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Abstract:



The goal of this paper is to define the [image: ]-analogue of tangent numbers and polynomials by generalizing the tangent numbers and polynomials and Carlitz-type q-tangent numbers and polynomials. We get some explicit formulas and properties in conjunction with [image: ]-analogue of tangent numbers and polynomials. We give some new symmetric identities for [image: ]-analogue of tangent polynomials by using [image: ]-tangent zeta function. Finally, we investigate the distribution and symmetry of the zero of [image: ]-analogue of tangent polynomials with numerical methods.
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1. Introduction


The field of the special polynomials such as tangent polynomials, Bernoulli polynomials, Euler polynomials, and Genocchi polynomials is an expanding area in mathematics (see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]). Many generalizations of these polynomials have been studied (see [1,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18]). Srivastava [14] developed some properties and q-extensions of the Euler polynomials, Bernoulli polynomials, and Genocchi polynomials. Choi, Anderson and Srivastava have discussed q-extension of the Riemann zeta function and related functions (see [5,17]). Dattoli, Migliorati and Srivastava derived a generalization of the classical polynomials (see [6]).



It is the purpose of this paper to introduce and investigate a new some generalizations of the Carlitz-type q-tangent numbers and polynomials, q-tangent zeta function, Hurwiz q-tangent zeta function. We call them Carlitz-type [image: ]-tangent numbers and polynomials, [image: ]-tangent zeta function, and Hurwitz [image: ]-tangent zeta function. The structure of the paper is as follows: In Section 2 we define Carlitz-type [image: ]-tangent numbers and polynomials and derive some of their properties involving elementary properties, distribution relation, property of complement, and so on. In Section 3, by using the Carlitz-type [image: ]-tangent numbers and polynomials, [image: ]-tangent zeta function and Hurwitz [image: ]-tangent zeta function are defined. We also contains some connection formulae between the Carlitz-type [image: ]-tangent numbers and polynomials and the [image: ]-tangent zeta function, Hurwitz [image: ]-tangent zeta function. In Section 4 we give several symmetric identities about [image: ]-tangent zeta function and Carlitz-type [image: ]-tangent polynomials and numbers. In the following Section, we investigate the distribution and symmetry of the zero of Carlitz-type [image: ]-tangent polynomials using a computer. Our paper ends with Section 6, where the conclusions and future developments of this work are presented. The following notations will be used throughout this paper.

	
[image: ] denotes the set of natural numbers.



	
[image: ] denotes the set of nonpositive integers.



	
[image: ] denotes the set of real numbers.



	
[image: ] denotes the set of complex numbers.








We remember that the classical tangent numbers [image: ] and tangent polynomials [image: ] are defined by the following generating functions (see [19])


[image: ]



(1)




and


[image: ]



(2)




respectively. Some interesting properties of basic extensions and generalizations of the tangent numbers and polynomials have been worked out in [11,12,18,19,20]. The [image: ]-number is defined as


[image: ]











It is clear that [image: ]-number contains symmetric property, and this number is q-number when [image: ]. In particular, we can see [image: ] with [image: ]. Since [image: ], we observe that [image: ]-numbers and p-numbers are different. In other words, by substituting q by [image: ] in the definition q-number, we cannot have [image: ]-number. Duran, Acikgoz and Araci [7] introduced the [image: ]-analogues of Euler polynomials, Bernoulli polynomials, and Genocchi polynomials. Araci, Duran, Acikgoz and Srivastava developed some properties and relations between the divided differences and [image: ]-derivative operator (see [1]). The [image: ]-analogues of tangent polynomials were described in [20]. By using [image: ]-number, we construct the Carlitz-type [image: ]-tangent polynomials and numbers, which generalized the previously known tangent polynomials and numbers, including the Carlitz-type q-tangent polynomials and numbers. We begin by recalling here the Carlitz-type q-tangent numbers and polynomials (see [18]).



Definition 1.

For any complex x we define the Carlitz-type q-tangent polynomials, [image: ], by the equation


[image: ]



(3)









The numbers [image: ] are called the Carlitz-type q-tangent numbers and are denoted by [image: ]. Based on this idea, we generalize the Carlitz-type q-tangent number [image: ] and q-tangent polynomials [image: ]. It follows that we define the following [image: ]-analogues of the the Carlitz-type q-tangent number [image: ] and q-tangent polynomials [image: ]. In the next section we define the [image: ]-analogue of tangent numbers and polynomials. After that we will obtain some their properties.




2. [image: ]-Analogue of Tangent Numbers and Polynomials


Firstly, we construct [image: ]-analogue of tangent numbers and polynomials and derive some of their relevant properties.



Definition 2.

For [image: ], the Carlitz-type [image: ]-tangent numbers [image: ] and polynomials [image: ] are defined by means of the generating functions


[image: ]



(4)




and


[image: ]



(5)




respectively.





