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Abstract: The goal of this paper is to define the (p, q)-analogue of tangent numbers and polynomials
by generalizing the tangent numbers and polynomials and Carlitz-type g-tangent numbers and
polynomials. We get some explicit formulas and properties in conjunction with (p, 7)-analogue of
tangent numbers and polynomials. We give some new symmetric identities for (p, g)-analogue of
tangent polynomials by using (p, 4)-tangent zeta function. Finally, we investigate the distribution
and symmetry of the zero of (p, g)-analogue of tangent polynomials with numerical methods.
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1. Introduction

The field of the special polynomials such as tangent polynomials, Bernoulli polynomials,
Euler polynomials, and Genocchi polynomials is an expanding area in mathematics (see [1-16]).
Many generalizations of these polynomials have been studied (see [1,3-9,11-18]). Srivastava [14]
developed some properties and g-extensions of the Euler polynomials, Bernoulli polynomials, and
Genocchi polynomials. Choi, Anderson and Srivastava have discussed g-extension of the Riemann zeta
function and related functions (see [5,17]). Dattoli, Migliorati and Srivastava derived a generalization
of the classical polynomials (see [6]).

It is the purpose of this paper to introduce and investigate a new some generalizations of
the Carlitz-type g-tangent numbers and polynomials, g-tangent zeta function, Hurwiz g-tangent
zeta function. We call them Carlitz-type (p, q)-tangent numbers and polynomials, (p, q)-tangent
zeta function, and Hurwitz (p, g)-tangent zeta function. The structure of the paper is as follows:
In Section 2 we define Carlitz-type (p, q)-tangent numbers and polynomials and derive some of their
properties involving elementary properties, distribution relation, property of complement, and so on.
In Section 3, by using the Carlitz-type (p, g)-tangent numbers and polynomials, (p, 4)-tangent zeta
function and Hurwitz (p, q)-tangent zeta function are defined. We also contains some connection
formulae between the Carlitz-type (p, q9)-tangent numbers and polynomials and the (p, )-tangent
zeta function, Hurwitz (p,q)-tangent zeta function. In Section 4 we give several symmetric
identities about (p, g)-tangent zeta function and Carlitz-type (p, q)-tangent polynomials and numbers.
In the following Section, we investigate the distribution and symmetry of the zero of Carlitz-type
(p, q)-tangent polynomials using a computer. Our paper ends with Section 6, where the conclusions
and future developments of this work are presented. The following notations will be used throughout
this paper.
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e N denotes the set of natural numbers.

o Zy ={0,-1,-2,-2,...} denotes the set of nonpositive integers.
e R denotes the set of real numbers.

e C denotes the set of complex numbers.

We remember that the classical tangent numbers T, and tangent polynomials T, (x) are defined
by the following generating functions (see [19])

eth ; n ,, (I12t] < 70), 1)

and

(eZt2+1> 2 Tu(x ,, (|2t < m). )

respectively. Some interesting properties of basic extensions and generalizations of the tangent numbers
and polynomials have been worked out in [11,12,18-20]. The (p, 4)-number is defined as

Pt —q"
p—q

n—2 n—3 2 2 n—3

g+t "

[1]pg = =p" P 4 +pq" % +q
It is clear that (p, g)-number contains symmetric property, and this number is g-number when

p = 1. In particular, we can see lim_,1[n],, = n with p = 1. Since [n],, = p"~![n]q, we observe
v

that (p,q)-numbers and p-numbers are different. In other words, by substituting g by % in the
definition g-number, we cannot have (p, g)-number. Duran, Acikgoz and Araci [7] introduced the
(p,q)-analogues of Euler polynomials, Bernoulli polynomials, and Genocchi polynomials. Araci,
Duran, Acikgoz and Srivastava developed some properties and relations between the divided
differences and (p, q)-derivative operator (see [1]). The (p, 4)-analogues of tangent polynomials were
described in [20]. By using (p, 9)-number, we construct the Carlitz-type (p, q)-tangent polynomials
and numbers, which generalized the previously known tangent polynomials and numbers, including
the Carlitz-type g-tangent polynomials and numbers. We begin by recalling here the Carlitz-type
g-tangent numbers and polynomials (see [18]).

