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Abstract: It has long been claimed that the mitochondrial genetic code possesses more symmetries
than the Standard Genetic Code (SGC). To test this claim, the symmetrical structure of the SGC is
compared with noncanonical genetic codes. We analyzed the symmetries of the graphs of codons
and their respective phenotypic graph representation spanned by the RNY (R purines, Y pyrimidines,
and N any of them) code, two RNA Extended codes, the SGC, as well as three different mitochondrial
genetic codes from yeast, invertebrates, and vertebrates. The symmetry groups of the SGC and
their corresponding phenotypic graphs of amino acids expose the evolvability of the SGC. Indeed,
the analyzed mitochondrial genetic codes are more symmetrical than the SGC.

Keywords: standard genetic code; mitochondrial codes; phenotypic graphs; graph theory; group
theory; evolution

1. Introduction

The discovery of the structure of DNA [1] and the decipherment of the Standard Genetic Code
(SGC) [2,3] are landmarks of scientific achievements. The elucidation of the origin and evolution
of the SGC is a central problem in evolutionary biology. The SGC is nearly universal, with some
minor exceptions. Crick proposed the frozen accident hypothesis to account for the universality of
the SGC [4]. The universality of the SGC immediately implied a Last Universal Common Ancestor
(LUCA). Therefore, evolution has to do with preserving or fixing some necessary properties of life.
Given the astonishing diversity of life in the history of the biosphere, the fact that the SGC is frozen
indicates that all organisms are phylogenetically related.

Attempts at thawing the origin and evolution of the frozen SGC have been numerous.
Symmetries in the SGC have been analyzed by examining the transfer RNA (tRNA) [5,6],
the aminoacyl-tRNA-synthetases (aaRSs) [7–10], and mathematical models searching hidden
symmetries [11,12]. The hypercube algebraic representation has allowed the analysis of the evolution
of the SGC and a variety of its biological properties. The SGC, as derived from the primeval genetic
code [5], and the Rodin–Ohno model [9] are one and the same, that is, these seemingly different models
of the genetic code are mathematically equivalent [13]. Hence, the 6D algebraic model unifies different
models of the genetic code [13].

The genetic code is a dictionary composed of words three letters long, known as codons
or triplets, each letter a nucleotide base. There are four basic nucleotides in the DNA, to wit,
adenine (A), cytosine (C), guanine (G), and thymine (T). During the translation process of the DNA,
thymine nucleotides are replaced by uracil (U) in the RNA. This constitutes a set of 64 possible codons,
which codify for 20 canonical amino acids and a stop signal. The genetic code is degenerated, as more
than one codon can codify for a given amino acid. This degeneracy property usually occurs in the
third base of a codon and is known as the wobble property [14–16].
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The nucleotide bases can be divided according to their chemical properties into: strong S = {G, S}
and weak W = {U, A}; amino nucleotides M = {C, A}, keto nucleotides K = {U, G}, and nucleotide bases
of the same chemical kind: pyrimidines Y= {C, U} and purines R = {A, G} [17].

Diverse genetic codes occur in a cell, for example, the SGC, the genetic code of mitochondria, the
genetic code of chloroplasts, the anticodon code of tRNAs, ribosomal codes.

The mitochondrion is the major energy provider of the Eukaryotic cell [18]. Mitochondria
produces ATP by oxidizing the major products of glucose: pyruvate, and NADH [18]. This type
of cellular respiration known as aerobic respiration, is dependent on the presence of oxygen.
When oxygen is scarce, the glycolytic products will be metabolized by anaerobic fermentation, a process
that is independent of the mitochondria [18]. Mitochondria also contribute to many physiological
processes, such as calcium homeostasis, apoptosis, lipid and amino acid metabolism [19–21].

The different genetic codes that have been encountered so far (e.g., mitochondrial, Euplotes,
some ciliate protozoans, Tetrahymena) are considered to have evolved from the SGC [22]. Most of
the noncanonical codes arise from alterations in the transfer RNA (tRNA) by post-transcriptional
modifications, such as base modification or RNA editing, rather than by substitutions within tRNA
anticodons. Typically, variations occur in the unicoded amino acids (Met and Trp) and in the stop
codons UAG (amber), UGA (opal), and UAA (ochre). However, the freezing of the code is supported by
the fact that the 20 natural amino acids have been stringently selected over the course of the evolution
(with the notable exception of selenocysteine and pyrrolysine [23]). Then, the SGC can evolve but at a
glacial rate.

