
symmetryS S

Article

On Fitting Ideals of Kahler Differential Module

Nurbige Turan * and Necati Olgun

Department of Mathematics, Gaziantep University, Gaziantep 27310, Turkey; olgun@gantep.edu.tr
* Correspondence: nurbigeturan@gantep.edu.tr; Tel.: +90-342-317-2262

Received: 9 July 2018; Accepted: 10 September 2018; Published: 19 September 2018
����������
�������

Abstract: Let k be an algebraically closed field of characteristic zero, and R/I and S/J be algebras
over k. Ω1(R/I) and Ω1(S/J) denote universal module of first order derivation over k. The main
result of this paper asserts that the first nonzero Fitting ideal Ω1(R/I ⊗k S/J) is an invertible ideal, if
the first nonzero Fitting ideals Ω1(R/I) and Ω1(S/J) are invertible ideals. Then using this result, we
conclude that the projective dimension of Ω1(R/I ⊗k S/J) is less than or equal to one.
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1. Introduction

Fitting ideals are used in different areas of mathematics to investigate the structure of modules.
They appear as invariants which are useful as the annihilator ideal of a module. Fitting ideal or Fitting
invariant was introduced by H. Fitting in 1936 [1]. Lipman proves that when R is a quasilocal ring,
the first nonzero Fitting ideal is an regular principle ideal if and only if R is a complete intersection
and Ω1(R)/T(Ω1(R)) is free [2]. Kunz sets apart a section of his book of Fitting ideals of universal
differential modules [3], Olgun and Erdoğan study universal differential modules and their Fitting
ideals [4–8]; Olgun also gives examples about Fitting ideals of universal differential modules. Ohm
generalizes Lipman’s results in a global case [9]. Hadjirezai, Hedayat, and Karimzadeh assert that
when a finitely generated module in which the first nonzero Fitting ideal is maximal or regular, they
characterize this module [10]. They also study the first nonzero Fitting ideal of the module over unique
factorization domain rings [11]. Simis and Ulrich examine the circumstances in which the equation
l(ΛrE) ≥ height(Fr(M)) holds [12]. In [13], it has been shown M is a free R-module if and only if the
Fitting ideal FT(M) is grade unmixed.

Fitting ideals are used in mathematical physics at the same time. They provide a transition
between commutative algebra and physics. M. Einsiedler and T. Ward show how the dynamical
properties of the system may be deduced from the Fitting ideals. They prove the entropy and
expansiveness related with only the first Fitting ideal. This gives an easy computation instead of
computing syzygy modules. Also, they show how the dynamical properties and periodic point
behavior may be deduced from the determinant of the matrix of relations [14].

In this paper, we will show that if the first nonzero Fitting ideals of Ω1(R/I) and Ω1(S/J) are
invertible ideals, the first nonzero Fitting ideal of Ω1(R/I ⊗k S/J) is an invertible ideal. Then using
this result, when the first nonzero Fitting ideals Fi(Ω1(R/I)) and Fj(Ω1(S/J)) are invertible ideals, we
can conclude that the projective dimension of Ω1(R/I ⊗k S/J) is less than or equal to one.

2. Background Material

Throughout this paper we will suppose that R is a commutative algebra over an algebraically
closed field k with characteristic zero. In this section, we will give some results about the Fitting
ideal of universal modules. When R is a k-algebra, Ωq(R) denotes the universal module of q-th order
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derivations of R over k, and δq denotes the canonical q-th order k-derivative from R to Ωq(R) of R. The
pair (Ωq(R), δq) has the universal mapping property with respect to the q-th order k-differentials of R.

Ωq(R) is R-module generated by the set
{

δq(r) : rεR
}

. If R is finitely generated k-algebra, then
Ωq(R) will be finitely generated.

Let M be a finitely generated R-module and {m1, m2, . . . , mn} be a system of generators of M. The
exact sequence of R-modules

0→ K → Rn α→ M→ 0

where α maps the i-th canonical basis element ei onto mi(i = 1, 2, . . . , n) and K = ker(α) is said the
presentation of M defined by {m1, m2, . . . , mn}.