Definition 1. For any complex x we define the Carlitz-type g-tangent polynomials, Ty, 4(x), by the equation

9 = 1 Taa(w) g = 2y 1 (-1 ©

m=0

The numbers T, ;(0) are called the Carlitz-type g-tangent numbers and are denoted by T}, 4.
Based on this idea, we generalize the Carlitz-type g-tangent number T; ; and g-tangent polynomials
Ty,q(x). It follows that we define the following (p, 7)-analogues of the the Carlitz-type g-tangent
number T, ; and g-tangent polynomials Ty 4(x). In the next section we define the (p, g)-analogue of
tangent numbers and polynomials. After that we will obtain some their properties.

2. (p, q9)-Analogue of Tangent Numbers and Polynomials

Firstly, we construct (p, g)-analogue of tangent numbers and polynomials and derive some of
their relevant properties.

Definition 2. For 0 < q < p < 1, the Carlitz-type (p, q)-tangent numbers Ty, p 4 and polynomials Ty pq(x)
are defined by means of the generating functions

e e}

Fpq(t) = ZT/P‘? 20y Y (1) qmelrinat, 4)

n=0 m=0
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and
(o) ti’l

Fpq(t, x) Z npg ()= = [2g Y (—1)"gmePntlnat, (5)

n=0 m=0

respectively.

Setting p = 1 in (4) and (5), we can obtain the corresponding definitions for the Carlitz-type
g-tangent numbers T, ; and g-tangent polynomials T, ;(x) respectively. Obviously, if we put p = 1,
then we have

Tn,p,q (x) - Tn,q (X), Tn,p,q — Tn,q .

Putting p = 1, we have

tlilir} Tnpq( ) = Tn(X), ;li)rll Tn,p,q =T,.

Theorem 1. For n € NU {0}, one has

Ty = [2] (1)2 (“)(1)’1 ©6)
n,p.q q P—q = 1 1+ q21+1p2(n71) .
Proof. By (4), we have
[e¢] tn [ee]
Y Tupay = 2lg Yo (=1)"g" el leat
n=0 n: m=0

s 1 n n 1 1 tn
5 () B () et )

Equating the coefficients of ;—ﬂ!, we arrive at the desired result (6). [

If we put p = 1 in Theorem 1, we obtain (cf. [18])

- () £ () e

Next, we construct the Carlitz-type (h, p, q)-tangent polynomials T,(l?,q (x). Define the Carlitz-type
(h, p, q)-tangent polynomials Tr(l?,q (x) by

T,(lh) 2], Z )"g™ hm [2m + x]}) o (7)

m=0

Theorem 2. For n € NU {0}, one has

1 na n 1 xl 1
T,pq(x) = [2lg <p—q> ; <l>( 1)l pt 1+ g2+ p20n=D)+h

Proof. By (5), we obtain

Tupa) =2 () 1 (3) tgtpo e ®
npg(X) = 12]q I ap 1+ g2 120"
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Again, by using (5) and (8), we obtain

_ - [2] 1 " (n ( 1)1 xl, (n—1)x 1 ¢ 9
_n;() "\p—qg I;O )\hap 1+ g2+1p2(n=D) l ©)

Since [x + 2y]p,g = p¥[x]pq + 4% [2y]p,5, we have

& -l gl Lo/l el 1 1
Tnpa(x Z( ) P (k)(_l) (p_q> 1+ g2t 2B (10)

By using (9) and (10), (p, 9)-number, and the power series expansion of ¢*!, we give Theorem 2.
O

Furthermore, by (7) and Theorem 2, we have

(Y gt !
Tupq(x) =Y <Z> B lTl(f?nq )

1=0

" n _ 21
T”rprq(x+y) = Z <l>pXqu(n l)[]/]qur(l ;pq
1=0

From (4) and (5), we can derive the following properties of the Carlitz-type tangent numbers
Ty,p,q and polynomials Ty, 4(x). So, we choose to omit the details involved.

