Article

Symmetric Identities for (P, Q)-Analogue of Tangent Zeta Function

Cheon Seoung Ryoo
Department of Mathematics, Hannam University, Daejeon 34430, Korea; ryoocs@hnu.kr

Received: 25 August 2018; Accepted: 10 September 2018; Published: 11 September 2018

Abstract

The goal of this paper is to define the (p, q)-analogue of tangent numbers and polynomials by generalizing the tangent numbers and polynomials and Carlitz-type q-tangent numbers and polynomials. We get some explicit formulas and properties in conjunction with (p, q)-analogue of tangent numbers and polynomials. We give some new symmetric identities for (p, q)-analogue of tangent polynomials by using (p, q)-tangent zeta function. Finally, we investigate the distribution and symmetry of the zero of (p, q)-analogue of tangent polynomials with numerical methods.

Keywords: tangent numbers; tangent polynomials; Carlitz-type q-tangent numbers; Carlitz-type q-tangent polynomials; (p, q)-analogue of tangent numbers and polynomials; (p, q)-analogue of tangent zeta function; symmetric identities; zeros

MSC: 11B68; 11S40; 11S80

1. Introduction

The field of the special polynomials such as tangent polynomials, Bernoulli polynomials, Euler polynomials, and Genocchi polynomials is an expanding area in mathematics (see [1-16]). Many generalizations of these polynomials have been studied (see [1,3-9,11-18]). Srivastava [14] developed some properties and q-extensions of the Euler polynomials, Bernoulli polynomials, and Genocchi polynomials. Choi, Anderson and Srivastava have discussed q-extension of the Riemann zeta function and related functions (see [5,17]). Dattoli, Migliorati and Srivastava derived a generalization of the classical polynomials (see [6]).

It is the purpose of this paper to introduce and investigate a new some generalizations of the Carlitz-type q-tangent numbers and polynomials, q-tangent zeta function, Hurwiz q-tangent zeta function. We call them Carlitz-type (p, q)-tangent numbers and polynomials, (p, q)-tangent zeta function, and Hurwitz (p, q)-tangent zeta function. The structure of the paper is as follows: In Section 2 we define Carlitz-type (p, q)-tangent numbers and polynomials and derive some of their properties involving elementary properties, distribution relation, property of complement, and so on. In Section 3, by using the Carlitz-type (p, q)-tangent numbers and polynomials, (p, q)-tangent zeta function and Hurwitz (p, q)-tangent zeta function are defined. We also contains some connection formulae between the Carlitz-type (p, q)-tangent numbers and polynomials and the (p, q)-tangent zeta function, Hurwitz (p, q)-tangent zeta function. In Section 4 we give several symmetric identities about (p, q)-tangent zeta function and Carlitz-type (p, q)-tangent polynomials and numbers. In the following Section, we investigate the distribution and symmetry of the zero of Carlitz-type (p, q)-tangent polynomials using a computer. Our paper ends with Section 6 , where the conclusions and future developments of this work are presented. The following notations will be used throughout this paper.

- \mathbb{N} denotes the set of natural numbers.
- $\mathbb{Z}_{0}^{-}=\{0,-1,-2,-2, \ldots\}$ denotes the set of nonpositive integers.
- \mathbb{R} denotes the set of real numbers.
- \mathbb{C} denotes the set of complex numbers.

We remember that the classical tangent numbers T_{n} and tangent polynomials $T_{n}(x)$ are defined by the following generating functions (see [19])

$$
\begin{equation*}
\frac{2}{e^{2 t}+1}=\sum_{n=0}^{\infty} T_{n} \frac{t^{n}}{n!^{\prime}}, \quad(|2 t|<\pi) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{2}{e^{2 t}+1}\right) e^{x t}=\sum_{n=0}^{\infty} T_{n}(x) \frac{t^{n}}{n!}, \quad(|2 t|<\pi) \tag{2}
\end{equation*}
$$

respectively. Some interesting properties of basic extensions and generalizations of the tangent numbers and polynomials have been worked out in [11,12,18-20]. The (p, q)-number is defined as

$$
[n]_{p, q}=\frac{p^{n}-q^{n}}{p-q}=p^{n-1}+p^{n-2} q+p^{n-3} q^{2}+\cdots+p^{2} q^{n-3}+p q^{n-2}+q^{n-1}
$$

It is clear that (p, q)-number contains symmetric property, and this number is q-number when $p=1$. In particular, we can see $\lim _{q \rightarrow 1}[n]_{p, q}=n$ with $p=1$. Since $[n]_{p, q}=p^{n-1}[n]_{\frac{q}{p}}$, we observe that (p, q)-numbers and p-numbers are different. In other words, by substituting q by $\frac{q}{p}$ in the definition q-number, we cannot have (p, q)-number. Duran, Acikgoz and Araci [7] introduced the (p, q)-analogues of Euler polynomials, Bernoulli polynomials, and Genocchi polynomials. Araci, Duran, Acikgoz and Srivastava developed some properties and relations between the divided differences and (p, q)-derivative operator (see [1]). The (p, q)-analogues of tangent polynomials were described in [20]. By using (p, q)-number, we construct the Carlitz-type (p, q)-tangent polynomials and numbers, which generalized the previously known tangent polynomials and numbers, including the Carlitz-type q-tangent polynomials and numbers. We begin by recalling here the Carlitz-type q-tangent numbers and polynomials (see [18]).

