions:

(1) For all b ∈ B, there exists X ⊆ U such that gM(IND(B))(X) 6= gM(IND(B−b))(X).
(2) For all X ⊆ U, gM(IND(B))(X) = gM(IND(A))(X).

Proof. According to Propositions 13 and 16, it is immediate.

4.2. The Process of the Matroidal Methodology

In this subsection, we give the process of the matroidal approach to compute attribute reduction
in information systems according to the equivalent description in Section 4.1.

In order to obtain all results of an information system IS = (U, A), we need to compute
gM(IND(B))(X) for all B ⊆ A and X ⊆ U based on Theorem 2. According to Definition 1, we know
a reduct of IS will not be ∅. Hence, we only consider B ⊆ A and B 6= ∅. On the other hand, for all
X ⊆ U and B ⊆ A, if |X| ≤ 1, then gM(IND(B))(X) = gM(IND(A))(X). According to Theorem 2, we only
consider X whose |X| ≥ 2. Therefore, the process is shown as follows:

• Input: An information system IS = (U, A), where U = {u1, u2, · · · , un} and A =

{a1, a2, · · · , am}.
• Output: All results of IS.
• Step 1: Suppose Bi ⊂ A (Bi 6= ∅ and i = 1, 2, · · · , 2m − 2), we compute all IND(Bi) and IND(A).
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• Step 2: For any i = 1, 2, · · · , 2m − 2, we compute gM(IND(Bi))
(X) and gM(IND(A))(X) for any

X ⊆ U and |X| ≥ 2.
• Step 3: Obtain all results of IS according to Theorem 2.

4.3. An Applied Example

Example 8. Let us consider the following information system IS = (U, A) as is shown in Table 2.

Table 2. An information system.

a1 a2 a3

u1 0 1 0
u2 1 2 2
u3 1 0 0
u4 2 1 1
u5 1 1 2

Let B1 = {a1}, B2 = {a2}, B3 = {a3}, B4 = {a1, a2}, B5 = {a1, a3}, B6 = {a2, a3}, A = {a1, a1, a3}.
gBi denotes gM(IND(Bi))

for 1 ≤ i ≤ 6 and gA denotes gM(IND(A)). All girth functions induced by attribute
subsets as is shown in Table 3.

Table 3. Girth functions induced by attribute subsets.

gB1 gB2 gB3 gB4 gB5 gB6 gA

u1, u2 ∞ ∞ ∞ ∞ ∞ ∞ ∞
u1, u3 ∞ ∞ 2 ∞ ∞ ∞ ∞
u1, u4 ∞ 2 ∞ ∞ ∞ ∞ ∞
u1, u5 ∞ 2 ∞ ∞ ∞ ∞ ∞
u2, u3 2 ∞ ∞ ∞ ∞ ∞ ∞
u2, u4 ∞ ∞ ∞ ∞ ∞ ∞ ∞
u2, u5 ∞ ∞ 2 ∞ 2 ∞ ∞
u3, u4 ∞ ∞ ∞ ∞ ∞ ∞ ∞
u3, u5 ∞ ∞ ∞ ∞ ∞ ∞ ∞
u4, u5 ∞ 2 ∞ ∞ ∞ ∞ ∞
u1, u2, u3 2 ∞ 2 ∞ ∞ ∞ ∞
u1, u2, u4 ∞ 2 ∞ ∞ ∞ ∞ ∞
u1, u2, u5 ∞ 2 2 ∞ 2 ∞ ∞
u1, u3, u4 ∞ 2 2 ∞ ∞ ∞ ∞
u1, u3, u5 ∞ 2 2 ∞ ∞ ∞ ∞
u1, u4, u5 ∞ 2 ∞ ∞ ∞ ∞ ∞
u2, u3, u4 2 ∞ ∞ ∞ ∞ ∞ ∞
u2, u3, u5 2 ∞ ∞ ∞ 2 ∞ ∞
u2, u4, u5 ∞ 2 2 ∞ 2 ∞ ∞
u3, u4, u5 ∞ 2 ∞ ∞ ∞ ∞ ∞
u1, u2, u3, u4 2 2 2 ∞ ∞ ∞ ∞
u1, u2, u3, u5 2 2 2 ∞ 2 ∞ ∞
u1, u2, u4, u5 ∞ 2 2 ∞ 2 ∞ ∞
u1, u3, u4, u5 ∞ 2 2 ∞ ∞ ∞ ∞
u2, u3, u4, u5 2 2 2 ∞ 2 ∞ ∞
u1, u2, u3, u4, u5 2 2 2 ∞ 2 ∞ ∞

Accordingly, there are two reducts of IS: B4 = {a1, a2} and B6 = {a2, a3}.

5. Conclusions

In this paper, we generalize four operators of rough sets to four operators of matroids through the
interior axiom, the closure axiom, the exterior axiom and the boundary axiom, respectively. Moreover,
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we present a matroidal approach to compute attribute reduction in information systems. The main
conclusions in this paper and the continuous work to do are listed as follows:

1. There are four matroids induced by these four operators of rough sets. In fact, these four matroids
are the same one, which implies the relationship about operators between rough sets and matroids.
In this work, we assume an equivalence relation. However, there are other structures have been
used in rough set theory, among them, tolerance relations [43], similarity relations [44], and binary
relations [15,45]. Hence, they can suggest as a future research, the possibility of extending their
ideas to these types of settings.

2. The girth function of matroids is used to compute attribute reduction in information systems.
This work can be viewed as a bridge linking matroids and information systems in the theoretical
impact. In the practical impact, it is a novel method by which calculations will become algorithmic
and can be implemented by a computer. Based on this work, we can use the girth function of
matroids for attribute reduction in decision systems in the future.

3. In the future, we will further expand the research content of this paper based on some new
studies on neutrosophic sets and related algebraic structures [46–50].
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