
symmetryS S

Article

Cryptanalysis and Improvement on an Image
Encryption Algorithm Design Using a Novel Chaos
Based S-Box

Congxu Zhu 1,2,*, Guojun Wang 3 and Kehui Sun 4

1 School of Information Science and Engineering, Central South University, Changsha 410083, China
2 Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data

Processing, Yulin Normal University, Yulin 537000, China
3 School of Computer Science and Technology, Guangzhou University, Guangzhou 510006, China;

csgjwang@163.com
4 School of Physics and Electronics, Central South University, Changsha 410083, China; kehui@csu.edu.cn
* Correspondence: zhucx@csu.edu.cn or zhucongxu@126.com; Tel.: +86-189-7583-1476

Received: 13 August 2018; Accepted: 7 September 2018; Published: 14 September 2018
����������
�������

Abstract: This article performs the cryptanalysis of an image encryption algorithm using an S-box
generated by chaos. The algorithm has the advantages of simple structure, high encryption
efficiency, and good encryption performance. However, an attentive investigation reveals that
it has some undiscovered security flaws. The image cryptosystem is totally breakable under proposed
chosen-plaintext attack, and only two chosen plain-images are required. An array equivalent to the
S-box is constructed by an elaborately designed chosen-plaintext image, and the cipher-image is
deciphered without having to know the S-box itself. Both mathematical deduction and experimental
results validate the feasibility of the attacking scheme. Furthermore, an improved encryption scheme
is proposed, in which a feedback mechanism is introduced, a bidirectional diffusion scheme is
designed, and values of the ciphertext are associated with more parameters in each diffusion process.
Testing results and security analysis verify that the improved cryptographic system can achieve a
higher security level and has a better performance than some of the latest encryption algorithms.

Keywords: image encryption; cryptanalysis; chaos; S-box; improved diffusion

1. Introduction

At present, more and more digital information needs to be transmitted in the public network.
Therefore, ensuring the security of confidential or private information in transmission is particularly
important. Encryption is the basic means to ensure the safe transmission of information. However, the
method of image encryption can not be the same as those for text information encryption. In encrypting
image information, people must consider some inherent characteristics of images, such as the large
data characteristics of images, high redundancy characteristics, and the strong correlation between
adjacent data [1]. Due to the many natural connections between chaos and cryptography, chaos
becomes a good candidate in designing image encryption algorithms, and many image encryption
algorithms using chaos have been proposed [2–7].

In recent years, many researchers are interested in constructing S-boxes using chaos, and applying
S-boxes to image encryption. Wang et al. [8] designed S-boxes by chaotic Kent map and Logistic map
and used the S-boxes for image encryption. Liu et al. [9] constructed a dynamic S-box to enhance the
image encryption effect. Khan et al. [10] constructed a new S-box by using a random bit sequence
generated by chaotic boolean functions and used the S-box for image encryption. Çavuşoğlu et al. [11]
put forward a new algorithm for generating S-box, with high complexity, by using a novel chaotic

Symmetry 2018, 10, 399; doi:10.3390/sym10090399 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/10/9/399?type=check_update&version=1
http://dx.doi.org/10.3390/sym10090399
http://www.mdpi.com/journal/symmetry

Symmetry 2018, 10, 399 2 of 15

system. Belazi A et al. [12] proposed an advanced method of generating strong S-boxes by using a
chaotic map in color image encryption. Liu et al. [13] utilized dynamic S-boxes and chaotic systems
to encrypt image. The S-boxes were constructed by chaos-based DNA sequence. Devaraj et al. [14]
employed dynamic S-boxes to design an image cryptosystem. The S-boxes were used to substitute
pixel values of the image. Very recently, Çavuşoğlu et al. [15] proposed an image encryption scheme by
using a new S-box generated by a hyper-chaotic system, which has the advantages of simple structure,
high encryption speed, and good encryption performance.

Compared with information encryption, cryptanalysis is another research area to decipher keys
or to target ciphertext [16–19]. Cryptanalysis can also reveal defects in cryptographic algorithms, and
can also facilitate the development of cryptography. In addition, cryptanalysis can also prevent unsafe
encryption algorithms from being applied to actual communications. Recent cryptanalysis researches
show that some chaos based image encryption algorithms are not secure enough. For example, the
image encryption scheme in Reference [9] was broken by Zhang et al. [20]. The image encryption
scheme in Reference [21] was broken by Zhu and Sun [22]. The image encryption scheme in
Reference [23] was broken by Ahmad et al. [24]. In order to promote cryptanalysis research and
enhance the security of image encryption systems, this article analyzes the image encryption algorithm
using chaos S-boxes in Reference [15]. For simplicity sake, the algorithm under study is abbreviated as
“IESB” in the following content.

The rest of the present paper is organized as follows. Section 2 describes briefly the IESB under
study. Detailed cryptanalysis on IESB is presented mathematically and experimentally in Section 3.
The improved version of encryption algorithm is given in Section 4. Finally, Section 5 summarize the
research results.

2. Description of the Original Encryption Algorithm

The plain-text images to be encrypted in IESB are 8-bit gray-scale images of size M × N
(rows × columns), which can be expressed by a matrix A = [a(i, j)], a(i, j) ∈ {0, 1, ..., 255}, i = 1,
2, . . . , M, j = 1, 2, . . . , N. Before encryption, the two-dimensional matrix A is transformed into a 1D
(one-dimensional) pixel vector P = [p(1), p(2), ..., p(L)], where L = MN. In this paper, an integer i in the
bracket “(i)” denotes the subscript of an element in an array. The main steps of IESB can be described
briefly below.

2.1. The Secret Keys and Flow Chart of IESB

The mathematical model describing the hyper chaotic system employed in IESB is as follows:
.
x = cy− x− bz
.
y = axz− xy− bx
.
z = dxy + b

(1)

In Equation (1), a, b, c, and d are the system parameters. When a ∈ (0.55, 5.3), b ∈ [0.5, 2.5],
c ∈ [1, 11.8], and d ∈ [−15.5, −0.5], system (1) is chaotic. The initial condition (x0, y0, z0) and
parameters (a, b, c, d) are utilized as secret keys in IESB. The flow chart of IESB can be shown in
Figure 1.

Symmetry 2018, 10, 399 3 of 15
Symmetry 2018, 10, x FOR PEER REVIEW 3 of 14

Figure 1. The flow chart of the original encryption algorithm.

2.2. Generating Chaotic Pseudo Random Number Sequences and S-Box

Firstly, based on system (1), three chaotic floating-point number sequences x, y, z are generated.
Then, the three floating-point number sequences x, y, z are converted to three integer sequences X, Y,
Z by chaos based pseudo random number generator (PRNG). Each element in X, Y, Z is a binary
number of 8 bits and the three bit series have passed NIST tests. The S-box is created by using
sequences X, Z and a novel S-box generation algorithm [15]. The S-box is a 16 × 16 sized matrix, and
each number in the S-box is a unique decimal integer value between 0 and 255. The sequence Y = [y(1),
y(2), …, y(L)] and the S-box will be used for image encryption, where L = M × N.

2.3. The Encryption Procedure

The encryption procedure consists of two steps which are described below.
The first step is bitwise XOR encryption with sequence Y:

p′(i) = y(i) ⨁ p(i), i = 1, 2, …, L (2)

where, p(i) and p′(i) are the i-th pixel value of the plaintext image and the intermediate ciphertext
image, respectively. The symbol ⨁ symbolizes XOR operation performed in binary bits. After the
bitwise XOR operation, each byte is converted to a decimal value and the intermediate ciphertext
image array P′ = [p′(1), p′(2), …, p′(L)] is generated.