Definition 1. For any complex x we define the Carlitz-type q-tangent polynomials, $T_{n, q}(x)$, by the equation

$$
\begin{equation*}
F_{q}(t, x)=\sum_{n=0}^{\infty} T_{n, q}(x) \frac{t^{n}}{n!}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{[2 m+x]_{q} t} \tag{3}
\end{equation*}
$$

The numbers $T_{n, q}(0)$ are called the Carlitz-type q-tangent numbers and are denoted by $T_{n, q}$. Based on this idea, we generalize the Carlitz-type q-tangent number $T_{n, q}$ and q-tangent polynomials $T_{n, q}(x)$. It follows that we define the following (p, q)-analogues of the the Carlitz-type q-tangent number $T_{n, q}$ and q-tangent polynomials $T_{n, q}(x)$. In the next section we define the (p, q)-analogue of tangent numbers and polynomials. After that we will obtain some their properties.

2. (p, q)-Analogue of Tangent Numbers and Polynomials

Firstly, we construct (p, q)-analogue of tangent numbers and polynomials and derive some of their relevant properties.

Definition 2. For $0<q<p \leq 1$, the Carlitz-type (p, q)-tangent numbers $T_{n, p, q}$ and polynomials $T_{n, p, q}(x)$ are defined by means of the generating functions

$$
\begin{equation*}
F_{p, q}(t)=\sum_{n=0}^{\infty} T_{n, p, q} \frac{t^{n}}{n!}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{[2 m]_{p, q} t} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{p, q}(t, x)=\sum_{n=0}^{\infty} T_{n, p, q}(x) \frac{t^{n}}{n!}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{[2 m+x]_{p, q} t} \tag{5}
\end{equation*}
$$

respectively.
Setting $p=1$ in (4) and (5), we can obtain the corresponding definitions for the Carlitz-type q-tangent numbers $T_{n, q}$ and q-tangent polynomials $T_{n, q}(x)$ respectively. Obviously, if we put $p=1$, then we have

$$
T_{n, p, q}(x)=T_{n, q}(x), \quad T_{n, p, q}=T_{n, q} .
$$

Putting $p=1$, we have

$$
\lim _{q \rightarrow 1} T_{n, p, q}(x)=T_{n}(x), \quad \lim _{q \rightarrow 1} T_{n, p, q}=T_{n}
$$

Theorem 1. For $n \in \mathbb{N} \cup\{0\}$, one has

$$
\begin{equation*}
T_{n, p, q}=[2]_{q}\left(\frac{1}{p-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{1}{1+q^{2 l+1} p^{2(n-l)}} \tag{6}
\end{equation*}
$$

Proof. By (4), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} T_{n, p, q} \frac{t^{n}}{n!} & =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{[2 m]]_{p, q} t} \\
& =\sum_{n=0}^{\infty}\left([2]_{q}\left(\frac{1}{p-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{1}{1+q^{2 l+1} p^{2(n-l)}}\right) \frac{t^{n}}{n!}
\end{aligned}
$$

Equating the coefficients of $\frac{t^{n}}{n!}$, we arrive at the desired result (6).
If we put $p=1$ in Theorem 1, we obtain (cf. [18])

$$
T_{n, q}=[2]_{q}\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{1}{1+q^{2 l+1}}
$$

Next, we construct the Carlitz-type (h, p, q)-tangent polynomials $T_{n, p, q}^{(h)}(x)$. Define the Carlitz-type (h, p,q)-tangent polynomials $T_{n, p, q}^{(h)}(x)$ by

$$
\begin{equation*}
T_{n, p, q}^{(h)}(x)=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} p^{h m}[2 m+x]_{p, q}^{n} . \tag{7}
\end{equation*}
$$

Theorem 2. For $n \in \mathbb{N} \cup\{0\}$, one has

$$
\begin{aligned}
T_{n, p, q}(x) & =[2]_{q}\left(\frac{1}{p-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{x l} p^{(n-l) x} \frac{1}{1+q^{2 l+1} p^{2(n-l)+h}} \\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m}[2 m+x]_{p, q}^{n}
\end{aligned}
$$

Proof. By (5), we obtain

$$
\begin{equation*}
T_{n, p, q}(x)=[2]_{q}\left(\frac{1}{p-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{x l} p^{(n-l) x} \frac{1}{1+q^{2 l+1} p^{2(n-l)}} . \tag{8}
\end{equation*}
$$

Again, by using (5) and (8), we obtain

$$
\begin{align*}
& \sum_{n=0}^{\infty} T_{n, p, q}(x) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left([2]_{q}\left(\frac{1}{p-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{x l} p^{(n-l) x} \frac{1}{1+q^{2 l+1} p^{2(n-l)}}\right) \frac{t^{n}}{n!} \tag{9}\\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{[2 m+x]_{p, q} t} .
\end{align*}
$$

Since $[x+2 y]_{p, q}=p^{2 y}[x]_{p, q}+q^{x}[2 y]_{p, q}$, we have

$$
\begin{equation*}
T_{n, p, q}(x)=[2]_{q} \sum_{l=0}^{n}\binom{n}{l}[x]_{p, q}^{n-l} q^{x l} \sum_{k=0}^{l}\binom{l}{k}(-1)^{k}\left(\frac{1}{p-q}\right)^{l} \frac{1}{1+q^{2 k+1} p^{2(n-k)}} \tag{10}
\end{equation*}
$$

By using (9) and (10), (p, q)-number, and the power series expansion of $e^{x t}$, we give Theorem 2.