Let {vλ}λεΛ be a system of generators of K with vλ = (xλ1 , xλ2 , . . . , xλn)λεΛεRn. Then,

A = (xλ i)λεΛ,i=1,2,...n

is called a relation matrix of M with respect to {m1, m2, . . . , mn}.
When the matrix A is given, let Fi(A) denote the ideal of R generated by all (n− i) rowed

subdeterminants of A(i = 1, 2, . . . , n− 1), and let Fi(A) = R for i ≥ n.

Lemma 1. Let A and B be two relation matrices of M. Then for every i ∈ Z, Fi(A) = Fi(B) (i.e., the Fitting
ideals of M is independent of the special choice of a relation matrix of M) [3].

Lemma 2. Fi(A)(i ∈ Z) is independent of the choice of the generating system {m1, m2, . . . , mn} of M [3].

Definition 1. Let A be a relation matrix of M and we set Fi(A) = Fi(M) for i ∈ N. Then Fi(M) is called the
i-th Fitting ideal of M. By construction we have:

F0(M) ⊆ F1(M) ⊆ · · · ⊆ Fi(M) ⊆ · · ·

and
Fi(M) = R for i ≥ µ(M).

Proposition 1. Suppose that M is a R-module. Fitting ideals of M have the following properties [3].

(i) Let M be a finitely generated R-module. Then the Fi(M)(i ∈ N) are finitely generated ideals of R.
(ii) Let α : M→ M′ be an epimorphism of R-modules. Then Fi(M) ⊆ Fi(M′)(i ∈ N).
(iii) Let S be R-algebra. Then we have Fi(S⊗R M) = S.Fi(M) (i ∈ N).
(iv) If N ⊆ R is a multiplicatively closed subset, then Fitting ideal of MN ,

Fi(MN) = Fi(M)N(i ∈ N)

(v) If I is an ideal of R, then the Fitting ideal of quotient module M/IM, Fi(M/IM) = Fi(M) where Fi(M)

points out the image of Fi(M) in R/I.

Proof. (i) and (ii) are trivial. As for (iii) think the exact sequence:

S⊗R K → Sn α→ S⊗R M→ 0

derived from exact sequence of R-modules:

0→ K → Rn α→ M→ 0.
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It is obvious that the images of xλi in S define a relation matrix of the S-module S⊗R M with
respect to 1⊗m1, 1⊗m2, . . . , 1⊗mn. To prove (iv), we can use the isomorphism N−1M ' M⊗R N−1R
and (iii), then we obtain Fi

(
N−1M

)
' Fi

(
M⊗R N−1R

)
= N−1RFi(M) = Fi(M)N . Similarly, for (v),

we can use the isomorphism M/IM ' M⊗R R/I and (iii). 2

Theorem 1. Let R be an affine k-algebra and R be a regular ring. Then Ωn(R) is a projective R-module [15].

Theorem 2. Let R be an affine k-algebra and R be a regular ring if and only if Ω1(R) is a projective
R-module [16].

Definition 2. Let R = k[x1, x2, . . . , xn] be the polynomial algebra and let I = ( f1, f2, . . . , fm) be an ideal of R
and Ωn(R/I) is the n-th order universal module of derivatives of R/I.

Ωn(R/I) ' F/N where F is a free module which is generated by the set {δn(xα + I) : |α| ≤ n} and N
is a submodule of F generated by the set {δn(xα fi + I) : |α| < n, i = 1, 2, . . . , m}. Therefore we have the
following exact sequence of R/I-modules:

0→ N θ→ F → Ωn(R/I)→ 0.

In this sequence θ is a relation matrix of the universal module Ωn(R/I). Given such a matrix, Fi(Ωn(R/I))
denotes the ideal of R/I generated by all rank F− i rowed subdeterminants of θ. Fi(Ωn(R/I)) is called i-th
Fitting ideal of Ωn(R/I). We can write the following increasing chain by using properties of Fitting ideals:

F0(Ωn(R/I)) ⊆ F1(Ωn(R/I)) ⊆ · · · ⊆ Fi(Ωn(R/I)) ⊆ · · ·

and
Fi(Ωn(R/I)) = R/I for i ≥ µ(Ωn(R/I)) for i ≥ rankF.