The second step is sub-byte operation with the 16 × 16 sized S-box:
Suppose the 16 × 16 sized S-box is expressed as SB = [sb(j, k)], j = 1, 2, …, 16, k = 1, 2, …, 16. In

fact, SB is a collection of all elements on the finite field GF (28), namely, each value of sb(j, k) is a
specific integer in the set {0, 1, 2, ..., 255}. The sub-byte operation process is actually mapping each
pixel value p′(i) of the intermediate ciphertext image into an element sb(j, k) in S. The mapping rules
from p′(i) to sb(j, k) can be explained in detail below. Firstly, a pixel value p′(i) is represented as binary
form (b8b7…b2b1)2. Then, let j = (b8b7b6b5)2 + 1, k = (b4b3b2b1)2 + 1, and j = 1, 2, …, 16, k = 1, 2, …, 16.
Finally, one can obtain the i-th cipher pixel value c(i) = sb(j, k). After all cipher pixel values are
determined, the encrypted image array C = [c(1), c(2), …, c(L)] is obtained. In a general way, the effect
of the S-box is equivalent to an abstract function fs: p’(i) ∊ GF(28) → c(i) ∊ GF(28), which is a one-to-
one mapping function fs[•]. Namely, if fs[x] = fs[y] holds, then x = y must hold. The mapping from
p′(i) to c(i) can be expressed as:

c(i) = fs[p′(i)], i = 1, 2, …, L (3)

Figure 1. The flow chart of the original encryption algorithm.

2.2. Generating Chaotic Pseudo Random Number Sequences and S-Box

Firstly, based on system (1), three chaotic floating-point number sequences x, y, z are generated.
Then, the three floating-point number sequences x, y, z are converted to three integer sequences X, Y, Z
by chaos based pseudo random number generator (PRNG). Each element in X, Y, Z is a binary number
of 8 bits and the three bit series have passed NIST tests. The S-box is created by using sequences X, Z
and a novel S-box generation algorithm [15]. The S-box is a 16 × 16 sized matrix, and each number in
the S-box is a unique decimal integer value between 0 and 255. The sequence Y = [y(1), y(2), . . . , y(L)]
and the S-box will be used for image encryption, where L = M × N.

2.3. The Encryption Procedure

The encryption procedure consists of two steps which are described below.
The first step is bitwise XOR encryption with sequence Y:

p′(i) = y(i)
⊕

p(i), i = 1, 2, . . . , L (2)

where, p(i) and p′(i) are the i-th pixel value of the plaintext image and the intermediate ciphertext
image, respectively. The symbol

⊕
symbolizes XOR operation performed in binary bits. After the

bitwise XOR operation, each byte is converted to a decimal value and the intermediate ciphertext
image array P′ = [p′(1), p′(2), . . . , p′(L)] is generated.

The second step is sub-byte operation with the 16 × 16 sized S-box:
Suppose the 16 × 16 sized S-box is expressed as SB = [sb(j, k)], j = 1, 2, . . . , 16, k = 1, 2, . . . , 16.

In fact, SB is a collection of all elements on the finite field GF (28), namely, each value of sb(j, k) is a
specific integer in the set {0, 1, 2, ..., 255}. The sub-byte operation process is actually mapping each
pixel value p′(i) of the intermediate ciphertext image into an element sb(j, k) in S. The mapping rules
from p′(i) to sb(j, k) can be explained in detail below. Firstly, a pixel value p′(i) is represented as binary
form (b8b7 . . . b2b1)2. Then, let j = (b8b7b6b5)2 + 1, k = (b4b3b2b1)2 + 1, and j = 1, 2, . . . , 16, k = 1, 2,
. . . , 16. Finally, one can obtain the i-th cipher pixel value c(i) = sb(j, k). After all cipher pixel values
are determined, the encrypted image array C = [c(1), c(2), . . . , c(L)] is obtained. In a general way, the
effect of the S-box is equivalent to an abstract function fs: p’(i) ∈ GF(28)→ c(i) ∈ GF(28), which is a

Symmetry 2018, 10, 399 4 of 15

one-to-one mapping function fs[•]. Namely, if fs[x] = fs[y] holds, then x = y must hold. The mapping
from p′(i) to c(i) can be expressed as:

c(i) = fs[p′(i)], i = 1, 2, . . . , L (3)

3. The Cryptanalysis and Chosen-Plaintext Attacks

In general, we assume that the attacker knows the details of the cryptographic algorithm
under analysis, and this assumption is called the Kerckhoff hypothesis. Namely, the opponent
or attacker knows the algorithm of the encryption system, but does not own the decryption secret
keys. With regard to the chosen-plaintext attack, the opponent or attacker can temporarily get the
opportunity to use the encryption machinery, so the opponent or attacker can select some special plain
images and encrypt the selected plain images to obtain their corresponding cipher images. By using the
known plaintext-ciphertext pairs, the attacker can break the key or target ciphertext image encrypted
by the cryptographic system.

3.1. The Algorithm of Cryptanalysis and Chosen-Plaintext Attacks

In IESB, the constituent elements of the secret key set include (x0, y0, z0, a, b, c, and d). It is
worth noting that the chaotic sequence Y and the S-box can act as an equivalent to the secret keys.
The sequence Y and S-box are not related to the image to be encrypted. In other words, different
encrypted images have the same keys Y and S-box. Assuming such a premise, the pixel array of
the target cipher image to be recovered is C = [c(1), c(2), . . . , c(L)]. We use P = [p(1), p(2), . . . , p(L)]
to represent the pixel array of the plaintext image corresponding to C. P is unknown and is to be
deciphered. Our scheme of chosen-plaintext attack can be described in detail as follows.

Step 1. Constructing the first chosen-plaintext image P0 = [0, 0, . . . , 0] and the output corresponds
to the cipher image C0 = [c0(1), c0(2), . . . , c0(L)] by the encryption machinery, where L ≥ 65,536.
According to Equation (2), elements in the intermediate image vector P0′ and the keystream Y satisfies
the following relation:

p0′(i) = y(i), i = 1, 2, . . . , L (4)

According to Equations (3) and (4), we get the following relationship between C0 and Y:

c0(i) = fs[y(i)], i = 1, 2, . . . , L (5)

Step 2. Consider such a fact that, pixel values of the encrypted image have only 256 levels over
the set {0, 1, ..., 255}. Hence, each level has an average of L/256 times appearing in C0, which is bigger
than or equal to 256 due to L ≥ 65,536. Find a pixel value with at least of 256 times appearing in C0.
Let us say that m is one of the values that satisfies the condition. That is to say, there are at least 256
elements in C0 equal to m.

Step 3. Constructing the second chosen-plaintext image vector P1 = [p1(1), p1(2), . . . , p1(L)],
such that {

p1(i) = 0, if c0(i) 6= m
p1(i) = j, if c0(i) = m

, i = 1, 2, . . . , L, j = 0, 1, . . . , 255 (6)

The Matlab code of constructing P1 is shown in Algorithm 1:

Symmetry 2018, 10, 399 5 of 15

Algorithm 1: The Matlab code of constructing P1

1. p1 = zeros(1, L);
2. j = 0;
3. for i = 1: L
4. if c0(i) = = m
5. p1(i) = j;
6. j = j + 1;
7. end
8. if j = = 256
9. break;
10. end
11. end

Then obtain the corresponding ciphertext image C1 = [c1(1), c1(2), . . . , c1(L)] by using the
encryption machinery.