Furthermore, by (7) and Theorem 2, we have

$$
\begin{aligned}
T_{n, p, q}(x) & =\sum_{l=0}^{n}\binom{n}{l}[x]_{p, q}^{n-l} q^{x l} T_{l, p, q}^{(2 n-2 l)}, \\
T_{n, p, q}(x+y) & =\sum_{l=0}^{n}\binom{n}{l} p^{x l} q^{y(n-l)}[y]_{p, q}^{l} T_{n-l, p, q}^{(2 l)}
\end{aligned}
$$

From (4) and (5), we can derive the following properties of the Carlitz-type tangent numbers $T_{n, p, q}$ and polynomials $T_{n, p, q}(x)$. So, we choose to omit the details involved.

Proposition 1. For any positive integer n, one has
(1) $T_{n, p, q}(x)=\frac{[2]_{q}}{[2]_{q^{m}}}[m]_{p, q}^{n} \sum_{a=0}^{m-1}(-1)^{a} q^{a} T_{n, p^{m}, q^{m}}\left(\frac{2 a+x}{m}\right),(m=$ odd $)$.
(2) $T_{n, p^{-1}, q^{-1}}(2-x)=(-1)^{n} p^{n} q^{n} T_{n, p, q}(x)$.

Theorem 3. For $n \in \mathbb{N} \cup\{0\}$, one has

$$
q T_{n, p, q}(2)+T_{n, p, q}= \begin{cases}{[2]_{q,},} & \text { if } n=0 \\ 0, & \text { if } n \neq 0\end{cases}
$$

Theorem 4. If n is a positive integer, then we have

$$
\sum_{l=0}^{n-1}(-1)^{l} q^{l}[2 l]_{p, q}^{m}=\frac{(-1)^{n+1} q^{n} T_{m, p, q}(2 n)+T_{m, p, q}}{[2]_{q}}
$$

Proof. By (4) and (5), we get

$$
\begin{equation*}
-[2]_{q} \sum_{l=0}^{\infty}(-1)^{l+n} q^{l+n} e^{[2 l+2 n]_{p, q} t}+[2]_{q} \sum_{l=0}^{\infty}(-1)^{l} q^{l} e^{[2 l]_{p, q} t}=[2]_{q} \sum_{l=0}^{n-1}(-1)^{l} q^{l} e^{[2 l]_{p, q} t} . \tag{11}
\end{equation*}
$$

Hence, by (4), (5) and (11), we have

$$
\begin{aligned}
& (-1)^{n+1} q^{n} \sum_{m=0}^{\infty} T_{m, p, q}(2 n) \frac{t^{m}}{m!}+\sum_{m=0}^{\infty} T_{m, p, q} \frac{t^{m}}{m!} \\
& =\sum_{m=0}^{\infty}\left([2]_{q} \sum_{l=0}^{n-1}(-1)^{l} q^{l}[2 l]_{p, q}^{m}\right) \frac{t^{m}}{m!}
\end{aligned}
$$

Equating coefficients of $\frac{t^{m}}{m!}$ gives Theorem 4.

3. (p, q)-Analogue of Tangent Zeta Function

Using Carlitz-type (p, q)-tangent numbers and polynomials, we define the (p, q)-tangent zeta function and Hurwitz (p, q)-tangent zeta function. These functions have the values of the Carlitz-type (p, q)-tangent numbers $T_{n, p, q}$, and polynomials $T_{n, p, q}(x)$ at negative integers, respectively. From (4), we note that

$$
\begin{aligned}
\left.\frac{d^{k}}{d t^{k}} F_{p, q}(t)\right|_{t=0} & =[2]_{q} \sum_{m=0}^{\infty}(-1)^{n} q^{m}[2 m]_{p, q}^{k} \\
& =T_{k, p, q}(k \in \mathbb{N}) .
\end{aligned}
$$

From the above equation, we construct new (p, q)-tangent zeta function as follows:
Definition 3. We define the (p, q)-tangent zeta function for $s \in \mathbb{C}$ with $\operatorname{Re}(s)>0$ by

$$
\begin{equation*}
\zeta_{p, q}(s)=[2]_{q} \sum_{n=1}^{\infty} \frac{(-1)^{n} q^{n}}{[2 n]_{p, q}^{s}} \tag{12}
\end{equation*}
$$

Notice that $\zeta_{p, q}(s)$ is a meromorphic function on $\mathbb{C}(c f .7)$. Remark that, if $p=1, q \rightarrow 1$, then $\zeta_{p, q}(s)=\zeta_{T}(s)$ which is the tangent zeta function (see [19]). The relationship between the $\zeta_{p, q}(s)$ and the $T_{k, p, q}$ is given explicitly by the following theorem.