Proposition 1. For any positive integer n, one has

2
(1) Tupq(x) = [[Z]L‘Zn[mm'q Yoo (= 1) q" Ty pmgn (2555) , (m = odd).
(2) Tn,pfl,qfl (2 - x) = <_1)npnanan,q (x)
Theorem 3. Forn € NU {0}, one has

2], ifn=0,
qTn,pq(2) + Tupq = { 0, ! ijf‘n £0.

Theorem 4. If n is a positive integer, then we have

T vtgtiagy, — SN T+ Tupg,
1=0 P [z]q

Proof. By (4) and (5), we get

Mz

_ [z]q i(_l)l+nql+ne[21+2n]p,qt + [2]11 ( 1)lql€ [2l]pqt — i ZI]Mt (11)

N
i

<)
i

0
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Hence, by (4), (5) and (11), we have

Equating coefficients of l, gives Theorem 4. [J

3. (p, q9)-Analogue of Tangent Zeta Function

Using Carlitz-type (p, q)-tangent numbers and polynomials, we define the (p, g)-tangent zeta
function and Hurwitz (p, q)-tangent zeta function. These functions have the values of the Carlitz-type
(p, 9)-tangent numbers T}, 5, and polynomials T, ; ;(x) at negative integers, respectively. From (4),

we note that
d~ ad

ﬁFM(t) =[], Y. (-1)"q [Zm]pq
=0 m=0

= Tk,p,qi (k € N)

From the above equation, we construct new (p, q)-tangent zeta function as follows:

Definition 3. We define the (p, q)-tangent zeta function for s € C with Re(s) > 0 by
o (_1)ngh
pale) = 12y 1 ST )

Notice that {p4(s) is a meromorphic function on C(cf.7). Remark that, if p = 1,9 — 1,
then {,,4(s) = {r(s) which is the tangent zeta function (see [19]). The relationship between the
Cpq(s) and the Ty ,, ; is given explicitly by the following theorem.

Theorem 5. Let k € N. We have
ém(—k) = Thpg-

Please note that {, 4(s) function interpolates Ty , , numbers at non-negative integers. Similarly,
by using Equation (5), we get

dk )
SeFabn) =l ¥ (1 o, 1)
t=0 m=

and

(i)k <§O Tn,ﬁﬂ(ﬂi)

Furthermore, by (13) and (14), we are ready to construct the Hurwitz (p, q)-tangent zeta function.

= Typ,q(x), fork € N. (14)
=0

Definition 4. For s € C with Re(s) > 0 and x & 7 , we define

g (s x) = [2} i M (15)
P 1= [2n+ x5,
Obverse that the function {}4(s, x) is a meromorphic function on C. We note that, if p = 1 and

q — 1, then £ 4(s, x) = {r(s, x) which is the Hurwitz tangent zeta function (see [19]). The function
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Cpq(—k, x) interpolates the numbers Ty ,, ,(x) at non-negative integers. Substituting s = —k with k € N
into (15), and using Theorem 2, we easily arrive at the following theorem.

Theorem 6. Let k € N. One has
Cp,q (_kr X) = Tk,p,q(x)'

4. Some Symmetric Properties About (P, Q)-Analogue of Tangent Zeta Function

Our main objective in this section is to obtain some symmetric properties about (p, 4)-tangent
zeta function. In particular, some of these symmetric identities are also related to the Carlitz-type
(p, q)-tangent polynomials and the alternate power sums. To end this section, we focus on some
symmetric identities containing the Carlitz-type (p,q)-tangent zeta function and the alternate
power sums.