Step 4. Constructing an array S = [s(1), s(2), . . . , s(256)] that is equivalent to the S-box. The Matlab
code of constructing S is shown in Algorithm 2:

Algorithm 2: The Matlab code of constructing S

1. s = zeros(1, 256);
2. j = 1;
3. for i = 1: L
4. if c0(i) = = m
5. s(j) = c1(i);
6. j = j + 1;
7. end
8. if j > 256
9. break;
10. end
11. end

It is worth noting that y(i) are of the same value, say y0, in all places, i satisfies condition c0(i) = m,
i = i1, i2, . . . , i256. According to Equations (2) and (3), we have the following relations: s(1) = c1(i1) =
fs[y0

⊕
0], s(2) = c1(i2) = fs[y0

⊕
1], ..., s(256) = c1(i256) = fs[y0

⊕
255]. Then, we obtain the following

general expression:
s(i) = fs[y0

⊕
(i − 1)], i = 1, 2, . . . , 256. (7)

Obviously, (y0
⊕

0), (y0
⊕

1), (y0
⊕

2), . . . , (y0
⊕

255) are 256 numbers different from each other.
It leads to s(1), s(2), . . . , and s(256) are different from each other.

Step 5. For each element c0(i), find out where it is in S and obtain a position index array u.

Initially, set an array u = [u(i)] and u(i) = 0, i = 1, 2, . . . , L. For each i = 1, 2, . . . , L, find out where
c0(i) in S. If c0(i) = s(j), then record the number j corresponding to c0(i). Therefore, let u(i) = j. Due to
the following map relations: s(j) = fs[y0

⊕
(j − 1)], and c0(i) = fs[y(i)], hence, the following results are

obtained by c0(i) = s(j) and j = u(i):
y(i) = y0

⊕
[u(i) − 1], (8)

Step 6. For each element c(i), find out where it is in S and obtain a position index array v.

Initially, set an array v = [v(i)] and v(i) = 0, i = 1, 2, . . . , L. For each i = 1, 2, . . . , L, find out where
c(i) in S. If c(i) = s(k), then record the number k corresponding to c(i). Therefore, let v(i) = k. Because

Symmetry 2018, 10, 399 6 of 15

of the following map relations: s(k) = fs[y0
⊕

(k − 1)], and c(i) = fs[y(i)
⊕

p(i)], hence, the following
results are obtained by c(i) = s(k) and k = v(i):

y(i)
⊕

p(i) = y0
⊕

[v(i) − 1], (9)

Step 7. Utilize u and v to recover the plaintext image.

According to Equations (8) and (9), we derive the following relation as show in Equation (10):

p(i) = [u(i) − 1]
⊕

[v(i) − 1]. (10)

Step 8. Execute Equation (10) repeatedly for each i = 1, 2, . . . , L, then we can recover the plaintext
image vector P = [p(1), p(2), . . . , p(L)]T. Transform P into M × N matrix A, the plaintext image is
finally obtained.

3.2. Examples of Chosen-Plaintext Attacks

To verify the effectiveness of our chosen-plaintext attacks, two specific experimental examples
are provided in this section. The encryption and decryption algorithms are implemented in the
programming language of Matlab R2016b, and the computer has the 3.30 GHz Intel(R) Core (TM)
i5-4590 CPU with 4 GB memory and Microsoft Windows 7 64 bit operation system.

3.2.1. The Secret Keys and S-Box

The original keys we select are a = 1.0, b = 1.0, c = 2.0, d = −3.0, x0 = 1.0, y0 = −1.0, and z0 = 0.01.
Chaotic system (1) is solved by the ode45 solver of Matlab, and the time step is set to 0.01.

Chaotic system (1) is iterated 65,536 times and three chaotic sequences with size of 65,536 are
generated (initial point is not included). The three original chaotic sequences are x = [x(1), x(2), . . . ,
x(L)], y = [y(1), y(2), . . . , y(L)], z = [z(1), z(2), . . . , z(L)], and L = 65,536. Without loss of generality,
we convert each float value of the original chaotic sequences to an 8-bits binary number by using the
chaos based PRNG, which is expressed by Equations (11)–(13):

X(i) = mod(floor((|x(i)| × 106 − floor(|x(i)| × 106)) × 103), 256); i = 1, 2, . . . , L (11)

Y(i) = mod(floor((|y(i)| × 106 − floor(|y(i)| × 106)) × 103), 256); i = 1, 2, . . . , L (12)

Z(i) = mod(floor((|z(i)| × 106 − floor(|z(i)| × 106)) × 103), 256); i = 1, 2, . . . , L (13)

where, |x| = x (if x ≥ 0) or |x| = −x (if x < 0), the value of floor(x) is a maximal integer that satisfies
floor(x) ≤ x, and the value of mod(x, y) is the remainder when x is divided by y. Then, we get a new
sequence T by using the sequence X and Z, namely, T(i) = X(i)

⊕
Z(i), i = 1, 2, . . . , L. For simplicity,

we select 256 different values from the sequence T and use these values to form the S-box matrix,
which is shown in Table 1. The first 16 numbers in the sequence Y are also given here for reference,
which are shown in Equation (14).

Y = [126, 44, 130, 138, 46, 233, 44, 101, 178, 188, 137, 29, 94, 207, 9, 14, . . .]. (14)

Symmetry 2018, 10, 399 7 of 15

Table 1. The proposed S-box come from chaos.

110 108 239 99 42 160 187 36 157 222 152 50 92 199 30 249
161 198 138 16 208 106 130 212 189 181 64 248 34 191 240 224

4 62 111 103 126 53 128 205 251 172 39 132 183 3 94 185
247 158 237 41 244 216 52 154 250 223 8 168 25 93 221 238
26 202 21 136 2 67 15 195 6 121 51 1 69 63 148 167
209 135 107 137 97 231 71 176 233 47 14 76 56 230 213 24
232 57 80 40 95 175 5 100 104 22 206 169 124 49 165 170
19 112 147 193 139 82 245 27 225 214 101 174 59 43 227 142
156 68 171 72 252 105 17 120 9 0 48 31 178 23 96 91
54 140 87 116 7 242 153 85 173 89 229 226 179 143 151 188
145 66 115 246 190 113 35 194 228 114 29 33 79 196 84 123
155 150 220 81 75 90 164 215 55 73 129 88 200 18 146 44
162 197 217 207 184 163 159 133 203 236 11 61 98 235 186 58
134 32 38 102 28 255 10 254 177 12 182 46 218 243 77 45
144 192 70 234 119 13 83 125 122 109 37 180 211 166 127 118
117 60 141 253 149 86 74 131 219 201 210 78 241 65 204 20

3.2.2. Breaking the Encrypted Test Image

The plaintext image used in the experiment is the Cameraman with a size of 256× 256, which come
from the test image database of the Computer Vision Group at University of Granada. The plaintext
image Cameraman is shown in Figure 2a and the encrypted image is shown in Figure 2b. The recovered
image by using our chosen-plaintext attacks is the image in Figure 2c, which is exactly the same as
the original image shown in Figure 2a. Through the image Cameraman as an example, our attack
attains demonstration.