Theorem 5. Let $k \in \mathbb{N}$. We have

$$
\zeta_{p, q}(-k)=T_{k, p, q}
$$

Please note that $\zeta_{p, q}(s)$ function interpolates $T_{k, p, q}$ numbers at non-negative integers. Similarly, by using Equation (5), we get

$$
\begin{equation*}
\left.\frac{d^{k}}{d t^{k}} F_{p, q}(t, x)\right|_{t=0}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m}[2 m+x]_{p, q}^{k} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left(\frac{d}{d t}\right)^{k}\left(\sum_{n=0}^{\infty} T_{n, p, q}(x) \frac{t^{n}}{n!}\right)\right|_{t=0}=T_{k, p, q}(x), \text { for } k \in \mathbb{N} \tag{14}
\end{equation*}
$$

Furthermore, by (13) and (14), we are ready to construct the Hurwitz (p, q)-tangent zeta function.
Definition 4. For $s \in \mathbb{C}$ with $\operatorname{Re}(s)>0$ and $x \notin \mathbb{Z}_{0}^{-}$, we define

$$
\begin{equation*}
\zeta_{p, q}(s, x)=[2]_{q} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n}}{[2 n+x]_{p, q}^{s}} \tag{15}
\end{equation*}
$$

Obverse that the function $\zeta_{p, q}(s, x)$ is a meromorphic function on \mathbb{C}. We note that, if $p=1$ and $q \rightarrow 1$, then $\zeta_{p, q}(s, x)=\zeta_{T}(s, x)$ which is the Hurwitz tangent zeta function (see [19]). The function
$\zeta_{p, q}(-k, x)$ interpolates the numbers $T_{k, p, q}(x)$ at non-negative integers. Substituting $s=-k$ with $k \in \mathbb{N}$ into (15), and using Theorem 2, we easily arrive at the following theorem.

Theorem 6. Let $k \in \mathbb{N}$. One has

$$
\zeta_{p, q}(-k, x)=T_{k, p, q}(x)
$$

4. Some Symmetric Properties About (P, Q)-Analogue of Tangent Zeta Function

Our main objective in this section is to obtain some symmetric properties about (p, q)-tangent zeta function. In particular, some of these symmetric identities are also related to the Carlitz-type (p, q)-tangent polynomials and the alternate power sums. To end this section, we focus on some symmetric identities containing the Carlitz-type (p, q)-tangent zeta function and the alternate power sums.

Theorem 7. Let w_{1} and w_{2} be positive odd integers. Then we have

$$
\begin{aligned}
& {[2]_{q^{w_{1}}}\left[w_{1}\right]_{p, q}^{s} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \zeta_{p^{w_{2}}, q^{w_{2}}}\left(s, w_{1} x+\frac{2 w_{1} i}{w_{2}}\right)} \\
& =[2]_{q^{w_{2}}}\left[w_{2}\right]_{p, q}^{s} \sum_{j=0}^{w_{1}-1}(-1)^{j} q^{w_{2} j} \zeta_{p^{w_{1}, q^{w_{1}}}}\left(s, w_{2} x+\frac{2 w_{2} j}{w_{1}}\right)
\end{aligned}
$$

Proof. For any $x, y \in \mathbb{C}$, we observe that $[x y]_{p, q}=[x]_{p^{y}, q^{y}}[y]_{p, q}$. By substituting $w_{1} x+\frac{2 w_{1} i}{w_{2}}$ for x in Definition 4, replace p by $p^{w_{2}}$ and replace q by $q^{w_{2}}$, respectively, we derive

$$
\begin{aligned}
\zeta_{p^{w_{2}, q^{w_{2}}}}\left(s, w_{1} x+\frac{2 w_{1} i}{w_{2}}\right) & =[2]_{q^{w_{2}}} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{w_{2} n}}{\left[w_{1} x+\frac{2 w_{1} i}{w_{2}}+2 n\right]_{p^{w_{2}}, q^{w_{2}}}^{s}} \\
& =[2]_{q^{w_{2}}}\left[w_{2}\right]_{p, q}^{s} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{w_{2} n}}{\left[w_{1} w_{2} x+2 w_{1} i+2 w_{2} n\right]_{p, q}^{s}}
\end{aligned}
$$

Since for any non-negative integer m and positive odd integer w_{1}, there exist unique non-negative integer r such that $m=w_{1} r+j$ with $0 \leq j \leq w_{1}-1$. Thus, this can be written as

$$
\begin{aligned}
& \zeta_{p^{w_{2}, q^{w}}}\left(s, w_{1} x+\frac{2 w_{1} i}{w_{2}}\right) \\
& =[2]_{q^{w_{2}}}\left[w_{2}\right]_{p, q}^{s} \sum_{\substack{w_{1} r+j=0 \\
0 \leq j \leq w_{1}-1}}^{\infty} \frac{(-1)^{w_{1} r+j} q^{w_{2}\left(w_{1} r+j\right)}}{\left[2 w_{2}\left(w_{1} r+j\right)+w_{1} w_{2} x+2 w_{1} i\right]_{p, q}^{s}} \\
& =[2]_{q^{w_{2}}}\left[w_{2}\right]_{p, q}^{s} \sum_{j=0}^{w_{1}-1} \sum_{r=0}^{\infty} \frac{(-1)^{w_{1} r+j} q^{w_{2}\left(w_{1} r+j\right)}}{\left[w_{1} w_{2}(2 r+x)+2 w_{1} i+2 w_{2} j\right]_{p, q}^{s}} .
\end{aligned}
$$