Proposition 2. Let R be an affine domain with dimension s. If Ωn(R) has rank r, then the first nonzero Fitting
ideal of Ωn(R) is Fr(Ωn(R)) [3].

Proof. Let Q(R) be a field of fraction of R. From Proposition 1, we have Fi(Q(R)⊗R Ωn(R)) =

Q(R)Fi(Ωn(R)). Since Q(R) ⊗R Ωn(R) is a free Q(R)-module with rank r, we obtain
Fi(Q(R)⊗R Ωn(R)) = 0 for i = 0, 1, . . . , r− 1. Hence, Fi(Ωn(R)) = 0 for i = 0, 1, . . . , r− 1. Similarly,
since Fi(Q(R)⊗R Ωn(R)) = Q(R)Fi(Ωn(R)) = Q(R) 6= 0 for i ≥ r, Fi(Ωn(R)) 6= 0. 2

Proposition 3. Let R be an affine local domain with dimension s. Ωn(R) is a free R-module with rank r if and
only if the first nonzero Fitting ideal is R [3].

Proof. Let Ωn(R) be a free R-module with rank r. Then,

0→ N θ→ F → Ωn(R/I)→ 0

is an exact sequence of R-modules. The relation matrix of Ωn(R) is zero matrix since Ωn(R) ' Rr.
Therefore Fi(Ωn(R)) = 0 for i < r and Fi(Ωn(R)) = R for i ≥ r.
Conversely, if Fi(Ωn(R)) = 0 for i < r and Fi(Ωn(R)) = R for i ≥ r then the relation matrix of

Ωn(R) is a zero matrix. Hence Ωn(R) is a free R-module which has rank r. 2

Corollary 1. Let R be an affine k-algebra with dimension s. Ωn(R) is a projective R-module with rank r if and
only if the first nonzero Fitting ideal is R [3].

Theorem 3. Let R be an affine k-algebra. Then the following are equivalent [6]:
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(i) R is a regular local ring.
(ii) Ω1(R) is a free R-module.
(iii) The first nonzero Fitting ideal is R.

Proof. It follows from Proposition 3 and Theorem 2. 2

Corollary 2. Let R be an affine k-algebra. Then the following are equivalent [6]:

(i) R is a regular ring.
(ii) Ω1(R) is a projective R-module.
(iii) The first nonzero Fitting ideal is R.

Theorem 4. Let R be an affine local k-algebra and T(Ωn(R)) be torsion module of Ωn(R) [2]. Then the
following statements are equivalent:

(i) The first nonzero Fitting ideal is the principal ideal generated by a nonzero divisor of R

(ii) Ωn(R)
T(Ωn(R)) ' Rr and there exists an exact sequence

0→ P1 → P0 → Ωn(R)→ 0

with free R-modules P0, P1 of finite rank.

3. Results

Definition 3. Let R be an integral domain, I be the ideal of R and Q be the quotient field of R. If xI ⊆ R for
0 6= x ∈ Q, then I is called a fractional ideal of R. Let I−1 denote {q ∈ Q|qI ⊆ R}. If I I−1 = R, then I is
called an invertible ideal.

Definition 4. M is said to be a finite projective dimension if there is a projective resolution of the form
0→ Fn → Fn−1 → · · · → F1 → F0 → M→ 0 .

The minimum of the lengths n of such resolutions is called the projective dimension of M. It is denoted by
pdR M.

Theorem 5. Let R be an integral domain and I a be finitely generated ideal of R. Then I is an invertible ideal if
and only if Im is a principal ideal for all maximal ideals of m [17].

Theorem 6. Let R be an affine domain. Then the following statements are equivalent [6]:

(i) The first nonzero Fitting ideal is an invertible ideal.

(ii) Ωn(R)
T(Ωn(R)) is a projective R-module of rank r and pdRΩn(R) ≤ 1.