To examine the symmetries of the SGC, it is necessary to unleash it from the traditional 2D
representation of the Table of the Genetic Code [4].

The SGC exhibits an exact symmetry under a Galois Field of 4 elements, also known as the Klein
Four-Group (an Abelian (commutative) group of order 4 where each element is its own inverse) [24].
The Klein Four-Group emerges from the primeval RNY code that evolved until the formation of
the SGC. This symmetry has been selected since the origin and during the evolution of the genetic
code. The SGC has been derived by assuming a primeval genetic code, RNY [25]. This primeval
RNY code was composed of 16 codons that codify for 8 amino acids (slight degeneration) and was
proposed by Eigen 40 years ago [25]. Two evolutionary paths have been established to reach the SGC
from the RNY code [17,26]. These paths consist in permitting frame-shift reading-mistranslations or
transversions in the first and third base of the codons. The SGC has been modeled as a six-dimensional
(6D) binary hypercube (Z2)

6, where Z2 = {0, 1} is the binary field of 2 elements, also known as GF(2)
the Galois Field of 2 elements. The binary hypercube is a 26—Klein Group [27]. In the 6D hypercube,
the vertices are indexed by the codons [13,26]. The hypercube of codons has been further transformed
into its phenotypic graph representation [13,28–30], where the new vertices are the amino acids and
the stop signal.

One goal of the present work is to determine if these symmetries were selected since the origin of
the primeval code and preserved during its evolution until the formation of the SGC. In this work,
the hypothesis that the symmetry groups must allow us to predict the possible symmetry breaking
groups to determine the evolvability of the SGC is put forward. To this end, we examine how the
SGC has led to new genetic codes by determining their symmetries. We analyze the symmetries of
the graphs of codons and their respective phenotypic graph representation spanned by the RNY code,
the two RNA Extended codes, and the complete code of 64 codons that comprises the SGC, as well
as three different mitochondrial genetic codes from yeast, invertebrates, and vertebrates. In general,
the SGC has evolved into more symmetrical mitochondrial codes.

2. Material and Methods

The four nucleotides of the RNA alphabet, A, U, C, and G, can be arranged in three different ways
as the vertices of a square that are not symmetrically equivalent, and in one extra way considering the
two diagonals of the square (Figure 1).
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Figure 1. Four possible arrangements of the four nucleotides as the vertices of a square that are not 
symmetrically equivalent. 

The arrangement in a square has been shown to yield a 6D hypercube when considering the 64 
possible triplets [13,26]. The genetic code is then represented as a 6D hypercube, which can be 
interpreted as a graph of vertices, representing the codons, and edges, joining the codons at 
distance one, making it possible to analyse its symmetries through the group of automorphisms of 
the graph [13]. This group consists of all the bijective functions of the graph G, that preserve its 
adjacencies. These automorphisms comprise all the isometric transformations of the cube. The 6D 
hypercube arises when the triplets are used as vertices of a graph. Two vertices, or triplets, will be 
joined by an edge if they differ by one letter, and the different letters are joined in the given 
nucleotide neighborhood type. The resulting graph is isomorphic to a 6D hypercube [13,26]. This 
high-dimensional cubic graph of the 64 triplets is a natural extension of the nucleotides arranged in 
a square. A codon graph is a graph in which the vertices represent codons and are joined according 
to a nucleotide neighborhood type. Codon graphs can be constructed for any subset of the 64 
possible triplets. The RNY code has been modeled as a 4D hypercube [26,29,30]. Two genetic codes 
from which the primeval RNA code [25] could have originated the SGC have been derived [26]. 
Given the RNY code, the necessary transformations that are needed to obtain the SGC are simple 
algebraic operations: rotations (for the Extended RNA code type I) and translations (for the 
Extended RNA code type II) in the vector space GF(4) in 3 dimensions [26]. 