It follows from the above equation that

$$
\begin{align*}
& {[2]_{q^{w_{1}}}\left[w_{1}\right]_{p, q}^{s} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \zeta_{p^{w_{2}}, q^{w_{2}}}\left(s, w_{1} x+\frac{2 w_{1} i}{w_{2}}\right)} \\
& =[2]_{q^{w_{1}}[2]_{q^{w_{2}}}\left[w_{1}\right]_{p, q}^{s}\left[w_{2}\right]_{p, q}^{s}} \begin{array}{l}
\quad \times \sum_{i=0}^{w_{2}-1} \sum_{j=0}^{w_{1}-1} \sum_{r=0}^{\infty} \frac{(-1)^{r+i+j} q^{\left(w_{1} w_{2} r+w_{1} i+w_{2} j\right)}}{\left[w_{1} w_{2}(2 r+x)+2 w_{1} i+2 w_{2} j\right]_{q}^{s}}
\end{array} . . \tag{16}
\end{align*}
$$

From the similar method, we can have that

$$
\begin{aligned}
\zeta_{p^{w_{1}, q^{w_{1}}}}\left(s, w_{2} x+\frac{2 w_{2} j}{w_{1}}\right) & =[2]_{q^{w_{1}}} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{w_{1} n}}{\left[w_{2} x+\frac{2 w_{2} j}{w_{1}}+2 n\right]_{p^{w_{1}}, q^{w_{1}}}^{s}} \\
& =[2]_{q^{w_{1}}}\left[w_{1}\right]_{p, q}^{s} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{w_{1} n}}{\left[w_{1} w_{2} x+2 w_{2} j+2 w_{1} n\right]_{p, q}^{s}}
\end{aligned}
$$

After some calculations in the above, we have

$$
\begin{align*}
& {[2]_{q^{w_{2}}}\left[w_{2}\right]_{p, q}^{s} \sum_{j=0}^{w_{1}-1}(-1)^{j} q^{w_{2} j_{2}} \zeta_{p^{w_{1}, q^{w_{1}}}}^{(h)}\left(s, w_{2} x+\frac{2 w_{2} j}{w_{1}}\right)} \\
& =[2]_{q^{w_{1}}}[2]_{q^{w_{2}}}\left[w_{1}\right]_{p, q}^{s}\left[w_{2}\right]_{p, q}^{s} \tag{17}\\
& \quad \times \sum_{i=0}^{w_{2}-1} \sum_{j=0}^{w_{1}-1} \sum_{r=0}^{\infty} \frac{(-1)^{r+i+j} q^{\left(w_{1} w_{2} r+w_{1} i+w_{2} j\right)}}{\left[w_{1} w_{2}(2 r+x)+2 w_{1} i+2 w_{2} j\right]_{p, q}^{s}} .
\end{align*}
$$

Thus, from (16) and (17), we obtain the result.

Corollary 1. For $s \in \mathbb{C}$ with $\operatorname{Re}(s)>0$, we have

$$
\zeta_{p, q}\left(s, w_{1} x\right)=\left[w_{1}\right]_{p, q}^{-s} \sum_{j=0}^{w_{1}-1}(-1)^{j} q^{j} \zeta_{p^{w_{1}}, q^{w_{1}}}\left(s, \frac{x+2 j}{w_{1}}\right) .
$$

Proof. Let $w_{2}=1$ in Theorem 7. Then we immediately get the result.
Next, we also derive some symmetric identities for Carlitz-type (p, q)-tangent polynomials by using (p, q)-tangent zeta function.

Theorem 8. Let w_{1} and w_{2} be any positive odd integers. The following multiplication formula holds true for the Carlitz-type (p, q)-tangent polynomials:

$$
\begin{aligned}
& {[2]_{q^{w_{1}}}\left[w_{2}\right]_{p, q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} T_{n, p^{w_{2}, q^{w_{2}}}}\left(w_{1} x+\frac{2 w_{1} i}{w_{2}}\right)} \\
& =[2]_{q^{w_{2}}}\left[w_{1}\right]_{p, q}^{n} \sum_{j=0}^{w_{1}-1}(-1)^{j} q^{w_{2} j} T_{n, p^{w_{1}}, q^{w w_{1}}}\left(w_{2} x+\frac{2 w_{2} j}{w_{1}}\right) .
\end{aligned}
$$

Proof. By substituting $T_{n, p, q}(x)$ for $\zeta_{p, q}(s, x)$ in Theorem 7, and using Theorem 6, we can find that

$$
\begin{align*}
& {[2]_{q^{w_{1}}}\left[w_{1}\right]_{p, q}^{-n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \zeta_{p^{w_{2}}, q^{w_{2}}}\left(-n, w_{1} x+\frac{2 w_{1} i}{w_{2}}\right)} \tag{18}\\
& =[2]_{q^{w_{1}}}\left[w_{1}\right]_{p, q}^{-n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} T_{n, p^{w_{2}}, q^{w_{2}}}\left(w_{1} x+\frac{2 w_{1} i}{w_{2}}\right),
\end{align*}
$$

and

$$
\begin{align*}
& {[2]_{q^{w_{2}}}\left[w_{2}\right]_{p, q}^{-n} \sum_{j=0}^{w_{1}-1}(-1)^{j} q^{w_{2} j} \zeta_{p^{w_{1}}, q^{w_{1}}}\left(-n, w_{2} x+\frac{2 w_{2} j}{w_{1}}\right)} \tag{19}\\
& =[2]_{q^{w_{2}}}\left[w_{2}\right]_{p, q}^{-n} \sum_{j=0}^{w_{1}-1}(-1)^{j} q^{w_{2} j} T_{n, p^{w}, q^{w_{1}}}\left(w_{2} x+\frac{2 w_{2} j}{w_{1}}\right) .
\end{align*}
$$

Thus, by (18) and (19), this concludes our proof.