Proof. Since R is an affine domain, we have T(Ωn(R))p = T
(

Ωn(R)p

)
for each p ∈ Spec(R). An ideal

in a Noetherian ring is an invertible ideal if and only if it is locally generated by a nonzero divisor. It
follows from Theorem 4. 2

Corollary 3. Let R be an affine domain and Ωn(R) be the universal module of rank r. If Fr(Ωn(R)) is an
invertible ideal then pd(Ωn(R)) ≤ 1 [6].
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Corollary 4. Let R be an affine domain. If Fi(Ωn(R)) is not an invertible ideal for all i ∈ I then R is not a
regular ring [6].

Example 1. Let R = k[x, y]/
(

x2 + y2 − 4
)
. Then 2xdx + 2ydy = 0. Therefore F0(Ω1(R)) = 0 and

F1(Ω1(R)) = (x, y) = R. Hence Ω1(R) is a projective R-module of rank 1 and R is a regular ring.

Example 2. Let S be the coordinate ring of the y2 = xz. Then S = k[x, y, z]/( f ) where f = y2 − xz. It can be
found the Fitting ideals of Ω1(S) and Ω2(S).

Ω1(S) ' F/N where F is a free S-module on {δ1(x), δ1(y), δ1(z)} and N is a submodule of F generated
by δ1( f ) = 2yδ1(y)− xδ1(z)− zδ1(x). Certainly, N is a free submodule on δ1( f ). Then pd(Ω1(S)) ≤ 1.
Therefore, we have

0→ N
φ→ F π→ Ω1(S) ' F/N → 0

a free resolution of Ω1(S). In this sequence the homomorphism φ is a matrix, −z
2y
−x


which is a relation matrix of Ω1(S). The Fitting ideals of Ω1(S) are F0(Ω1(S)) = 0 = F1(Ω1(S)) ⊆
F2(Ω1(S)) = (x, y, z) ⊆ F3(Ω1(S)) = S.

Since rankΩ1(S) = 2 and F2(Ω1(S)) = (x, y, z) 6= S, Ω1(S) is not a projective module and S is not a
regular ring by the Corollary 2 and Theorem 1.

As the same argument Ω2(S) ' F′/N′ where F′ is a free S-module on:{
δ2(x), δ2(y), δ2(z), δ2(xy), δ2(xz), δ2(yz), δ2

(
x2
)

, δ2

(
y2
)

, δ2

(
z2
)}

N′ is generated by {δ2( f ), δ2(x f ), δ2(y f ), δ2(z f )} which is a submodule of F′.

δ2( f ) = δ2

(
y2
)
− δ2(xz).

δ2(x f ) = δ2
(

xy2 − x2z
)
= −zδ2

(
x2)+ xδ2

(
y2)+ 2yδ2(xy)+

2xδ2(xz) + xzδ2(x)− 2xyδ2(y) + x2δ2(z).

δ2(y f ) = δ2
(
y3 − xyz

)
= 3yδ2

(
y2)− zδ2(xy)− yδ2(xz)−

xδ2(yz) + yzδ2(x)− 2xzδ2(y) + xyδ2(z).

δ2(z f ) = δ2
(
y2z− xz2) = zδ2

(
y2)− xδ2

(
z2)− 2zδ2(xz)+

2yδ2(yz)− z2δ2(x)− 2yzδ2(y) + xzδ2(z).

Since rankΩ2(S) = 5 we have rankN′ = rankF′ − rankΩ2(S) = 9− 5 = 4. So N′ is a free S-module.
Then pd(Ω2(S)) ≤ 1. Therefore, we have,

0→ N′
φ→ F′ π→ Ω2(S) ' F′/N′ → 0

a free resolution of Ω2(S). Here π is the natural surjection and φ is given by the following matrix:
0 1 0
−z x 0

0 −1 0
2y −2x 0

0 0 0
xz −2xy x2

0 3y 0
0 z −x

−z −y −x
0 −2z 2y

yz −2xz xy
z2 −2yz xz
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This is a relation matrix of Ω2(S). The Fitting ideals of Ω2(S) are F0(Ω2(S)) = 0 = F1(Ω2(S)) =

F2(Ω2(S)) = F3(Ω2(S)) = F4(Ω2(S)) = 0 ⊆ F5(Ω2(S)) 6= 0 ⊆ F6(Ω2(S)) 6= 0 ⊆ F7(Ω2(S)) =

(x, y, z) ⊆ F8(Ω2(S)) = S.
We can say Ω2(S) is not a projective module from Corollary 1. Hence, S is not a regular ring by the

Theorem 1.