The Extended RNA code type I consists of RNY, NYR and YRN codons. The extended RNA 
code type II comprises all codons of the type RNY, YNY and RNR [26]. Then, by performing frame-
reading mistranslations (Extended code I), 48 codons that specify 17 amino acids and the three stop 
codons are obtained. If transversions in the 1st or 3rd nucleotide bases of the RNY pattern are 
permitted, then there are also 48 codons that encode for 18 amino acids without stop codons 
(Extended code II). The codons in each of the subsets of both Extended RNA codes were 
represented by 4D symmetrical hypercubes [26], whose union comprised precisely the already-
known 6D hypercube of the SGC of 64 triplets [31]. Evolutionary analysis of SGC based upon 3D 
algebraic models, dubbed Genetic Hotels, leads more clearly to the same conclusions [32]. The 
composition of both evolutionary paths yields to the complete set of 64 codons of the SGC. 
Mitochondrial codes present variations principally in the codons for the stop signals and unicoded 
amino acids. The mitochondrial genetic codes of yeast, invertebrates, and vertebrates are shown in 
Table 1. They were downloaded from: 
https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?chapter=tgencodes#SG24 (accessed on 
July 31 2018). 

Figure 1. Four possible arrangements of the four nucleotides as the vertices of a square that are not
symmetrically equivalent.

The arrangement in a square has been shown to yield a 6D hypercube when considering the
64 possible triplets [13,26]. The genetic code is then represented as a 6D hypercube, which can
be interpreted as a graph of vertices, representing the codons, and edges, joining the codons at
distance one, making it possible to analyse its symmetries through the group of automorphisms of the
graph [13]. This group consists of all the bijective functions of the graph G, that preserve its adjacencies.
These automorphisms comprise all the isometric transformations of the cube. The 6D hypercube arises
when the triplets are used as vertices of a graph. Two vertices, or triplets, will be joined by an edge
if they differ by one letter, and the different letters are joined in the given nucleotide neighborhood
type. The resulting graph is isomorphic to a 6D hypercube [13,26]. This high-dimensional cubic graph
of the 64 triplets is a natural extension of the nucleotides arranged in a square. A codon graph is
a graph in which the vertices represent codons and are joined according to a nucleotide neighborhood
type. Codon graphs can be constructed for any subset of the 64 possible triplets. The RNY code
has been modeled as a 4D hypercube [26,29,30]. Two genetic codes from which the primeval RNA
code [25] could have originated the SGC have been derived [26]. Given the RNY code, the necessary
transformations that are needed to obtain the SGC are simple algebraic operations: rotations (for the
Extended RNA code type I) and translations (for the Extended RNA code type II) in the vector space
GF(4) in 3 dimensions [26].

The Extended RNA code type I consists of RNY, NYR and YRN codons. The extended RNA code
type II comprises all codons of the type RNY, YNY and RNR [26]. Then, by performing frame-reading
mistranslations (Extended code I), 48 codons that specify 17 amino acids and the three stop codons
are obtained. If transversions in the 1st or 3rd nucleotide bases of the RNY pattern are permitted,
then there are also 48 codons that encode for 18 amino acids without stop codons (Extended code II).
The codons in each of the subsets of both Extended RNA codes were represented by 4D symmetrical
hypercubes [26], whose union comprised precisely the already-known 6D hypercube of the SGC of
64 triplets [31]. Evolutionary analysis of SGC based upon 3D algebraic models, dubbed Genetic Hotels,
leads more clearly to the same conclusions [32]. The composition of both evolutionary paths yields to the
complete set of 64 codons of the SGC. Mitochondrial codes present variations principally in the codons
for the stop signals and unicoded amino acids. The mitochondrial genetic codes of yeast, invertebrates,
and vertebrates are shown in Table 1. They were downloaded from: https://www.ncbi.nlm.nih.gov/
Taxonomy/Utils/wprintgc.cgi?chapter=tgencodes#SG24 (accessed on July 31 2018).

Note that in the mitochondrial genetic codes (Table 1) every amino acid has a set of coding
triplets with an even number of elements. Note that Ile is tricodonic in SGC but it is dicodonic in all
mitochondrial codes; Leu is tetracodonic in all codes except in yeast’s mitochondria, which is dicodonic;
Trp is unicoded only in SGC whilst it is tricodonic in all mitochondrial codes. Met is unicoded in
SGC, but it is dicodonic in all mitochondrial codes. Ser is hexacodonic in SGC, vertebrate, and yeast
mitochondria, but octacodonic in invertebrate mitochondria. The stop codons are tricodonic in SGC,
tetracodonic in vertebrate mitochondria, and dicodonic in invertebrate and yeast mitochondria.

https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?chapter=tgencodes#SG24
https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?chapter=tgencodes#SG24
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Table 1. SGC and mitochondrial codes.