Symmetry 2018, 10, x FOR PEER REVIEW 7 of 14

The recovered image by using our chosen-plaintext attacks is the image in Figure 2c, which is exactly
the same as the original image shown in Figure 2a. Through the image Cameraman as an example,
our attack attains demonstration.

(a)

(b)

(c)

Figure 2. The attack result: (a) The plain image Cameraman; (b) The cipher image; and (c)
The cracked image.

3.2.3. A Simple Numerical Example

Suppose the plaintext image is a 2 × 2 sized gray image, whose one-dimensional pixel vector is

P = [10, 0, 255, 128]. (15)

The one-dimensional pixel vector of cipher image encrypted by IESB is

C = [195, 217, 254, 145]. (16)

Suppose P is unknown, we use PP = [pp(1), pp(2), pp(3), pp(4)] to represent the plaintext version
recovered from C.

The first chosen-plaintext image is P0 = [0, 0, ..., 0], whose size is 256 × 256. Then the
corresponding cipher image C0 is obtained by using the IESB, whose first four pixel values are

C0 = [125, 217, 251, 228, ...]. (17)

We find the pixel value 1 repeats more than 256 times in C0, and let m = 1. Then the second
chosen-plaintext image P1 is constructed according to the method mentioned in Section 3.1, and the
first four non-zero elements of P1 are listed for the readers’ reference: p1(752) = 1, p1(1342) = 2, p1(1796)
= 3, p1(2117) = 4. Then, the corresponding cipher image C1 is obtained, and the first four elements of
the image C1 are [125, 217, 251, 228, ...]. Then, the array S is obtained by using C0 and C1 and the
method mentioned in Section 3.1, and all the 256 elements of the array S are listed below, among
them, seven important figures worthy of attention are underlined. That is:

S = [1, 76, 169, 174, 50, 248, 132, 168, 61, 46, 180, 78, 31, 226, 33, 88, 51, 14, 206, 101, 152, 64, 39, 8,
11, 182, 37, 210, 48, 229, 29, 129, 121, 47, 22, 214, 222, 181, 172, 223, 236, 12, 109, 201, 0, 89, 114, 73,
6, 233, 104, 225, 157, 189, 251, 250, 203, 177, 122, 219, 9, 173, 228, 55, 167, 24, 170, 142, 249, 224,
185, 238, 58, 45, 118, 20, 91, 188, 123, 44, 148, 213, 165, 227, 30, 240, 94, 221, 186, 77, 127, 204, 96,
151, 84, 146, 63, 230, 49, 43, 199, 191, 3, 93, 235, 243, 166, 65, 23, 143, 196, 18, 69, 56, 124, 59, 92, 34,
183, 25, 98, 218, 211, 241, 178, 179, 79, 200, 136, 137, 40, 193, 99, 16, 103, 41, 207, 102, 234, 253, 72,
116, 246, 81, 21, 107, 80, 147, 239, 138, 111, 237, 217, 38, 70, 141, 171, 87, 115, 220, 202, 135, 57, 112,
108, 198, 62, 158, 197, 32, 192, 60, 68, 140, 66, 150, 26, 209, 232, 19, 110, 161, 4, 247, 162, 134, 144,
117, 156, 54, 145, 155, 195, 176, 100, 27, 36, 212, 205, 154, 133, 254, 125, 131, 120, 85, 194, 215, 15,
71, 5, 245, 187, 130, 128, 52, 159, 10, 83, 74, 17, 153, 35, 164, 67, 231, 175, 82, 160, 106, 53, 216, 163,
255, 13, 86, 105, 242, 113, 90, 2, 97, 95, 139, 42, 208, 126, 244, 184, 28, 119, 149, 252, 7, 190, 75].
Seek c0(i) and c(i) in S, we get the following results:

Figure 2. The attack result: (a) The plain image Cameraman; (b) The cipher image; and (c) The
cracked image.

3.2.3. A Simple Numerical Example

Suppose the plaintext image is a 2 × 2 sized gray image, whose one-dimensional pixel vector is

P = [10, 0, 255, 128]. (15)

The one-dimensional pixel vector of cipher image encrypted by IESB is

C = [195, 217, 254, 145]. (16)

Suppose P is unknown, we use PP = [pp(1), pp(2), pp(3), pp(4)] to represent the plaintext version
recovered from C.

Symmetry 2018, 10, 399 8 of 15

The first chosen-plaintext image is P0 = [0, 0, ..., 0], whose size is 256× 256. Then the corresponding
cipher image C0 is obtained by using the IESB, whose first four pixel values are

C0 = [125, 217, 251, 228, ...]. (17)

We find the pixel value 1 repeats more than 256 times in C0, and let m = 1. Then the second
chosen-plaintext image P1 is constructed according to the method mentioned in Section 3.1, and
the first four non-zero elements of P1 are listed for the readers’ reference: p1(752) = 1, p1(1342) = 2,
p1(1796) = 3, p1(2117) = 4. Then, the corresponding cipher image C1 is obtained, and the first four
elements of the image C1 are [125, 217, 251, 228, ...]. Then, the array S is obtained by using C0 and
C1 and the method mentioned in Section 3.1, and all the 256 elements of the array S are listed below,
among them, seven important figures worthy of attention are underlined. That is:

S = [1, 76, 169, 174, 50, 248, 132, 168, 61, 46, 180, 78, 31, 226, 33, 88, 51, 14, 206, 101, 152, 64, 39, 8,

11, 182, 37, 210, 48, 229, 29, 129, 121, 47, 22, 214, 222, 181, 172, 223, 236, 12, 109, 201, 0, 89, 114, 73,

6, 233, 104, 225, 157, 189, 251, 250, 203, 177, 122, 219, 9, 173, 228, 55, 167, 24, 170, 142, 249, 224,

185, 238, 58, 45, 118, 20, 91, 188, 123, 44, 148, 213, 165, 227, 30, 240, 94, 221, 186, 77, 127, 204, 96,

151, 84, 146, 63, 230, 49, 43, 199, 191, 3, 93, 235, 243, 166, 65, 23, 143, 196, 18, 69, 56, 124, 59, 92, 34,

183, 25, 98, 218, 211, 241, 178, 179, 79, 200, 136, 137, 40, 193, 99, 16, 103, 41, 207, 102, 234, 253, 72,

116, 246, 81, 21, 107, 80, 147, 239, 138, 111, 237, 217, 38, 70, 141, 171, 87, 115, 220, 202, 135, 57, 112,

108, 198, 62, 158, 197, 32, 192, 60, 68, 140, 66, 150, 26, 209, 232, 19, 110, 161, 4, 247, 162, 134, 144,

117, 156, 54, 145, 155, 195, 176, 100, 27, 36, 212, 205, 154, 133, 254, 125, 131, 120, 85, 194, 215, 15,

71, 5, 245, 187, 130, 128, 52, 159, 10, 83, 74, 17, 153, 35, 164, 67, 231, 175, 82, 160, 106, 53, 216, 163,

255, 13, 86, 105, 242, 113, 90, 2, 97, 95, 139, 42, 208, 126, 244, 184, 28, 119, 149, 252, 7, 190, 75].

Seek c0(i) and c(i) in S, we get the following results:

c0(1) = 125 = s(203), c(1) = 195 = s(193). Hence, u(1) = 203, v(1) = 193.

c0(2) = 217 = s(153), c(2) = 217 = s(153). Hence, u(2) = 153, v(2) = 153.

c0(3) = 251 = s(55), c(3) = 254 = s(202). Hence, u(3) = 55, v(3) = 202.

c0(4) = 228 = s(63), c(4) = 145 = s(191). Hence, u(4) = 63, v(4) = 191.