Example 3. Let S = k[x, y, z]/( f , g, h) where f = y2 − xz, g = yz− x3 and h = z2 − x2y. We can find the
Fitting ideals of Ω1(S).

Ω1(S) ' F/N where F is a free S-module on {δ1(x), δ1(y), δ1(z)} and N is a submodule of
F generated by,

δ1( f ) = δ1

(
y2 − xz

)
= 2yδ1(y)− zδ1(x)− xδ1(z)

δ1(g) = δ1

(
yz− x3

)
= zδ1(y) + yδ1(z)− 3x2δ1(x)

δ1(h) = δ1

(
z2 − x2y

)
= 2zδ1(z)− 2xyδ1(x)− x2δ1(y) −z −3x2 −2xy

2y z −x2

−x y 2z


This is a relation matrix of Ω1(S). The Fitting ideals of Ω1(S) are F0(Ω1(S)) = 0 = F1(Ω1(S)) ⊆

F2(Ω1(S)) = (x, y, z) ⊆ F3(Ω1(S)) = S.
Since rank(Ω1(S)) = 2 and F2(Ω1(S)) = (x, y, z) 6= S, Ω1(S) is not a projective module, so S is not

a regular ring by the Corollary 2. Furthermore, we know that pdΩ1(S) = ∞ in [7], then from Corollary 3.
F2(Ω1(S)) is not an invertible ideal.

Example 4. Let R/I = k[x, y]/(y2 − x3) and S/J = k[z, t] /(z2 − t3) be affine k-algebras. Suppose that K =

I⊗k S + R⊗k J. Let F be free R⊗k S-module generated by the set {δ1(x⊗ 1), δ1(y⊗ 1), δ1(1⊗ z), δ1(1⊗ t)}
and let N be the submodule of F generated by the set {δ1( f ⊗ 1), δ1(1⊗ g)}.

Since Ω1

(
R⊗kS

K

)
' F/N, we have the following exact sequence,

0→ N → F → Ω1

(
R⊗k S

K

)
→ 0

rankN = rankF− rankΩ1

(
R⊗kS

K

)
= 4− 2 = 2. Then N is a free module. Therefore the above sequence is a

free resolution of Ω1

(
R⊗kS

K

)
. Hence pd(Ω1

(
R⊗kS

K

)
) ≤ 1.

δ1( f ⊗ 1) = δ1

(
y2 ⊗ 1

)
− δ1

(
x3 ⊗ f

)
= (2y⊗ 1)δ1(y⊗ 1)−

(
3x2 ⊗ 1

)
δ1(x⊗ 1)

δ1(1⊗ g) = δ1

(
1⊗ z2

)
− δ1

(
1⊗ t3

)
= (1⊗ 2z)δ1(1⊗ z)−

(
1⊗ 3t2

)
δ1(1⊗ t)(

−
(
3x2 ⊗ 1

)
(2y⊗ 1)

0 0
0 0

−
(
1⊗ 3t2) (1⊗ 2z)

)

The Fitting ideal of Ω1

(
R⊗kS

K

)
are,

F0(Ω1

(
R⊗k S

K

)
) = 0

F1(Ω1

(
R⊗k S

K

)
) = 0
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F2(Ω1

(
R⊗k S

K

)
) =

(
x2 ⊗ t2, x2 ⊗ z, y⊗ t2, y⊗ z

)
F3(Ω1

(
R⊗k S

K

)
) =

(
x2 ⊗ 1, y⊗ 1, 1⊗ t2, 1⊗ z

)
F4(Ω1

(
R⊗k S

K

)
) =

R⊗k S
K

Since rankΩ1

(
R⊗kS

K

)
= 2, then Ω1

(
R⊗kS

K

)
is not projective. So R⊗kS

K is not a regular ring. Hence,

pdΩ1

(
R⊗kS

K

)
= 1.