Amino
Acid

Standard Genetic
Code

Vertebrate
Mitochondrial Code

Invertebrate
Mitochondrial Code

Yeast Mitochondrial
Code

Ala GCA GCC GCA GCC GCA GCC GCA GCC
GCG GCU GCG GCU GCG GCU GCG GCU

Arg CGA CGC CGA CGC CGA CGC CGA CGC
CGG CGU CGG CGU CGG CGU CGG CGU
AGA AGG AGA AGG

Asn AAC AAU AAC AAU AAC AAU AAC AAU
Asp GAC GAU GAC GAU GAC GAU GAC GAU
Cys UGC UGU UGC UGU UGC UGU UGC UGU
Gln CAA CAG CAA CAG CAA CAG CAA CAG
Glu GAA GAG GAA GAG GAA GAG GAA GAG
Gly GGA GGC GGA GGC GGA GGC GGA GGC

GGG GGU GGG GGU GGG GGU GGG GGU
His CAC CAU CAC CAU CAC CAU CAC CAU
Ile AUA AUC AUC AUU AUC AUU AUC AUU

AUU
Leu UUA UUG UUA UUG UUA UUG UUA UUG

CUA CUC CUA CUC CUA CUC
CUG CUU CUG CUU CUG CUU

Lys AAA AAG AAA AAG AAA AAG AAA AAG
Met AUG AUG AUA AUG AUA AUG AUA
Phe UUC UUU UUC UUU UUC UUU UUC UUU
Pro CCA CCC CCA CCC CCA CCC CCA CCC

CCG CCU CCG CCU CCG CCU CCG CCU
Ser UCA UCC UCA UCC UCA UCC UCA UCC

UCG UCU UCG UCU UCG UCU UCG UCU
AGC AGU AGC AGU AGC AGU AGC AGU

AGA AGG
Stop UAA UAG UAA UAG UAA UAG UAA UAG

UGA AGA AGG
Thr ACA ACC ACA ACC ACA ACC ACA ACC

ACG ACU ACG ACU ACG ACU ACG ACU
CUA CUC
CUG CUU

Trp UGG UGG UGA UGG UGA UGG UGA
Tyr UAC UAU UAC UAU UAC UAU UAC UAU
Val GUA GUC GUA GUC GUA GUC GUA GUC

GUG GUU GUG GUU GUG GUU GUG GUU

Genetic codes induce a natural partition of the codons and determine an equivalence relation.
In this equivalence relation, two codons are considered equivalent if they codify for the same amino
acid or stop signal. A graph and an equivalence relation can be combined to construct a quotient
graph [33]. The set of vertices of the quotient graph are the equivalent classes, and two vertices of
the quotient graph are joined if there are elements of the equivalence classes that are joined in the
original graph. The quotient graph derived from the codon graphs and a genetic code are known as
phenotypic graphs [27–30]. The phenotypic graph represents the phenotypic expression of the codon
hypercube; the vertices represent the 20 amino acids and the stop signal [22].

The symmetries of the codon graphs of the RNY code, the extended codes, and the complete codes
are analyzed for the four neighborhood types of the nucleotides. A description of the codon graphs is
provided (Table 2). Labeling the vertices by the codons, the symmetries are analyzed by determining
the automorphisms that keep invariant all the sets of equivalence classes for each of the genetic codes.
The phenotypic graphs are constructed for the four genetic codes, in each of the evolutionary steps for
the SGC and for the complete code for the mitochondrial codes. Loops in the phenotypic graphs are
considered if there is a pair of elements in an equivalence class that are adjacent in the codon graph.
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The automorphisms group of the phenotypic graphs is determined for the four genetic codes in the
four neighborhood types of nucleotides.