Therefore,
pp(1) = [u(1) − 1]

⊕
[v(1) − 1] = 202

⊕
192 = 10.

pp(2) = [u(2) − 1]
⊕

[v(2) − 1] = 152
⊕

152 = 0.

pp(3) = [u(3) − 1]
⊕

[v(3) − 1] = 54
⊕

201 = 255.

pp(4) = [u(4) − 1]
⊕

[v(4) − 1] = 62
⊕

190 = 128.

Consequently, PP = [10, 0, 255, 128], which means PP = P. Through the above examples,
our chosen-plaintext attack scheme has been verified.

Symmetry 2018, 10, 399 9 of 15

4. The Improved Image Encryption Scheme

The original algorithm IESB has the advantages of simple structure and high encryption efficiency.
However, there is a security flaw in the cryptosystem, which results in that the IESB can not resist
a chosen-plaintext attack. To overcome the security flaws, we redesign a new and improved image
chaotic encryption scheme in this section.

4.1. Algorithm Description of the Improved Scheme

The improved encryption scheme consists of a three stage of process: Generate chaotic key
sequences {X, Y, Z} and S-box, the first round diffusion, and the second round diffusion. The algorithm
steps in our improved image encryption scheme are as follows:

Step 1. Set the initial conditions x0, y0, z0 system parameters a, b, c, d of system (1). Read the plain
image I of size M × N and transform its 2D matrix into a 1D pixel sequence P = [p(1), p(2), ..., p(L)],
where L = MN.
Step 2. Iterate the chaotic system (1) with initial state values and system parameters for L0 times and
obtain three chaotic pseudorandom sequences x = [x(i)], y = [y(i)], z = [z(i)], where i = 1, 2, ..., L0, L0 ≥
65,536.
Step 3. Convert the original chaotic sequences to 8-bit integer sequences {X, Y, Z} by using Equations
(11)–(13).
Step 4. Get sequence T by using X and Z: T = X

⊕
Z.

Step 5. From the elements of T, select 256 different numbers to generate the S-box with size of 16 × 16,
and transform the 2D matrix of S-box into an equivalent 1D sequence S = [s(1), s(2), ..., s(256)].
Step 6. Perform the first round diffusion encryption with chaotic key sequence Y, and obtain the
intermediate ciphertext image pixel sequence P′ = [p′(i)]. The operations are represented by the
following formulas:

p′(1) = mod(p(1) + y(1) + seed, 256); (18)

p′(i) = mod(p(i) + y(i) + p’(i − 1), 256); i = 2, 3, ..., L. (19)

where, mod(x, y) returns the remainder after x is divided by y. p(i) is the i-th pixel value of the plaintext
image and p′(i) is the i-th pixel value of the intermediate ciphertext image. seed is a new parameter
used as a key. Here, the tilde notations represent variables.
Step 7. Perform the second round diffusion encryption with the equivalent of chaotic S-box, and obtain
the final ciphertext image pixel sequence C = [c(i)]. The operations are represented by the following
formulas:

j = double(p′(L)) + 1; c(L) = mod(p’(L) + s(j) + seed, 256); (20)

J = double(p(i)) + 1; c(i) = mod(p’(i) + s(j) + c(i + 1), 256); i = L − 1, L − 2, ...,1. (21)

Step 8. Transform the 1D ciphertext image pixel sequence C into a 2D matrix CI, then the cipher image
is obtained.

The operation steps of the decryption are the inverse process of the above encryption operation.
In our improved encryption process, the core algorithm is the diffusion operation, which repeats

two rounds. The first one is performed in the forward order (i = 1 ~L), the second round is performed
in the reverse order (i = L ~1), and a feedback mechanism is introduced in the diffusion encryption
process so that the former encrypted pixel value affects the ciphertext value of the latter pixel. Thus,
the pixel at any position changes slightly and almost all ciphertext will change, making the algorithm
highly sensitive to plaintext. In addition, values of the ciphertext are associated with more parameters
in the two rounds of the diffusion encryption formula. Even if the attacker obtains the corresponding
ciphertext with special selected plaintext, i.e., known p(i) and c(i), the secret keys {s(i), y(i), seed} can not

Symmetry 2018, 10, 399 10 of 15

be solved by the encryption relation, and the target ciphertext can not be decrypted directly. Therefore,
our improved scheme can effectively resist chosen-plaintext attacks.

4.2. Performance Test and Analysis of the Improved Scheme

In order to confirm the security performance of the improved algorithm and to compare it with
Reference [15] and other literature, we use the gray-scale image Lena of size 256 × 256 for simulation.
The software and hardware environment for the simulation are the same as those in the Section 3.2.
The initial secret key parameters used in the simulation are as: a = 1.0, b = 1.0, c = 2.0, d = −3.0, x0 = 1.0,
y0 = −1.0, z0 = 0.01, and seed = 35. The encryption results of the gray-scale Lena image is exhibited in
Figure 3. From the results, one can see that the cipher image has nothing to do with the corresponding
original plaintext image, and it becomes unrecognizable.

Symmetry 2018, 10, x FOR PEER REVIEW 9 of 14

where, mod(x, y) returns the remainder after x is divided by y. p(i) is the i-th pixel value of the
plaintext image and p′(i) is the i-th pixel value of the intermediate ciphertext image. seed is a new
parameter used as a key. Here, the tilde notations represent variables.

Step 7. Perform the second round diffusion encryption with the equivalent of chaotic S-box, and
obtain the final ciphertext image pixel sequence C = [c(i)]. The operations are represented by the
following formulas:

j = double(p′(L)) + 1; c(L) = mod(p’(L) + s(j) + seed, 256); (20)

J = double(p(i)) + 1; c(i) = mod(p’(i) + s(j) + c(i + 1), 256); i = L − 1, L − 2, ...,1. (21)

Step 8. Transform the 1D ciphertext image pixel sequence C into a 2D matrix CI, then the cipher
image is obtained.

The operation steps of the decryption are the inverse process of the above encryption operation.
In our improved encryption process, the core algorithm is the diffusion operation, which repeats

two rounds. The first one is performed in the forward order (i = 1 ~ L), the second round is performed
in the reverse order (i = L ~ 1), and a feedback mechanism is introduced in the diffusion encryption
process so that the former encrypted pixel value affects the ciphertext value of the latter pixel. Thus,
the pixel at any position changes slightly and almost all ciphertext will change, making the algorithm
highly sensitive to plaintext. In addition, values of the ciphertext are associated with more parameters
in the two rounds of the diffusion encryption formula. Even if the attacker obtains the corresponding
ciphertext with special selected plaintext, i.e., known p(i) and c(i), the secret keys {s(i), y(i), seed} can
not be solved by the encryption relation, and the target ciphertext can not be decrypted directly.
Therefore, our improved scheme can effectively resist chosen-plaintext attacks.

4.2. Performance Test and Analysis of the Improved Scheme

In order to confirm the security performance of the improved algorithm and to compare it with
Reference [15] and other literature, we use the gray-scale image Lena of size 256 × 256 for simulation.
The software and hardware environment for the simulation are the same as those in the Section 3.2.
The initial secret key parameters used in the simulation are as: a = 1.0, b = 1.0, c = 2.0, d = −3.0, x0 = 1.0,
y0 = −1.0, z0 = 0.01, and seed = 35. The encryption results of the gray-scale Lena image is exhibited in
Figure 3. From the results, one can see that the cipher image has nothing to do with the corresponding
original plaintext image, and it becomes unrecognizable.