Let F′ be the free R⊗k S module generated by the set:

{δ2(x⊗ 1), δ2(y⊗ 1), δ2(1⊗ z), δ2(1⊗ t), δ2(x⊗ z), δ2(x⊗ t), δ2(y⊗ z), δ2(y⊗ t),
δ2
(

x2 ⊗ 1
)
, δ2
(
y2 ⊗ 1

)
, δ2
(
1⊗ z2), δ2

(
1⊗ t2), δ2(xy⊗ 1), δ2(1⊗ zt)

}
And let N′ be submodule of F′ generated by:

{δ2( f ⊗ 1), δ2(1⊗ g), δ2( f x⊗ 1), δ2( f y⊗ 1), δ2(1⊗ zg), δ2(1⊗ tg), δ2( f ⊗ z), δ2( f ⊗ t),
δ2(x⊗ g), δ2(y⊗ g)}.

Since Ω2

(
R⊗kS

K

)
' F′/N′, we have the following exact sequence:

0→ N′ → F′ → Ω2

(
R⊗k S

K

)
⊗ 0

Since rankN′ = rankF′ − rankΩ2

(
R⊗kS

K

)
= 14− 5 = 9, the generating set of N′ is not a basis:

δ2( f ⊗ 1) = δ2

(
y2 ⊗ 1

)
− (3x⊗ 1)δ2

(
x2 ⊗ 1

)
−
(

3x2 ⊗ 1
)

δ2(x⊗ 1)

δ2(1⊗ g) = δ2

(
1⊗ t2

)
− (1⊗ 3z)δ2

(
1⊗ z2

)
−
(

1⊗ 3z2
)

δ2(1⊗ z)

δ2(x f ⊗ 1) = (x⊗ 1)δ2
(
y2 ⊗ 1

)
− (2y⊗ 1)δ2(xy⊗ 1) +

(
7x3 ⊗ 1

)
δ2(x⊗ 1) + (2xy⊗ 1)δ2(y⊗ 1)

−
(
6x2 ⊗ 1

)
δ2
(

x2 ⊗ 1
)

δ2(y f ⊗ 1) = (3y⊗ 1)δ2
(
y2 ⊗ 1

)
−
(

x3 ⊗ 1
)
δ2(y⊗ 1)− (3xy⊗ 1)δ2

(
x2 ⊗ 1

)
−
(
3x2 ⊗ 1

)
δ2(y⊗ 1)

−
(
6x2y⊗ 1

)
δ2(x⊗ 1)

δ2( f ⊗ z) = (1⊗ z)δ2
(
y2 ⊗ 1

)
+ (2y⊗ 1)δ2(y⊗ z)− (2y⊗ z)δ2(y⊗ 1)− (3x⊗ z)δ2

(
x2 ⊗ 1

)
+
(

x3 ⊗ 1
)
δ2(1⊗ z) +

(
6x2 ⊗ z

)
δ2(x⊗ 1)

δ2( f ⊗ t) = (1⊗ t)δ2
(
y2 ⊗ 1

)
+ (2y⊗ 1)δ2(y⊗ t) +

(
x3 ⊗ 1

)
δ2(1⊗ t)− (2y⊗ t)δ2(y⊗ 1)

−(3x⊗ t)δ2
(

x2 ⊗ 1
)
−
(
3x2 ⊗ 1

)
δ2(x⊗ t) +

(
6x2 ⊗ t

)
δ2(x⊗ 1)

δ2(x⊗ g) = (x⊗ 1)δ2
(
1⊗ t2)+ (2⊗ t)δ2(x⊗ t)− (2x⊗ t)δ2(1⊗ t)−

(
1⊗ z3)δ2(x⊗ 1)

−(3x⊗ z)δ2
(
1⊗ z2)− (1⊗ 3z2)δ2(x⊗ z) +

(
6x⊗ z2)δ2(1⊗ z)

δ2(y⊗ g) = (y⊗ 1)δ2
(
1⊗ t2)+ (1⊗ 2t)δ2(y⊗ t)− (2y⊗ t)δ2(1⊗ t)−

(
1⊗ z3)δ2(y⊗ 1)