Considering $w_{1}=1$ in the Theorem 8 , we obtain as below equation.

$$
T_{n, p, q}(x)=\frac{[2]_{q}}{[2]_{q^{w_{2}}}}\left[w_{2}\right]_{p, q}^{n} \sum_{j=1}^{w_{2}-1}(-1)^{j} q^{j} T_{n, p^{w_{2}}, q^{w_{2}}}\left(\frac{x+2 j}{w_{2}}\right)
$$

Furthermore, by applying the addition theorem for the Carlitz-type (h, p, q)-tangent polynomials $T_{n, p, q}^{(h)}(x)$, we can obtain the following theorem.

Theorem 9. Let w_{1} and w_{2} be any positive odd integers. Then one has

$$
\begin{aligned}
& {[2]_{q^{w_{2}}} \sum_{l=0}^{n}\binom{n}{l}\left[w_{2}\right]_{q}^{l}\left[w_{1}\right]_{p, q}^{n-l} p^{w_{1} w_{2} x l} T_{n-l, p^{w_{1}}, q^{w w_{1}}}^{(2 l)}\left(w_{2} x\right) \mathcal{T}_{n, l, p^{w_{2}, q^{z w_{2}}}}\left(w_{1}\right)} \\
& =[2]_{q^{w_{1}}} \sum_{l=0}^{n}\binom{n}{l}\left[w_{1}\right]_{p, q}^{l}\left[w_{2}\right]_{p, q}^{n-l} p^{w_{1} w_{2} x l} T_{n-l, p^{w_{2}}, q^{w_{2}}}^{(2 l)}\left(w_{1} x\right) \mathcal{T}_{n, l, p^{w}, q^{w}}\left(w_{2}\right)
\end{aligned}
$$

Proof. From Theorem 8, we have

$$
\begin{aligned}
& {[2]_{q^{w_{1}}}\left[w_{2}\right]_{p, q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} T_{n, p^{w_{2}, q^{w_{2}}}}\left(w_{1} x+\frac{2 w_{1} i}{w_{2}}\right) } \\
&=[2]_{q^{w_{1}}}\left[w_{2}\right]_{p, q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \sum_{l=0}^{n}\binom{n}{l} q^{2 w_{1}(n-l) i} p^{w_{1} w_{2} x l} \\
& \times T_{n-l, p^{w_{2}}, q^{w_{2}}}^{(2 l)}\left(w_{1} x\right)\left(\frac{\left[w_{1}\right]_{p, q}}{\left[w_{2}\right]_{p, q}}\right)^{l}[2 i]_{p^{w_{1}, q^{w}}}^{l} \\
&=[2]_{q^{w_{1}}}\left[w_{2}\right]_{p, q}^{n} \sum_{l=0}^{n}\binom{n}{l}\left(\frac{\left[w_{1}\right]_{p, q}}{\left[w_{2}\right]_{p, q}}\right)^{l} p^{w_{1} w_{2} x l} T_{n-l, p^{w_{2}, q^{w}}(2 l)}^{w_{2}}\left(w_{1} x\right) \\
& \times \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} q^{2(n-l) w_{1} i}[2 i]_{p^{w_{1}, q^{w_{1}}} l}^{l} .
\end{aligned}
$$

Therefore, we obtain that

$$
\begin{align*}
& {[2]_{q^{w_{1}}}\left[w_{2}\right]_{p, q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} T_{n, p^{w_{2}, q^{w_{2}}}}\left(w_{1} x+\frac{2 w_{1} i}{w_{2}}\right)} \tag{20}\\
& =[2]_{q^{w_{1}}} \sum_{l=0}^{n}\binom{n}{l}\left[w_{1}\right]_{p, q}^{l}\left[w_{2}\right]_{p, q}^{n-l} p^{w_{1} w_{2} x l} T_{n-l, p^{w_{2}}, q^{w_{2}}}^{(2 l)}\left(w_{1} x\right) \mathcal{T}_{n, l, p^{w w_{1}}, q^{w_{1}}}\left(w_{2}\right)
\end{align*}
$$

and

$$
\begin{align*}
& {[2]_{q^{w_{2}}}\left[w_{1}\right]_{p, q}^{n} \sum_{j=0}^{w_{1}-1}(-1)^{j} q^{w_{2} j} T_{n, p^{w_{1}}, q^{w_{1}}}\left(w_{2} x+\frac{2 w_{2} j}{w_{1}}\right)} \tag{21}\\
& =[2]_{q^{w_{2}}} \sum_{l=0}^{n}\binom{n}{l}\left[w_{2}\right]_{q}^{l}\left[w_{1}\right]_{p, q}^{n-l} p^{w_{1} w_{2} x l} T_{n-l, p^{w_{1}}, q^{w w_{1}}}^{(2 l)}\left(w_{2} x\right) \mathcal{T}_{n, l, p^{w_{2}, q^{w}}}\left(w_{1}\right)
\end{align*}
$$

where $\mathcal{T}_{n, l, p, q}(k)=\sum_{i=0}^{k-1}(-1)^{i} q^{(1+2 n-2 l) i}[2 i]_{p, q}^{l}$ is called as the alternate power sums. Thus, the theorem can be established by (20) and (21).