(a) (b)

Symmetry 2018, 10, x FOR PEER REVIEW 10 of 14

(c) (d)

Figure 3. Encryption result for Lena gray-scale image: (a) Plain-image; (b) encrypted image; (c)
histogram of plain image in (a); and (d) histogram of encrypted image in (b).

4.2.1. Histogram Analysis

A histogram can reveal the pixel values distribution situation in an image. Usually, the
histogram of a meaningful plain image has a non-uniform distribution. For an image encryption
algorithm with high security, the encrypted image must have the histogram with an uniform
distribution. For the image Lena, the histograms of plain, and its cipher image, are available in Figures
3c, 3d. We can see that the histogram of the plain image is non-uniform, and the histogram of the
cipher image is almost flat and uniform like the distribution of random data. Hence, the improved
encryption scheme completely conceals the pixel distribution information of the original image, and
can resist statistical attacks.

4.2.2. Pixels Correlation Analysis

Usually, adjacent pixels in a meaningful image have a very high correlation. A high security
encryption algorithm must destroy the relevance between adjacent pixels in an image. The correlation
coefficient is the index to measure the correlation between adjacent pixels. The smaller the absolute
value of correlation coefficient, the lower the correlation between adjacent pixels. The correlation
coefficient γ xy of adjacent pixels is computed as:

1

1()
=

=
n

i
i

E x x
n

, (22)

2

1

1() [()]
=

= −
n

i
i

D x x E x
n

, (23)

1

1Conv(,) [()][()]
=

= − −
n

i i
i

x y x E x y E y
n

, (24)

Conv(,)
() ()xy

x y
D x D y

γ = . (25)

where x and y are pixel values of two adjacent pixels in the image, γxy is the correlation coefficient of
two adjacent pixels x and y. To compute correlation coefficients of the original plain image and its
corresponding cipher image, we sampled all horizontally adjacent pairs of pixels. The results for the
Lena image is listed in Table 2. Evidently, the encrypted image using our improved encryption
scheme has smaller absolute values of correlation coefficient than the schemes in [2,15,23,24].

Figure 3. Encryption result for Lena gray-scale image: (a) Plain-image; (b) encrypted image;
(c) histogram of plain image in (a); and (d) histogram of encrypted image in (b).

4.2.1. Histogram Analysis

A histogram can reveal the pixel values distribution situation in an image. Usually, the histogram
of a meaningful plain image has a non-uniform distribution. For an image encryption algorithm with
high security, the encrypted image must have the histogram with an uniform distribution. For the
image Lena, the histograms of plain, and its cipher image, are available in Figure 3c,d. We can see that
the histogram of the plain image is non-uniform, and the histogram of the cipher image is almost flat
and uniform like the distribution of random data. Hence, the improved encryption scheme completely
conceals the pixel distribution information of the original image, and can resist statistical attacks.

4.2.2. Pixels Correlation Analysis

Usually, adjacent pixels in a meaningful image have a very high correlation. A high security
encryption algorithm must destroy the relevance between adjacent pixels in an image. The correlation

Symmetry 2018, 10, 399 11 of 15

coefficient is the index to measure the correlation between adjacent pixels. The smaller the absolute
value of correlation coefficient, the lower the correlation between adjacent pixels. The correlation
coefficient γxy of adjacent pixels is computed as:

E(x) =
1
n

n

∑
i=1

xi, (22)

D(x) =
1
n

n

∑
i=1

[xi − E(x)]2, (23)

Conv(x, y) =
1
n

n

∑
i=1

[xi − E(x)][yi − E(y)], (24)

γxy =
Conv(x, y)√
D(x)

√
D(y)

. (25)

where x and y are pixel values of two adjacent pixels in the image, γxy is the correlation coefficient
of two adjacent pixels x and y. To compute correlation coefficients of the original plain image and its
corresponding cipher image, we sampled all horizontally adjacent pairs of pixels. The results for the
Lena image is listed in Table 2. Evidently, the encrypted image using our improved encryption scheme
has smaller absolute values of correlation coefficient than the schemes in [2,15,23,24].

Table 2. Correlation Coefficients of Two Adjacent Pixels in Horizontal Direction.

Plain-Image Cipher-Image Cipher-Image
Ref. [2]

Cipher-Image
Ref. [15]

Cipher-Image
Ref. [23]

Cipher-Image
Ref. [24]

0.924879 0.000249 0.005497 0.5310 −0.00114 0.000329

4.2.3. Information Entropy Analysis

Information entropy is a common index to judge the randomness of an information source. Let s
be an information source, and its information entropy is computed as:

H(s) = −
2n−1

∑
i=0

P(si) log2[P(si)], (26)

where P(si) denotes the occurrence probability of symbol si, 2n is the total states of the information
source. If P(si) = 1/2n, then the information source is completely random. For an image with
256 gray-scale, the pixel values have 28 levels, so the ideal value of information entropy is 8.
The information entropy of an encrypted image should be as close as possible to 8. The information
entropy results of encrypted images by our improved scheme and schemes in References [9,15,23]
are listed in Table 3. The results show that all entropy values are significantly closer to the ideal
value eight, so the randomness is satisfactory. Besides, our improved scheme has better results
than References [9,15,23]. Hence, our improved encryption scheme is more capable of resisting
entropy-based attacks.

Table 3. Entropies of Encrypted Lena Image by Three Encryption Schemes.

Proposed Ref. [9] Ref. [15] Ref. [23]

7.9977 7.993459 7.95667 7.9964

4.2.4. Sensitivity Analysis

In order to resist differential attacks, a fine encryption scheme should be very sensitive to minor
alterations in plain images and any key components. When the key remains the same, if the plaintext

Symmetry 2018, 10, 399 12 of 15

to be encrypted changes slightly, causing a huge change in the ciphertext, the encryption algorithm is
said to be highly sensitive to plaintext. When the encrypted plaintext is kept the same, if the encryption
key changes slightly, the ciphertext will change dramatically. The encryption algorithm is said to be
highly sensitive to the key. The number of the pixel change rate (NPCR) and the unified average
changing intensity (UACI) are two metrics to measure sensitivity. NPCR and UACI are defined as:

NPCR =
∑i,j D(i, j)
M1 ×M2

× 100%, (27)

UACI =
1

M1 ×M2
∑
i,j

|c1(i, j)− c2(i, j)|
255

× 100%. (28)

where, c1(i, j) and c2(i, j) represent pixel values of two cipher images at the same position (i, j).
D(i, j) represents the difference between c1(i, j) and c2(i, j). If c1(i, j) = c2(i, j) then D(i, j) = 0, otherwise
D(i, j) = 1. For an 8-bit gray image, the optimal value of NPCR is NPCRE = 99.61%, the optimal value
of UACI is UACIE = 33.46%.