−(3y⊗ z)δ2
(
1⊗ z2)− (3⊗ z2)δ2(y⊗ z) +

(
6y⊗ z2)δ2(1⊗ z)

δ2(z⊗ g) = (1⊗ z)δ2
(
1⊗ t2)+ (2⊗ t)δ2(1⊗ zt) +

(
7⊗ z3)δ2(1⊗ z)− (2z⊗ t)δ2(1⊗ t)

−
(
6⊗ z2)δ2

(
1⊗ z2)

δ2(t⊗ g) = (3⊗ t)δ2
(
1⊗ t2)− (1⊗ z3)δ2(1⊗ t)− (1⊗ zt)δ2

(
1⊗ z2)− (3⊗ z2)δ2(1⊗ zt)

+
(
1⊗ z2t

)
δ2(1⊗ z)
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The Fitting ideals of Ω2

(
R⊗kS

K

)
are:

F0(Ω2

(
R⊗k S

K

)
) = F1(Ω2

(
R⊗k S

K

)
) = F2(Ω2

(
R⊗k S

K

)
) = 0

F3(Ω2

(
R⊗k S

K

)
) = F4(Ω2

(
R⊗k S

K

)
) = 0

F5(Ω2

(
R⊗k S

K

)
) = (xy⊗ z) ⊆ F6(Ω2

(
R⊗k S

K

)
) =

R⊗k S
K

We know that pdΩ2
R⊗kS

K ≤ 2. Since rank of Ω2

(
R⊗kS

K

)
is 5 and F5(Ω2

(
R⊗kS

K

)
) = (xy⊗ z) 6= R⊗kS

K ,

then Ω2

(
R⊗kS

K

)
is not a projective module (i.e., Ω2

R⊗kS
K 6= 0 ), so R⊗kS

K is not a regular ring by the Corollary

2. Hence, pdΩ2

(
R⊗kS

K

)
must be 1 and 2.

Theorem 7. If S1 and S2 are R-algebras such that Ω1(S1) and Ω1(S2) are finitely generated [3], then,

Fi(Ω1(S1 ⊗R S2)) = ∑
p+q=i

Fp(Ω1(S1))⊗R Fq(Ω1(S2)).

In particular,
F0(Ω1(S1 ⊗R S2)) = F0(Ω1(S1))⊗R F0(Ω1(S2))

Proof. We know that from [16], Ω1(S1 ⊗R S2) = (S2 ⊗R Ω1(S1))⊗ (S1 ⊗R Ω1(S2))

Using properties of the Fitting ideal of direct product of modules, then we obtain the following
equality:

Fi(Ω1(S1 ⊗R S2)) = ∑
p+q=i

Fp(S2 ⊗R Ω1(S1))⊗R Fq(S1 ⊗R Ω1(S2))

= ∑
p+q=i

S2Fp(Ω1(S1))⊗R S1Fp(Ω1(S2))

= ∑
p+q=i

S1Fp(Ω1(S1))⊗R S2Fp(Ω1(S2))

= ∑
p+q=i

Fp(Ω1(S1))⊗R Fp(Ω1(S2))

2
Now, we can give our important result as follows.

Theorem 8. Let R = k[x1, x2, . . . , xs] and S = k[y1, y2, . . . , yt] be polynomial algebras, R/I = k[x1,x2,...,xs ]
( f1, f2,..., fm)

and S/J = k[y1,y2,...,yt ]
(g1,g2,...,gn)

be affine k-algebras. If rankΩ1(R/I) = i, rankΩ1(S/J) = j,Fi(Ω1(R/I)) and
Fj(Ω1(S/J)) are invertible ideals, then Fi+j(Ω1(R/I ⊗k S/J)) is an invertible ideal.

Proof. We have from Theorem 4:

Fi+j(Ω1(R/I ⊗k S/J)) = ∑
p+q=i+j

Fp(Ω1(S1))⊗R Fp(Ω1(S2)).
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Since rankΩ1(R/I) = i and rankΩ1(S/J) = j, respectively, we obtain Fk(Ω1(R/I)) = 0 for k < i
and Fl(Ω1(S/J)) = 0 for l < j (Proposition 2). Therefore, we have:

Fi+j(Ω1(R/I ⊗k S/J)) = ∑
p+q=i+j

Fp(Ω1(S1))⊗R Fp(Ω1(S2)).