Setting [image: ] in (4) and (5), we can obtain the corresponding definitions for the Carlitz-type q-tangent numbers [image: ] and q-tangent polynomials [image: ] respectively. Obviously, if we put [image: ], then we have


[image: ]











Putting [image: ], we have


[image: ]











Theorem 1.

For [image: ], one has


[image: ]



(6)









Proof. 

By (4), we have


[image: ]








Equating the coefficients of [image: ], we arrive at the desired result (6). ☐





If we put [image: ] in Theorem 1, we obtain (cf. [18])


[image: ]











Next, we construct the Carlitz-type [image: ]-tangent polynomials [image: ]. Define the Carlitz-type [image: ]-tangent polynomials [image: ] by


[image: ]



(7)







Theorem 2.

For [image: ], one has


[image: ]













Proof. 

By (5), we obtain


[image: ]



(8)




Again, by using (5) and (8), we obtain


[image: ]



(9)




Since [image: ], we have


[image: ]



(10)




By using (9) and (10), [image: ]-number, and the power series expansion of [image: ], we give Theorem 2. ☐





Furthermore, by (7) and Theorem 2, we have


[image: ]










[image: ]











From (4) and (5), we can derive the following properties of the Carlitz-type tangent numbers [image: ] and polynomials [image: ]. So, we choose to omit the details involved.



Proposition 1.

For any positive integer n, one has

	(1)

	
[image: ].




	(2)

	
[image: ].











Theorem 3.

For [image: ], one has


[image: ]













Theorem 4.

If n is a positive integer, then we have


[image: ]













Proof. 

By (4) and (5), we get


[image: ]



(11)




Hence, by (4), (5) and (11), we have


[image: ]








Equating coefficients of [image: ] gives Theorem 4. ☐






3. [image: ]-Analogue of Tangent Zeta Function


Using Carlitz-type [image: ]-tangent numbers and polynomials, we define the [image: ]-tangent zeta function and Hurwitz [image: ]-tangent zeta function. These functions have the values of the Carlitz-type [image: ]-tangent numbers [image: ], and polynomials [image: ] at negative integers, respectively. From (4), we note that


[image: ]











From the above equation, we construct new [image: ]-tangent zeta function as follows:

Definition 3.

We define the [image: ]-tangent zeta function for [image: ] with Re[image: ] by


[image: ]



(12)











Notice that [image: ] is a meromorphic function on [image: ](cf.7). Remark that, if [image: ], then [image: ] which is the tangent zeta function (see [19]). The relationship between the [image: ] and the [image: ] is given explicitly by the following theorem.



Theorem 5.

Let [image: ]. We have


[image: ]













Please note that [image: ] function interpolates [image: ] numbers at non-negative integers. Similarly, by using Equation (5), we get


[image: ]



(13)




and


[image: ]



(14)




Furthermore, by (13) and (14), we are ready to construct the Hurwitz [image: ]-tangent zeta function.



Definition 4.

For [image: ] with Re[image: ] and [image: ], we define


[image: ]



(15)









Obverse that the function [image: ] is a meromorphic function on [image: ]. We note that, if [image: ] and [image: ], then [image: ] which is the Hurwitz tangent zeta function (see [19]). The function [image: ] interpolates the numbers [image: ] at non-negative integers. Substituting [image: ] with [image: ] into (15), and using Theorem 2, we easily arrive at the following theorem.



Theorem 6.

Let [image: ]. One has


[image: ]














4. Some Symmetric Properties About [image: ]-Analogue of Tangent Zeta Function


Our main objective in this section is to obtain some symmetric properties about [image: ]-tangent zeta function. In particular, some of these symmetric identities are also related to the Carlitz-type [image: ]-tangent polynomials and the alternate power sums. To end this section, we focus on some symmetric identities containing the Carlitz-type [image: ]-tangent zeta function and the alternate power sums.



Theorem 7.

Let [image: ] and [image: ] be positive odd integers. Then we have


[image: ]













Proof. 

For any [image: ], we observe that [image: ]. By substituting [image: ] for x in Definition 4, replace p by [image: ] and replace q by [image: ], respectively, we derive


[image: ]








Since for any non-negative integer m and positive odd integer [image: ], there exist unique non-negative integer r such that [image: ] with [image: ]. Thus, this can be written as


[image: ]








It follows from the above equation that


[image: ]



(16)




From the similar method, we can have that


[image: ]








After some calculations in the above, we have


[image: ]



(17)




Thus, from (16) and (17), we obtain the result. ☐





Corollary 1.

For [image: ] with Re[image: ], we have


[image: ]













Proof. 

Let [image: ] in Theorem 7. Then we immediately get the result. ☐





Next, we also derive some symmetric identities for Carlitz-type [image: ]-tangent polynomials by using [image: ]-tangent zeta function.