5. Zeros of the Carlitz-Type (P, Q)-Tangent Polynomials

The purpose of this section is to support theoretical predictions using numerical experiments and to discover new exciting patterns for zeros of the Carlitz-type (p, q)-tangent polynomials $T_{n, p, q}(x)$. We propose some conjectures by numerical experiments. The first values of the $T_{n, p, q}(x)$ are given by

$$
\begin{aligned}
T_{0, p, q}(x) & =1 \\
T_{1, p, q}(x) & =-\frac{-p^{x}-p^{x} q^{3}+q^{x}+p^{2} q^{1+x}}{(p-q)\left(1+p^{2} q\right)\left(1-q+q^{2}\right)} \\
T_{2, p, q}(x) & =\frac{p^{2 x}+p^{2+2 x} q^{3}+p^{2 x} q^{5}+p^{2+2 x} q^{8}-2 p^{x} q^{x}+q^{2 x}-2 p^{4+x} q^{1+x}}{(p-q)^{2}\left(1+p^{4} q\right)\left(1+p^{2} q^{3}\right)\left(1-q+q^{2}-q^{3}+q^{4}\right)} \\
& -\frac{2 p^{x} q^{5+x}-2 p^{4+x} q^{6+x}+p^{4} q^{1+2 x}+p^{2} q^{3+2 x}+p^{6} q^{4+2 x}}{(p-q)^{2}\left(1+p^{4} q\right)\left(1+p^{2} q^{3}\right)\left(1-q+q^{2}-q^{3}+q^{4}\right)}
\end{aligned}
$$

Tables 1 and 2 present the numerical results for approximate solutions of real zeros of $T_{n, p, q}(x)$. The numbers of zeros of $T_{n, p, q}(x)$ are tabulated in Table 1 for a fixed $p=\frac{1}{2}$ and $q=\frac{1}{10}$.

Table 1. Numbers of real and complex zeros of $T_{n, p, q}(x), p=\frac{1}{2}, q=\frac{1}{10}$.

Degree n	Real Zeros	Complex Zeros
1	1	0
2	2	0
3	1	2
4	2	2
5	1	4
6	2	4
7	1	6
8	2	6
9	1	8
10	2	8
11	1	10
12	2	10
13	1	12
14	2	12
\vdots	\vdots	\vdots
30	2	28

Table 2. Numerical solutions of $T_{n, p, q}(x)=0, p=\frac{1}{2}, q=\frac{1}{10}$.

Degree n	x
1	0.0147214
2	$-0.0451666,0.0490316$
3	0.0737013
4	$-0.0782386,0.0906197$
5	0.102727
6	$-0.0935042, \quad 0.111767$

The use of computer has made it possible to identify the zeros of the Carlitz-type (p, q)-tangent polynomials $T_{n, p, q}(x)$. The zeros of the Carlitz-type (p, q)-tangent polynomials $T_{n, p, q}(x)$ for $x \in \mathbb{C}$ are plotted in Figure 1.

In Figure 1(top-left), we choose $n=10, p=1 / 2$ and $q=1 / 10$. In Figure 1(top-right), we choose $n=20, p=1 / 2$ and $q=1 / 10$. In Figure 1 (bottom-left), we choose $n=30, p=1 / 2$ and $q=1 / 10$. In Figure 1 (bottom-right), we choose $n=40, p=1 / 2$ and $q=1 / 10$. It is amazing
that the structure of the real roots of the Carlitz-type (p, q)-tangent polynomials $T_{n, p, q}(x)$ is regular. Thus, theoretical prediction on the regular structure of the real roots of the Carlitz-type (p, q)-tangent polynomials $T_{n, p, q}(x)$ is await for further study (Table 1). Next, we have obtained the numerical solution satisfying Carlitz-type (p, q)-tangent polynomials $T_{n, p, q}(x)=0$ for $x \in \mathbb{R}$. The numerical solutions are tabulated in Table 2 for a fixed $p=\frac{1}{2}$ and $q=\frac{1}{10}$ and various value of n.

Figure 1. Zeros of $T_{n, p, q}(x)$.

6. Conclusions and Future Developments

This study constructed the Carlitz-type (p, q)-tangent numbers and polynomials. We have derived several formulas for the Carlitz-type (h, q)-tangent numbers and polynomials. Some interesting symmetric identities for Carlitz-type (p, q)-tangent polynomials are also obtained. Moreover, the results of [18] can be derived from ours as special cases when $q=1$. By numerical experiments, we will make a series of the following conjectures:

Conjecture 1. Prove or disprove that $T_{n, p, q}(x), x \in \mathbb{C}$, has $\operatorname{Im}(x)=0$ reflection symmetry analytic complex functions. Furthermore, $T_{n, p, q}(x)$ has $\operatorname{Re}(x)=$ a reflection symmetry for $a \in \mathbb{R}$.