Theorem 7. Let wy and wy be positive odd integers. Then we have

wal

2w1i
S l w
Z]qz”l [wl]w ;} (=1)'q™ gpwz A2 (S, wix + w2>

wp—1
2
= [Z]qwz [’(,()2];/q ZO (—1) 2]€ w1 qwl (S w2x+ w1])
]:
Proof. For any x,y € C, we observe that [xy]pq = [x],y v[v]pq- By substituting w;x + 2 for x in
Definition 4, replace p by p®2 and replace g by q“2, respectively, we derive
2w ad (—1)rgwan
Cpwa qwo (s wix + ) =
pe2a Wy ; [wqx + zw” +2n S gz
S 1y
- 2 w s ( .
[ }”’ 2 [wZ]p"’ nX::O [wywyx + 2wyi + 2w2n]§w

Since for any non-negative integer m and positive odd integer wy, there exist unique non-negative
integer r such that m = wyr + j with 0 < j < w; — 1. Thus, this can be written as

2wni
gpwz qu <S w1x + = )

wa
00 (71)w1r+j wy (w17+7)
= 2l loaiy ) [2w, (wyr +7) + : + 2wy i$
wyrtj=0 EW2(W1T T ]) T W2 X + 2Witfp 4
0<j<w;—1
w1—1 oo —1)wir+j gwa(wir+j)
= elg™2 ZUz Pq 2 E 2 ) qz 2
j=0 r=0 ZU1ZU2 7’+X)+ w11+ ZUZ]]

It follows from the above equation that

ZU2—1

2wqi
2 [wilyg Y- (=1 o g (S wix o+ 1)
i=0 w2

= [2]qw1 2] qv2 [wl];z,q [ZUZ];,q (16)
wy—1wy—1 oo (_1)r+i+jq(w1wzr+wli+w2j)

X . . .
= = r;’) [w1wa (2r + x) + 2w1i + 2woj]}




Symmetry 2018, 10, 395 7 of 12

From the similar method, we can have that

S _ 1) gwn
prl g1 (S wox + 32]> Z ( ) q

1 [w x+2w2]+2n]

wl qw]

— 2 [w1]: Z (=1
g1 % llpg [w1wax + 2waj + 2wy n q

After some calculations in the above, we have

= j waj 2wyj
2oz [y ¥ (~1)g g o, (S, Wy 1 2‘])

j=0 “
= [Z]qwl [2} g2 [wl]; q [ZUZ];),q (17)
wy—1wy—1 oo 1)1 +i+] g(wiwar+wii+waj)
I I M
5 =55 w1w2 (2r+x) +2w11+2w2]]

Thus, from (16) and (17), we obtain the result. [

Corollary 1. Fors € C with Re(s) > 0, we have

ZU]*] o x + 2
Cpa(s,wix) = [wi],z Y. (1)@ gn (S’wl]> ‘
j=0

Proof. Let w, = 1in Theorem 7. Then we immediately get the result. O

Next, we also derive some symmetric identities for Carlitz-type (p, g)-tangent polynomials by
using (p, q)-tangent zeta function.

Theorem 8. Let wy and wy be any positive odd integers. The following multiplication formula holds true for
the Carlitz-type (p, q)-tangent polynomials:

n ! i _wyi 2w
[2]gn [w2] 4 Z;) (=1)' g Ty, o2 g (w1x—|— wz)
w1—1

= wz wl Pq Z 2]T wl qwl <w2x—|— w2])
1

Proof. By substituting T, p,q(x) for {p4(s, x) in Theorem 7, and using Theorem 6, we can find that

ZU2 1 zw .
11
wl wl pq Z qu] ngZ,qu <—n,w1x+ >

w2
wzfl ) . (18)
_ i H w11
= [Z]qwl [wl]p,;’ Z (—1)lqwllTn/pwz,qwz (ZU1X + 1) ’
i=0 w2
and )
T oo 2wo]
[2]qw2 ['Z/Uﬂp,g Z (_1)]qWZ]CpZ"1,qwl (—T’l, woX -+ w12]>
=0
T (19)
_ j <]
= wz ’(,UZ ; w2 T ‘Ul qw] (wzx + W )