When analyzing the sensitivity of the algorithm to the content of the plaintext, we encrypt two
images, one is Lena, the other is Lena with one pixel p(4000) and has a minor alteration value of
+ 1. Then, NPCR and UACI values are calculated from two ciphertext images. Table 4 exhibits the
values of NPCR and UACI. From Table 4, one can see that the NPCR and UACI scores are quite near
to the respective optimal values. Among these four algorithms, our improved scheme has the best
performance. In fact, the IESB algorithm is not sensitive to plaintext, so both the PCR and UACI
values, with regard to plaintext sensitivity, are close to zero. It is worth pointing out that the results of
NPCR = 99.62987 and UACI = 31.83459 are also given in Reference [15], but the meaning is completely
different. That is, the results are based on the difference between a plaintext image and the
corresponding ciphertext image, not on the difference between the two ciphertext images.

Table 4. Results of NPCR and UACI for Plain Image Sensitivity.

Proposed Ref. [15] Ref. [24] Ref. [2]

NPCR (%) 99.63226 nearly 0 99.627 99.6002
UACI (%) 34.59600 nearly 0 33.452 33.463

To evaluate the key sensitivity, at first, we encrypt Lena image with keys (x0 = 1.0, y0 = −1.0,
z0 = 0.01, a = 1.0, b = 1.0, c = 2.0, d = −3.0, and seed = 35). Then, we added 10−14 to one of the
floating-point key values, and +1 to the integer seed of the key, while all others stayed unchanged,
and we encrypt the same plain image Lena again. Then, NPCR and UACI values are calculated from
two ciphertext images. Table 5 shows the experimental results. From Table 5, one can see that our
improved encryption scheme is sensitive to all secret keys.

Table 5. Results of NPCR and UACI for Key Sensitivity.

x0 + 10−14 y0 + 10−14 z0 + 10−14 a + 10−14 b + 10−14 c + 10−14 d + 10−14 seed + 1

NPCR (%) 99.61 99.65 99.63 99.63 99.62 99.60 99.58 99.60
UACI (%) 34.20 33.63 32.93 32.39 33.93 34.49 33.11 33.56

4.2.5. Key Space Analysis

The secret key parameters used in our proposed improved scheme includes the three initial state
values (x0, y0, z0), four parameters (a, b, c, d), and one integer seed. The first seven parameters are
all floating-point numbers, and the seed ∈ [0, 255]. Hence, for the working precision of 1014 with a
floating-point number, our key space is found to be more than 256 × 1014 × 7 ≈ 2334. Key space in our
improved encryption scheme is larger than the key space of 2199 in Reference [2], 2226 in Reference [15],

Symmetry 2018, 10, 399 13 of 15

1045 in Reference [23]. Because the key space is large enough, our improved algorithm can resist
brute-force attack.

A general problem concerning the use of chaotic systems in encryption is given by
References [25–28] when chaotic systems are implemented on finite precision machines (e.g.,
computers). The impact of this problem on the proposed encryption scheme is mainly to narrow for
the key space. In addition, the randomness of the key sequence is reduced, but this factor has little
effect on the security of the encryption scheme.

4.2.6. Computation Efficiency

To demonstrate speed performance in the proposed improved scheme, the encryption time cost
by our improved scheme, and the scheme in Reference [15], are measured, respectively, under the
same computing environment [15]. The time cost by our improved scheme is 2.325 s, while it takes
2.465 s by the scheme in Reference [15]. It can be seen that our improved scheme has a slightly faster
encryption speed than the scheme in Reference [15]. The low time cost in our improved scheme is due
to the discarding binary XOR operations.

5. Conclusions

This paper analyzed a chaotic S-box based image encryption algorithm (IESB) in detail. We found
that the S-box and the secret key stream Y of the system are the equivalent keys of the cryptosystem.
The equivalent keys are not related to the image to be encrypted. For the above reasons, the original
algorithm (IESB) can not resist chosen-plaintext attacks. We ascertained that the encrypted image
can be deciphered with only two chosen plain-images. An ingenious method of constructing explicit
chosen-plaintext is found, and an equivalent array of S-box is constructed. We just need the equivalent
sequence of S-box without knowing the S-box and the secret key stream Y itself to decipher the
target ciphertext. The attacking scheme has been proved by theoretical analysis and supported by
experimental results. As an optimization method, a new and improved image encryption scheme
is developed to conquer these flaws of the original algorithm. In the improved scheme, a feedback
mechanism is introduced, a bidirectional diffusion scheme is designed, and values of the ciphertext
are associated with more parameters in each diffusion process. Experimental results and security
analysis certify that the improved encryption scheme can achieve a higher security level and has a
better performance than some recently proposed encryption algorithms.

As for image encryption technology, some future studies is worth considering, such as efficient
image encryption technology in resource-constrained mobile social network [29], sensor network
communication environment [30]. And searchable encryption [31], which is a very promising direction
in the field of cloud computing.

Author Contributions: This paper is the result of collaboration among all the authors in all aspects.

Funding: This research was funded by [the Open Project of Guangxi Colleges and Universities Key Laboratory of
Complex System Optimization and Big Data Processing] grant number [No. 2016CSOBDP0103]; [the National
Natural Science Foundation of China] grant number [No. 61472451].

Acknowledgments: The authors are thankful to the reviewers for their comments and suggestions to improve the
quality of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, Y.; Xiao, D.; Shu, Y.; Li, J. A novel image encryption scheme based on a linear hyperbolic chaotic
system of partial differential equations. Signal Process. Image Commun. 2013, 28, 292–300. [CrossRef]

2. Bashir, Z.; Watrobski, J.; Rashid, T.; Zafar, S.; Salabun, W. Chaotic dynamical state variables selection
procedure based image encryption scheme. Symmetry 2017, 9, 312. [CrossRef]

http://dx.doi.org/10.1016/j.image.2012.12.009
http://dx.doi.org/10.3390/sym9120312

Symmetry 2018, 10, 399 14 of 15

3. Wang, X.; Liu, C.; Zhang, H. An effective and fast image encryption algorithm based on chaos and
interweaving of ranks. Nonlinear Dyn. 2016, 84, 1595–1607. [CrossRef]

4. Ye, G.; Zhao, H.; Chai, H. Chaotic image encryption algorithm using wave-line permutation and block
diffusion. Nonlinear Dyn. 2016, 83, 2067–2077. [CrossRef]

5. Zhang, Y.; Xiao, D. Double optical image encryption using discrete chirikov standard map and chaos-based
fractional random transform. Opt. Lasers Eng. 2013, 51, 472–480. [CrossRef]

6. Liu, H.; Kadir, A.; Sun, X.; Li, Y. Chaos based adaptive double-image encryption scheme using hash function
and s-boxes. Multimed. Tools Appl. 2018, 77, 1391–1407. [CrossRef]

7. Zhu, C. A novel image encryption scheme based on improved hyperchaotic sequences. Opt. Commun. 2012,
285, 29–37. [CrossRef]

8. Wang, X.; Wang, Q. A novel image encryption algorithm based on dynamic s-boxes constructed by chaos.
Nonlinear Dyn. 2014, 75, 567–576. [CrossRef]

9. Liu, Y.; Tong, X.; Ma, J. Image encryption algorithm based on hyper-chaotic system and dynamic s-box.
Multimed. Tools Appl. 2016, 75, 7739–7759. [CrossRef]

10. Khan, M.; Shah, T.; Batool, S.I. Construction of s-box based on chaotic boolean functions and its application
in image encryption. Neural Comput. Appl. 2016, 27, 677–685. [CrossRef]

11. Cavusoglu, U.; Zengin, A.; Pehlivan, I.; Kacar, S. A novel approach for strong s-box generation algorithm
design based on chaotic scaled zhongtang system. Nonlinear Dyn. 2017, 87, 1081–1094. [CrossRef]