Many more values of n have been checked. It still remains unknown if the conjecture holds or fails for any value n (see Figure 1).

Conjecture 2. Prove or disprove that $T_{n, p, q}(x)=0$ has n distinct solutions.

In the notations: $R_{T_{n, p, q}(x)}$ denotes the number of real zeros of $T_{n, p, q}(x)$ lying on the real plane $\operatorname{Im}(x)=0$ and $C_{T_{n, p, q}(x)}$ denotes the number of complex zeros of $T_{n, p, q}(x)$. Since n is the degree of the polynomial $T_{n, p, q}(x)$, we get $R_{T_{n, p, q}(x)}=n-C_{T_{n, p, q}(x)}$ (see Tables 1 and 2).

Conjecture 3. Prove or disprove that

$$
R_{T_{n, p, q}(x)}= \begin{cases}1, & \text { if } n=\text { odd } \\ 2, & \text { if } n=\text { even }\end{cases}
$$

We expect that investigations along these directions will lead to a new approach employing numerical method regarding the research of the Carlitz-type (p, q)-tangent polynomials $T_{n, p, q}(x)$ which appear in applied mathematics, and mathematical physics (see [11,18-20]).

Funding: This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2017R1A2B4006092).
Acknowledgments: The author would like to thank the referees for their valuable comments, which improved the original manuscript in its present form.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Araci, S.; Duran, U.; Acikgoz, M.; Srivastava, H.M. A certain (p, q)-derivative operato rand associated divided differences. J. Inequal. Appl. 2016, 2016, 301, doi:10.1186/s13660-016-1240-8.
2. Andrews, G.E.; Askey, R.; Roy, R. Special Functions. In Encyclopedia of Mathematics and Its Applications 71; Cambridge University Press: Cambridge, UK, 1999.
3. Bayad, A. Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials. Russ. J. Math. Phys. 2011, 18, 133-143.
4. Carlitz, L. Expansion of q-Bernoulli numbers and polynomials. Duke Math. J. 1958, 25, 355-364.
5. Choi, J.; Anderson, P.J.; Srivastava, H.M. Some q-extensions of the Apostal-Bernoulli and the Apostal-Euler polynomials of order n, and the multiple Hurwiz zeta function. Appl. Math. Comput. 2008, 199, 723-737.
6. Dattoli, G.; Migliorati, M.; Srivastava, H.M. Sheffer polynomials, monomiality principle, algebraic methods and the theory of classical polynomials. Math. Comput. Model. 2007, 45, 1033-1041.
7. Duran, U.; Acikgoz, M.; Araci, S. On (p, q)-Bernoulli, (p, q)-Euler and (p, q)-Genocchi polynomials. J. Comput. Theor. Nanosci. 2016, 13, 7833-7846.
8. Kupershmidt, B.A. Reflection symmetries of q-Bernoulli polynomials. J. Nonlinear Math. Phys. 2005, 12, 412-422.
9. Kurt, V. A further symmetric relation on the analogue of the Apostol-Bernoulli and the analogue of the Apostol-Genocchi polynomials. Appl. Math. Sci. 2009, 3, 53-56.
10. He, Y. Symmetric identities for Carlitz's q-Bernoulli numbers and polynomials. Adv. Differ. Equ. 2013, 246, doi:10.1186/1687-1847-2013-246.
11. Ryoo, C.S.; Agarwal, R.P. Some identities involving q-poly-tangent numbers and polynomials and distribution of their zeros. Adv. Differ. Equ. 2017, 213, doi:10.1186/s13662-017-1275-2.
12. Shin, H.; Zeng, J. The q-tangent and q-secant numbers via continued fractions. Eur. J. Comb. 2010, 31, 1689-1705.
13. Simsek, Y. Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)-zeta function and L-function. J. Math. Anal. Appl. 2006, 324, 790-804.
14. Srivastava, H.M. Some generalizations and basic (or q^{-}) extensions of the Bernoulli, Euler and Genocchi Polynomials. Appl. Math. Inform. Sci. 2011, 5, 390-444.
15. Srivastava, H.M.; Pintér, Á. Remarks on some relationships between the Bernoulli and Euler polynomials. Appl. Math. Lett. 2004, 17, 375-380.
16. Srivastava, H.M.; Pintér, Á. Addition theorems for the Appell polynomials and the associated classes of polynomial expansions. Aequ. Math. 2013, 85, 483-495.
17. Choi, J.; Anderson, P.J.; Srivastava, H.M. Carlitz's q-Bernoulli and q-Euler numbers and polynomials and a class of generalized q-Hurwiz zeta functions. Appl. Math. Comput. 2009, 215, 1185-1208
18. Hwang, K.W.; Ryoo, C.S. On Carlitz-type q-tangent numbers and polynomials and computation of their zeros. J. App. Math. Inform. 2017, 35, 495-504.
19. Ryoo, C.S. A note on the tangent numbers and polynomials. Adv. Stud. Theor. Phys. 2013, 7, 447-454.
20. Agarwal, R.P.; Kang, J.Y.; Ryoo, C.S. Some properties of (p, q)-tangent polynomials. J. Comput. Anal. Appl. 2018, 24, 1439-1454.
(C) 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http:// creativecommons.org/licenses/by/4.0/).