Thus, by (18) and (19), this concludes our proof. [
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Considering w; = 1 in the Theorem 8, we obtain as below equation

2y 1

i x+2j
Tn,prq(x) = [Z]qzz [w2]z,q 21 (_1)]q]Tn,pw2,qz"2 < ]> .
]:

w3

Furthermore, by applying the addition theorem for the Carlitz-type (1, p, q)-tangent polynomials
T,gh; 4(x), we can obtain the following theorem.

Theorem 9. Let wy and wy be any positive odd integers. Then one has

202 Z ( ) pwleXITl’(l 317 1,47“’1 (Z()2X)7:1’l,pwz,qw2 (wl)

n n -
= [2]ym Z (l) [w1]§, Llwa]t pwlwleT(Zl)

n—I pw2 qw (wlx)ﬁl,l,pwl,qwl (w2)
I=0

Proof. From Theorem 8, we have

wy—1 ) ' o
11
[z]qwl [Z/UZ]’;,(,] ZO (71)lqw1lTn’pr,qwz <w1x + u]2>
i=
e e (1) 2 1i 1
= [Z]qwl [Z()z];,q Z (71)1qw11 2 (l>q wy (n— )zpwlwzx

i=0 1=0

X
!

[w1]p,
z—l;,sz,qu(wM) ([ ' M) (2]} 01 o

walp.qg

!
n [w1]p.g 21
71 w2 P q 2 (l) > pZUHszlT 3pwz,qwz (wlx)

]Pq

« Z z wlz 2(n— l)wlz[zl']l

pW1 ’qZUl .

Therefore, we obtain that

ZU271

i wii 2wqi
[2]gen [w2p g Z;; (=1)'q VT, oz g2 <w1x+ w2>

3 (20)
= 2 ), (7) [w1]h g [wa) i P12 T @)

r4q p Tl lpr q“’2 (W1x)771,l’pwl/qwl (’(,U2>,

and

w1

n (21)
2 Y (7) s [ ]I pr )

71,971 (wzx) 7;1,l,pw2 %2 (wl ) .

[Z]qu [wl}z,q Z (—1)qu2]‘ Tn,pwl,qwl (ZUQX —+ 2])

where Ty, 1, (k) = YEd(—1)ig+2n=2Di [21] is called as the alternate power sums. Thus, the theorem
can be established by (20) and (21). O
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5. Zeros of the Carlitz-Type (P, Q)-Tangent Polynomials

The purpose of this section is to support theoretical predictions using numerical experiments
and to discover new exciting patterns for zeros of the Carlitz-type (p, q)-tangent polynomials T}, 4(x).
We propose some conjectures by numerical experiments. The first values of the T}, 4(x) are given by

To,p,q(x) = 1,
2 14+x

T, (1) = — P TP g P
i (P=a)(1+p2)(1—q+47)

T2 (x) _ p2x 4 p2+2xq3 4 szq5 4 p2+2xq8 _ 2pqu + qu _ 2p4+xq1+x
P (P —*(1+pr) 1+ %) (1= g+ 4> — ¢° +q*)

prq5+x o 2p4+xq6+x + p4q1+2x + p2q3+2x + p6q4+2x
(r—a2?(1+pt9)(1+p*)1-q+q*— ¢ +4q*)

Tables 1 and 2 present the numerical results for approximate solutions of real zeros of T;, ; 4(x).
The numbers of zeros of T;, ; 4(x) are tabulated in Table 1 for a fixed p = % and g = 11—0.

Table 1. Numbers of real and complex zeros of Ty, ;4(x), p = %, q= 11—0.