Table 2. Graphs isomorphic to the codon graphs for the 4 nucleotide neighborhoods at different
evolutionary stages. C4 and C6 are cyclic graphs of 4 and 6 vertices, respectively; K4 is the complete
graph with 4 vertices; Q3 is a hypercube of 3 dimensions; P3 is the graph path of 3 vertices.

Codons Neighborhood 1 Neighborhood 2 Neighborhood 3 Neighborhood 4

RNY code C4 U C4 U C4 U C4 Q4 Q4 K4 � C4

Extended code 1 Supplementary Materials I C6 � Q3 C6 � Q3 Supplementary Materials I

Extended code 2 Supplementary Materials I Q4 � P3 Q4 � P3 Supplementary Materials I

Complete Code Q6 Q6 Q6 K4 � K4� K4

3. Results

The codon graphs constructed for the RNY for the four nucleotide neighborhood types result in
three different graphs (Figure 2).
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When considering the codon graphs with the vertices unlabeled, the neighborhood type 1 yields a
graph composed by four disjoint squares; the neighborhood types 2 and 3 result in a graph isomorphic
to a 4D hypercube; the neighborhood type 4 produces a 4D hypercube with four marked diagonals,
where this graph is isomorphic to the graph resulting from the Cartesian product [34], denoted by �
of the graphs K4 and C4, where Kn is the complete graph of n vertices and Cn is the cyclic graph of n
vertices (Table 2).

For the Extended code 1, the codon graph resulting from the neighborhoods type 2 and type 3 is
isomorphic to the Cartesian product of the graphs C6 and Q3 where Qn is the hypercube of dimension n
(Table 2). The adjacency matrices for the codon graphs of the Extended code 1 based on the nucleotide
neighborhoods type 1 and type 4 are provided in Supplementary Materials I. For the Extended code 2,
the codon graph from the nucleotide neighborhoods type 2 and type 3 are isomorphic to the Cartesian
product of the graphs Q4 and P3 where Pn is the path graph of n vertices (Table 2). The adjacency
matrices for the codon graphs of the Extended code 2 based on the nucleotide neighborhoods type 1
and type 4 are provided in Supplementary I.

With the vertices of the codon graphs labeled with the corresponding set of codons, these labeled
codon graphs are analyzed for the four genetic codes. As these genetic codes are different,
the automorphisms group that keeps invariant all the equivalent classes for each genetic code is
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also different. The RNY code is the same in the SGC and the three mitochondrial codes analyzed.
The corresponding automorphisms group for the four nucleotide neighborhood types are Z2 ×Z2 for
the neighborhood type 1, and Z2 for the rest of the nucleotide neighborhood types (Table 3).

Table 3. Automorphism groups for the SGC and mitochondrial codes for the 4 types of nucleotide
neighborhoods that preserve the codon sets of all the amino acids. Z2 is the binary field of 2 elements
and Z2 ×Z2 = {00,01,10,11}.

Genetic Code Codons Neighborhood 1 Neighborhood 2 Neighborhood 3 Neighborhood 4

Standard Genetic
Code

RNY code Z2 ×Z2 Z2 Z2 Z2

Extended code 1 Z2 E E Z2

Extended code 2 Z2 ×Z2 E E Z2

Complete Code Z2 E E Z2

Mitochondrial Codes Complete Code Z2 ×Z2 Z2 Z2 Z2 ×Z2

For the Extended codes in the SGC, the nucleotide neighborhoods type 2 and type 3 possess
no symmetries, as the automorphisms group is the trivial one. For the neighborhood type 1,
the automorphisms groups for the Extended codes 1 and 2 are Z2 and Z2 × Z2, respectively.
Considering the nucleotide neighborhood type 4, the automorphisms groups for both extended
codes are Z2 (Table 3). The three mitochondrial codes exhibit the same automorphisms groups in the
codon graphs for the Extended codes (Table 3). For the complete code, the codon graph for the SGC
only possesses a symmetry given by the group Z2 in the nucleotide neighborhoods type 1 and type 4.
In the three mitochondrial codes, the codon graphs for the complete code present as automorphisms
group, the group Z2 × Z2 for the neighborhoods type 1 and type 4; the group Z2 is the symmetry
group for the neighborhoods type 2 and type 3 (Table 3). The codon graphs for the three mitochondrial
codes not only share the same amino-acid-preserving symmetries, but the elements of these groups
are the same. This result shows that the codons that the three mitochondrial codes have in common,
which are different from the SGC, are the source of symmetry. Specifically, the swap of the codon AUA
from Ile to Met increases the symmetries of the mitochondrial codes. This codon is neighbor to the Met
codon AUG in the nucleotide neighborhood types 2, 3, and 4. The codons AUA and AUG are present
in both Extended codes, hence, the codon graphs for mitochondrial codes are more symmetric than the
SGC. A detailed description of the automorphisms groups in permutation representation is provided
in Supplementary II.