Fi+j(Ω1(R/I ⊗k S/J)) = F0(Ω1
(

R/I))⊗k Fi+j(Ω1(S/J
)
) + F1(Ω1

(
R/I))⊗k Fi+j−1(Ω1(S/J

)
) + . . .+

Fi−1(Ω1
(

R/I))⊗k Fj+1(Ω1(S/J
)
) + Fi(Ω1

(
R/I))⊗k Fj(Ω1(S/J

)
)+

Fi+1(Ω1
(

R/I))⊗k Fj−1(Ω1(S/J
)
) + . . . + Fi+j(Ω1(R/I))⊗k F0(Ω1(S/J))

= 0⊗k Fi+j(Ω1(S/J)) + 0⊗k Fi+j−1(Ω1(S/J)) + . . . + 0⊗k Fj+1(Ω1(S/J))+
Fi(Ω1

(
R/I))⊗k Fj(Ω1(S/J

)
) + Fi+1(Ω1(RI))⊗k 0) + . . . + Fi+j(Ω1(R/I))⊗k 0

Fi+j(Ω1(R/I ⊗k S/J)) = Fi(Ω1
(

R/I))⊗k Fj(Ω1(S/J
)
) 6= 0.

Now we localize these ideals at maximal ideal:

[Fi+j(Ω1(R/I ⊗k S/J))]m = (Fi(Ω1(R/I))⊗k Fj(Ω1(S/J)))m 6= 0.

[Fi+j(Ω1(R/I ⊗k S/J))]m = [Fi(Ω1(R/I))]m ⊗km

[
Fj(Ω1(S/J))

]
m

We know that [Fi(Ω1(R/I))]m and
[
Fj(Ω1(S/J))

]
m are principal ideals (Theorem 5). Therefore,

we obtain that [Fi+j(Ω1(R/I ⊗k S/J))]m is a principal ideal. Thus [Fi+j(Ω1(R/I ⊗k S/J))]m is an
invertible ideal. 2

Theorem 8 can be expressed as follows:

Theorem 9. Suppose that R/I and S/J be as Theorem 8. If the first nonzero Fitting ideals of Ω1(R/I) and
Ω1(S/J) are invertible ideals, then the first nonzero Fitting ideal of Ω1(R/I ⊗k S/J) is an invertible ideal.

We can obtain the following result by using above the theorem.

Corollary 5. If the first nonzero Fitting ideals of Ω1(R/I) and Ω1(S/J) are invertible ideals, then
pdΩ1(R/I ⊗k S/J) ≤ 1.

Proof. Suppose that Fi(Ω1(R/I)) and Fj(Ω1(S/J)) are invertible ideals for some integers i and j, then
Fi+j(Ω1(R/I ⊗k S/J)) is an invertible ideal from Theorem 9. Therefore pdΩ1(R/I ⊗k S/J) is zero or
one from Corollary 3. 2

4. Discussion

Fitting ideals are important tools to determine the projective dimension of the modules. In this
study, we obtain a result for the projective dimension of Kahler modules Ω1(R/I ⊗k S/J) using the
invertibility of Fitting ideals. At this point, the following questions arise:

1. Can we generalize these results to the universal module of nth order derivations of R/I ⊗k S/J?
2. Using the invertibility of Fitting ideals of modules, what else can we say about other properties

of modules?
3. We know that the first Fitting ideal of a module is important for the dynamical properties of the

system. Is there any relation between the invertible Fitting ideal and the dynamical properties of
the system?

5. Conclusions

Fitting ideals are important tools to characterize modules and determine regularity of ring.
However, there are few studies about the Fitting ideal of universal modules. Here, we try to determine
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the projective dimension of the Kahler module Ω1(R/I ⊗k S/J) by using the invertibility of Fitting
ideals of Ω1(R/I) and Ω1(S/J). So, we use another way to determine the projective dimension of
Kahler modules. Finally, we give examples for our conclusions.
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