12. Belazi, A.; Khan, M.; Abd El-Latif, A.A.; Belghith, S. Efficient cryptosystem approaches: S-boxes and
permutation-substitution-based encryption. Nonlinear Dyn. 2017, 87, 337–361. [CrossRef]

13. Liu, Y.; Wang, J.; Fan, J.; Gong, L. Image encryption algorithm based on chaotic system and dynamic s-boxes
composed of DNA sequences. Multimed. Tools Appl. 2016, 75, 4363–4382. [CrossRef]

14. Devaraj, P.; Kavitha, C. An image encryption scheme using dynamic s-boxes. Nonlinear Dyn. 2016, 86,
927–940. [CrossRef]

15. Cavusoglu, U.; Kacar, S.; Pehlivan, I.; Zengin, A. Secure image encryption algorithm design using a novel
chaos based s-box. Chaos Solitons Fractals 2017, 95, 92–101. [CrossRef]

16. Li, C.; Lin, D.; Lu, J. Cryptanalyzing an image-scrambling encryption algorithm of pixel bits. IEEE Multimed.
2017, 24, 64–71. [CrossRef]

17. Li, C.; Liu, Y.; Xie, T.; Chen, M.Z.Q. Breaking a novel image encryption scheme based on improved
hyperchaotic sequences. Nonlinear Dyn. 2013, 73, 2083–2089. [CrossRef]

18. Yap, W.-S.; Phan, R.C.W.; Yau, W.C.; Heng, S.H. Cryptanalysis of a new image alternate encryption algorithm
based on chaotic map. Nonlinear Dyn. 2015, 80, 1483–1491. [CrossRef]

19. Zhu, C.X.; Sun, K.H. Cryptanalysis and improvement of a class of hyperchaos based image encryption
algorithms. Acta Phys. Sin. 2012, 61, 120503.

20. Zhang, X.; Nie, W.; Ma, Y.; Tian, Q. Cryptanalysis and improvement of an image encryption algorithm based
on hyper-chaotic system and dynamic s-box. Multimed. Tools Appl. 2017, 76, 15641–15659. [CrossRef]

21. Wu, X.; Zhu, B.; Hu, Y.; Ran, Y. A novel color image encryption scheme using rectangular transform-enhanced
chaotic tent maps. IEEE Access 2017, 5, 6429–6436.

22. Zhu, C.; Sun, K. Cryptanalyzing and improving a novel color image encryption algorithm using rt-enhanced
chaotic tent maps. IEEE Access 2018, 6, 18759–18770. [CrossRef]

23. Wang, W.; Si, M.; Pang, Y.; Ran, P.; Wang, H.; Jiang, X.; Liu, Y.; Wu, J.; Wu, W.; Chilamkurti, N.; et al. An
encryption algorithm based on combined chaos in body area networks. Comput. Electr. Eng. 2018, 65,
282–291. [CrossRef]

24. Ahmad, M.; Al Solami, E.; Wang, X.Y.; Doja, M.; Beg, M.; Alzaidi, A. Cryptanalysis of an Image Encryption
Algorithm Based on Combined Chaos for a Ban System, and Improved Scheme using SHA-512 and
Hyperchaos. Symmetry 2018, 10, 266. [CrossRef]

25. Li, S.; Chen, G.; Mou, X. On the dynamical degradation of digital piecewise linear chaotic maps. Int. J. Bifurc.
Chaos 2005, 15, 3119–3151. [CrossRef]

26. Curiac, D.I.; Volosencu, C. Chaotic trajectory design for monitoring an arbitrary number of specified locations
using points of interest. Math. Probl. Eng. 2012, 2012, 940276. [CrossRef]

27. Li, S.; Chen, G.; Wong, K.-W.; Mou, X.; Cai, Y. Baptista-type chaotic cryptosystems: Problems and
countermeasures. Phys. Lett. A 2004, 332, 368–375. [CrossRef]

http://dx.doi.org/10.1007/s11071-015-2590-3
http://dx.doi.org/10.1007/s11071-015-2465-7
http://dx.doi.org/10.1016/j.optlaseng.2012.11.001
http://dx.doi.org/10.1007/s11042-016-4288-z
http://dx.doi.org/10.1016/j.optcom.2011.08.079
http://dx.doi.org/10.1007/s11071-013-1086-2
http://dx.doi.org/10.1007/s11042-015-2691-5
http://dx.doi.org/10.1007/s00521-015-1887-y
http://dx.doi.org/10.1007/s11071-016-3099-0
http://dx.doi.org/10.1007/s11071-016-3046-0
http://dx.doi.org/10.1007/s11042-015-2479-7
http://dx.doi.org/10.1007/s11071-016-2934-7
http://dx.doi.org/10.1016/j.chaos.2016.12.018
http://dx.doi.org/10.1109/MMUL.2017.3051512
http://dx.doi.org/10.1007/s11071-013-0924-6
http://dx.doi.org/10.1007/s11071-015-1956-x
http://dx.doi.org/10.1007/s11042-016-3861-9
http://dx.doi.org/10.1109/ACCESS.2018.2817600
http://dx.doi.org/10.1016/j.compeleceng.2017.07.026
http://dx.doi.org/10.3390/sym10070266
http://dx.doi.org/10.1142/S0218127405014052
http://dx.doi.org/10.1155/2012/940276
http://dx.doi.org/10.1016/j.physleta.2004.09.028

Symmetry 2018, 10, 399 15 of 15

28. Curiac, D.I.; Iercan, D.; Dranga, O.; Dragan, F.; Banias, O. Chaos-Based Cryptography: End of the Road? In
Proceedings of the International Conference on Emerging Security Information, System and Technologies,
Valencia, Spain, 14–20 October 2007; pp. 71–76.

29. Zhang, S.; Wang, G.; Liu, Q.; Abawajy, J.H. A trajectory privacy-preserving scheme based on query exchange
in mobile social networks. Soft Comput. 2018, 22, 6121–6133. [CrossRef]

30. Bhuiyan, M.Z.A.; Wang, G.; Wu, J.; Cao, J.; Liu, X.; Wang, T. Dependable structural health monitoring using
wireless sensor networks. IEEE Trans. Depend. Secur. Comput. 2017, 14, 363–376. [CrossRef]

31. Zhang, Q.; Liu, Q.; Wang, G. PRMS: A personalized mobile search over encrypted outsourced data.
IEEE Access 2018, 6, 31541–31552. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00500-017-2676-6
http://dx.doi.org/10.1109/TDSC.2015.2469655
http://dx.doi.org/10.1109/ACCESS.2018.2845468
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Description of the Original Encryption Algorithm
	The Secret Keys and Flow Chart of IESB
	Generating Chaotic Pseudo Random Number Sequences and S-Box
	The Encryption Procedure

	The Cryptanalysis and Chosen-Plaintext Attacks
	The Algorithm of Cryptanalysis and Chosen-Plaintext Attacks
	Examples of Chosen-Plaintext Attacks
	The Secret Keys and S-Box
	Breaking the Encrypted Test Image
	A Simple Numerical Example

	The Improved Image Encryption Scheme
	Algorithm Description of the Improved Scheme
	Performance Test and Analysis of the Improved Scheme
	Histogram Analysis
	Pixels Correlation Analysis
	Information Entropy Analysis
	Sensitivity Analysis
	Key Space Analysis
	Computation Efficiency

	Conclusions
	References