The phenotypic graphs were constructed for all the nucleotide neighborhood types, at the four
evolutionary stages and for the four genetic codes analyzed. The phenotypic graphs for the RNY code
present nontrivial automorphisms groups. For the nucleotide neighborhood type 1, the automorphisms
group is given by D4 × D4 × S2 where Dn is the dihedral group of a regular n-gon and Sn is
defined as the symmetric group of n elements; for the rest of the nucleotide neighborhood types,
the automorphisms group is the octahedral group Oh.

For the rest of the evolutionary stages and genetic codes, only the phenotypic graph of the
complete code for the invertebrate mitochondrial code, based on the nucleotide neighborhood type
3, has as automorphisms group, the group Z2, whereas the rest of the phenotypic graphs hold no
symmetries. The reflection on the phenotypic graph for the complete invertebrate mitochondrial
code on the nucleotide neighborhood type 3 is given by the permutation that interchanges the amino
acids of Ile and Met. Note that the codons of these two amino acids generate the symmetries of the
codon graphs for the mitochondrial codes. Phenotypic graphs for the SGC for the four nucleotide
neighborhood types are shown in Figure 3
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4. Discussion

In this work, we analyzed the symmetric structure of different genetic codes with graph theory.
With codon graphs and phenotypic graphs, we analyzed both sides of a genetic code, the genotype
and its phenotype. Our method is a novel approach to analyse any genetic code, even synthetic ones.

The codon graphs allow us to analyze the structure and evolution of the genetic code through its
evolutionary stages. Each nucleotide neighborhood type spans a different graph in each evolutionary
step of a genetic code, both for codons and amino acids. The automorphisms group of the codon
graphs that keep invariant the sets of codons for all the amino acids reflects the symmetric assignation
of the codons to the phenotype. The degeneracy of the genetic code, given by the wobble property,
coupled with the codonicity of each amino acid, produce the symmetric assignations of codons
to amino acids. The symmetries of the phenotypic graphs, given by their automorphisms group,
determine codon swaps that maintain the distribution of amino acids in a genetic code. These codon
swaps are codon reassignations that interchange the codification of whole sets of codons for given
amino acids. The reassignation of the codon AUA to Met in the analyzed mitochondrial codes emerges
as the source of the symmetry of the mitochondrial codes. The stop codons of vertebrate mitochondria
are different from the stop codons in invertebrate and yeast mitochondria. Yet these differences do
not explain the increase of symmetry in mitochondrial codes. We remark that despite differences
among mitochondrial codes, they display the same type of symmetry. Despite that mitochondrial
codes are different among them and different from the SGC, they display at least the symmetries
observed in the SGC. Even more, they show a more symmetrical structure than the SGC and at
the same time they conserve the basic symmetrical structure of the SGC. Indeed, we proved that
mitochondrial codes are more symmetrical than the SGC. Then, the Four-Klein group can be found
in all codes, and interestingly, we also found the Z2 ×Z2 group in the mitochondrial codes analyzed,
notwithstanding the differences among them. We point out that the origin of the increase in symmetry
is due to changes in the unicoded amino acids but not in the stop codons or in the octacodonic amino
acids. Our work does not allow us to discern if the mitochondrial code is the result of evolutionary
progress or because of retrogression. What we can safely say is that changes in the mitochondrial code
are restricted to certain codons and not all changes seem to be allowed.