Degreen Real Zeros Complex Zeros

1 1 0
2 2 0
3 1 2
4 2 2
5 1 4
6 2 4
7 1 6
8 2 6
9 1 8
10 2 8
11 1 10
12 2 10
13 1 12
14 2 12
30 2 28
Table 2. Numerical solutions of Ty, 4(x) = 0,p = 1,9 = %0'
Degree n x
1 0.0147214
2 —-0.0451666, 0.0490316
3 0.0737013
4 -0.0782386, 0.0906197
5 0.102727
6 -0.0935042, 0.111767

The use of computer has made it possible to identify the zeros of the Carlitz-type (p, 7)-tangent
polynomials T}, 4(x). The zeros of the Carlitz-type (p, q)-tangent polynomials T}, 4(x) for x € C are
plotted in Figure 1.

In Figure 1(top-left), we choose n = 10, p = 1/2 and q = 1/10. In Figure 1(top-right), we choose
n = 20,p = 1/2 and ¢ = 1/10. In Figure 1(bottom-left), we choose n = 30,p = 1/2 and
g =1/10. In Figure 1(bottom-right), we choose n = 40,p = 1/2 and q = 1/10. It is amazing
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that the structure of the real roots of the Carlitz-type (p, q)-tangent polynomials Ty, p,4(x) is regular.
Thus, theoretical prediction on the regular structure of the real roots of the Carlitz-type (p, 7)-tangent
polynomials T}, 4(x) is await for further study (Table 1). Next, we have obtained the numerical
solution satisfying Carlitz-type (p, q)-tangent polynomials T, ;4(x) = 0 for x € R. The numerical
solutions are tabulated in Table 2 for a fixed p = % and g = 11—0 and various value of n.

0.2 0.2
(]
° 0® e
0.1 (] ® 0.1 PY ®
o ® ®
(]
Im(x) 0 L L Im(x) 0 @ —
(]
o Y o
-0.1 P L —0.1 o (]
o o oo ®
0.1 0 0.1 0.2 0.1 0 0.1 0.2
Re(x) Re(x)
0.2 l 0.2 L
0®®%0 Ladd 1
0.1 @ ) 0.1 ()
e © e
(]
o o o
Im(y 0 ® ®— Im» o o
e [
(]
® ®
.. o °®
-0.1 (Y [ ] -0.1 ()
®0¢00® °
TO .T..
G 0 0.1 0.2 G 0 0.1 0.2
Re(x) Re(x)

Figure 1. Zeros of Ty, p,q(x).

6. Conclusions and Future Developments

This study constructed the Carlitz-type (p, q)-tangent numbers and polynomials. We have
derived several formulas for the Carlitz-type (h,q)-tangent numbers and polynomials.
Some interesting symmetric identities for Carlitz-type (p, g)-tangent polynomials are also obtained.
Moreover, the results of [18] can be derived from ours as special cases when 4 = 1. By numerical
experiments, we will make a series of the following conjectures:

Conjecture 1. Prove or disprove that Ty, ; 4(x), x € C, has Im(x) = 0 reflection symmetry analytic complex
functions. Furthermore, Ty, p4(x) has Re(x) = a reflection symmetry for a € R.

Many more values of n have been checked. It still remains unknown if the conjecture holds or
fails for any value n (see Figure 1).

Conjecture 2. Prove or disprove that Ty, 4(x) = 0 has n distinct solutions.
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In the notations: RTH,M( x) denotes the number of real zeros of Ty,p,q(x) lying on the real plane

Im(x) =0and Cr, , ,(x) denotes the number of complex zeros of Ty, 4 (x). Since n is the degree of the
polynomial Ty, p4(x), we get R, | () =n—Cr, (4 (see Tables 1 and 2).

Conjecture 3. Prove or disprove that

R )1, ifn= odd,
Tupa®) =) 2, ifn = even.

We expect that investigations along these directions will lead to a new approach employing

numerical method regarding the research of the Carlitz-type (p,q)-tangent polynomials Ty pq(x)
which appear in applied mathematics, and mathematical physics (see [11,18-20]).
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