Theorem 8.

Let [image: ] and [image: ] be any positive odd integers. The following multiplication formula holds true for the Carlitz-type [image: ]-tangent polynomials:


[image: ]













Proof. 

By substituting [image: ] for [image: ] in Theorem 7, and using Theorem 6, we can find that


[image: ]



(18)




and


[image: ]



(19)




Thus, by (18) and (19), this concludes our proof. ☐





Considering [image: ] in the Theorem 8, we obtain as below equation.


[image: ]











Furthermore, by applying the addition theorem for the Carlitz-type [image: ]-tangent polynomials [image: ], we can obtain the following theorem.



Theorem 9.

Let [image: ] and [image: ] be any positive odd integers. Then one has


[image: ]













Proof. 

From Theorem 8, we have


[image: ]








Therefore, we obtain that


[image: ]



(20)




and


[image: ]



(21)




where [image: ] is called as the alternate power sums. Thus, the theorem can be established by (20) and (21). ☐






5. Zeros of the Carlitz-Type [image: ]-Tangent Polynomials


The purpose of this section is to support theoretical predictions using numerical experiments and to discover new exciting patterns for zeros of the Carlitz-type [image: ]-tangent polynomials [image: ]. We propose some conjectures by numerical experiments. The first values of the [image: ] are given by


[image: ]











Table 1 and Table 2 present the numerical results for approximate solutions of real zeros of [image: ]. The numbers of zeros of [image: ] are tabulated in Table 1 for a fixed [image: ] and [image: ].


Table 1. Numbers of real and complex zeros of [image: ].





	Degree n
	Real Zeros
	Complex Zeros





	1
	1
	0



	2
	2
	0



	3
	1
	2



	4
	2
	2



	5
	1
	4



	6
	2
	4



	7
	1
	6



	8
	2
	6



	9
	1
	8



	10
	2
	8



	11
	1
	10



	12
	2
	10



	13
	1
	12



	14
	2
	12



	⋮
	⋮
	⋮



	30
	2
	28








Table 2. Numerical solutions of [image: ].





	Degree n
	x





	1
	0.0147214



	2
	–0.0451666,    0.0490316



	3
	0.0737013



	4
	–0.0782386,    0.0906197



	5
	0.102727



	6
	–0.0935042,    0.111767









The use of computer has made it possible to identify the zeros of the Carlitz-type [image: ]-tangent polynomials [image: ]. The zeros of the Carlitz-type [image: ]-tangent polynomials [image: ] for [image: ] are plotted in Figure 1.


Figure 1. Zeros of [image: ].



[image: Symmetry 10 00395 g001]






In Figure 1(top-left), we choose [image: ] and [image: ]. In Figure 1(top-right), we choose [image: ] and [image: ]. In Figure 1(bottom-left), we choose [image: ] and [image: ]. In Figure 1(bottom-right), we choose [image: ] and [image: ]. It is amazing that the structure of the real roots of the Carlitz-type [image: ]-tangent polynomials [image: ] is regular. Thus, theoretical prediction on the regular structure of the real roots of the Carlitz-type [image: ]-tangent polynomials [image: ] is await for further study (Table 1). Next, we have obtained the numerical solution satisfying Carlitz-type [image: ]-tangent polynomials [image: ] for [image: ]. The numerical solutions are tabulated in Table 2 for a fixed [image: ] and [image: ] and various value of n.




6. Conclusions and Future Developments


This study constructed the Carlitz-type [image: ]-tangent numbers and polynomials. We have derived several formulas for the Carlitz-type [image: ]-tangent numbers and polynomials. Some interesting symmetric identities for Carlitz-type [image: ]-tangent polynomials are also obtained. Moreover, the results of [18] can be derived from ours as special cases when [image: ]. By numerical experiments, we will make a series of the following conjectures:



Conjecture 1.

Prove or disprove that [image: ] has [image: ] reflection symmetry analytic complex functions. Furthermore, [image: ] has [image: ] reflection symmetry for [image: ].





Many more values of n have been checked. It still remains unknown if the conjecture holds or fails for any value n (see Figure 1).



Conjecture 2.

Prove or disprove that [image: ] has n distinct solutions.





In the notations: [image: ] denotes the number of real zeros of [image: ] lying on the real plane [image: ] and [image: ] denotes the number of complex zeros of [image: ]. Since n is the degree of the polynomial [image: ], we get [image: ] (see Table 1 and Table 2).



Conjecture 3.

Prove or disprove that


[image: ]













We expect that investigations along these directions will lead to a new approach employing numerical method regarding the research of the Carlitz-type [image: ]-tangent polynomials [image: ] which appear in applied mathematics, and mathematical physics (see [11,18,19,20]).
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