Evolving codes tend to freeze into structures like that of the standard code and having similar
levels of robustness. Departures involve only a few codons, so that the structure of the code
has remained almost frozen at least since the time of LUCA of all modern (cellular) life forms.
These changes were adaptations that kept anticodon sequences fixed to have a universal code and
facilitated the diversification of living organisms. This universality of the genetic code and the manifest
non-randomness are inherent features of the evolving codes. The life forms that probably obeyed
the Extended RNA code types I and II were progenotes intermediate between the ribo-organisms of
the RNA World and LUCA. They pertained to the Ribonucleoprotein World. Therefore, genomes are
systems that are constantly under a critical state and they may show universal properties of scale
invariance [35].
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The 6D hypercube has been used to analyze different biological properties of the SGC. Woese’s [36]
polar requirement property broadly distinguishes the amino acids into four categories. The polar
requirement is a physico-chemical property of the amino acids and is directly associated to the
organization of the SGC [37]. Polar requirement is related to the division of amino acids in
a polar–nonpolar interface [38]. The relation between the assignations in the SGC and the polar
requirements is reflected in the symmetrical pattern that arises when the polar requirement categories
are used to color the codon graphs of the SGC [13]. Genetic codes are implemented via tRNA molecules
and their anticodons. These molecules bind the codons in mRNA to their corresponding anticodons,
then link the appropriate amino acids as determined by the mRNA. There are 20 different tRNAs,
one for each amino acid. A tRNA is charged with its corresponding amino acid with the action of the
aaRSs. The aaRSs are divided into two families, class I and class II, according to the groove of tRNA
with which they interact, minor groove or major groove. The Rodin–Ohno model of the genetic codes
divides the codon table into two categories by which class of aaRSs is responsible to charge the amino
acid associated with each codon [39,40]. The division of the SGC table by the two classes of aaRSs was
argued as “almost symmetrical” [40], although, this symmetrical partition of the SGC was shown with
the codon graphs of the SGC [13].

Given the set of 64 codons that codify for 20 canonical amino acids and a stop signal, there are
2164 ≈ 4 × 1084 possible genetic codes. This calculation does not assume the evolution and degeneracy
of the SGC. Coupling codon graphs of the SGC with different biological properties have allowed the
analysis of several biological properties that uniquely determine the current SGC [29].

The robustness and optimality of the SGC have been widely analyzed [30,41–43] and found
suboptimal according to its error correction properties. Phenotypic graphs of random codes that
maintain specific properties of the SGC have been analyzed for their connectivity properties. It was
shown that despite the current SGC being suboptimal (regarding error tolerance, for example), it is
optimal if its evolutionary history is considered [30]. For the SGC to reach its optimal state of error
tolerance, it would require codon swaps that are evolutionarily incompatible as these paths fix the
SGC in each stage.

Other nucleotide models represent them by using a bijection from the nucleotides to the elements
of the Galois field of four elements GF(4) [17,27,32]. With this bijection, an algebraic structure is given
to the nucleotides. Representing the field GF(4) with the integer numbers from one to four, it is possible
to represent the nucleotides in the real line R and the codons in the space R3. There are 24 possible
assignations of the elements of the GF(4) to the set {1,2,3,4} [17]. These representations of the genetic
code have been widely studied for their biological and mathematical properties [17,27,32]. Phenotypic
graphs of these 3D representations have been constructed to analyze the SGC and compare it with the
human tRNA code and the standard tRNA code for its centrality measures, and the role of the stop
codons and different degeneracy patterns have been described [27]. Representations of the primeval
RNY code have been constructed based on the bijection to the GF(4) and their phenotypic graphs
have been derived and analyzed for their symmetries based on polar requirement [28]. Recall that
phenotypic graphs can be constructed from any graph representation of the 64 codons, or any subset
of it. The graph representation of the nucleotides in a square generalizes the bijection to the GF(4) and
allows using group actions that represent the biological mutations, transitions and transversions, to
represent the symmetries of the genetic code [13].

The two evolutionary paths arise from transformations of the primeval RNY code based on
mistranslations on the early translation mechanisms and mutations on this small set of codons [26].
Geometrically, these extended codes arise from symmetry breakings and translations of an RNY
four-dimensional hypercube [26,32]. The composition of both evolutionary paths completes the set of
64 codons of a genetic code.

The codon graphs constitute a useful approach to analyze the evolvability of the genetic
code. All in all, the codon graphs and their derived phenotypic graphs constitute a mathematical
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framework to theoretically analyze the SGC, the mitochondrial code, or any noncanonical code,
including custom-designed codes.
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