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Abstract: Recently, there have been many studies on the automatic extraction of facial information
using machine learning. Age estimation from frontal face images is becoming important, with various
applications. Our proposed work is based on a binary classifier that only determines whether two
input images are clustered in a similar class and trains a convolutional neural network (CNN) model
using the deep metric learning method based on the Siamese network. To converge the results of the
training Siamese network, two classes, for which age differences are below a certain level of distance,
are considered as the same class, so the ratio of positive database images is increased. The deep
metric learning method trains the CNN model to measure similarity based only on age data, but we
found that the accumulated gender data can also be used to compare ages. Thus, we adopted a
multi-task learning approach to consider the gender data for more accurate age estimation. In the
experiment, we evaluated our approach using MORPH and MegaAge-Asian datasets, and compared
gender classification accuracy only using age data from the training images. In addition, using
gender classification, our proposed architecture, which is trained with only age data, performs
age comparison using the self-generated gender feature. The accuracy enhancement by multi-task
learning, i.e. simultaneously considering age and gender data, is discussed. Our approach results in
the best accuracy among the methods based on deep metric learning on MORPH dataset. Additionally,
our method has better results than the state of the art in terms of age estimation on MegaAge-Asian
and MORPH datasets.

Keywords: convolutional neural network (CNN); deep metric learning; multi-task learning;
image classification; age estimation

1. Introduction

Machine learning-based age estimation from face images is becoming more and more important
because it is widely used for individual authentication [1], forensic research [2], security control [3],
human–computer interaction [3] and social media [4]. Recently, there have been many studies using
deep learning based on CNNs [3], such as AlexNet [5], VggNet [6], and Inception [7], with wide use for
image classification and image detection. CNN-based learning, as one of the machine learning-based
approaches, enables automatic and accurate feature extraction and classification for sample sets that
are too large for humans to describe all cases of matching patterns. AlexNet, VggNet, and Inception
have recently been used for multi-class classification, and they are widely used as the base models
of CNN.

Deep expectation (DEX) [4] is an age estimation approach based on CNN models. It uses VggNet
to resolve multi-class classification problems for age estimation and adopts a method to estimate the
appropriate age through expectation value calculation, for which the trained results in the softmax layer
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are considered the probability in the corresponding class. Instead of considering the age estimation
problem from the perspective of multi-class classification, this approach applies multi-task CNN by
considering the age classification problem as a regression-based problem by estimating continuous
variables [8].

As another approach, a binary classifier with shallow layers is applied for all classes of age
instead of using a CNN model with deep layers. The final age estimation is deducted through the
ranking-based comprehensive combination of all results by each binary classifier [9]. This ranking
CNN is one of the existing machine learning methods using the cascaded-based combination of the
results of binary classifiers.

1.1. Motivation

The above approaches aim to estimate absolute age from the input face images directly, but it is not
easy to estimate absolute age accurately without any reference data [10]. To overcome this limitation,
Abousaleh et al. [11] introduced a new approach, called comparative region convolutional neural
network (CRCNN). Input face images are compared with reference images to determine whether they
are older or younger for age estimation. Our study was also inspired by this CRCNN, comparing the
age relatively instead of directly estimating absolute age, so we adopted the deep metric learning
method to train the logic of comparing age in the CNN model. Deep metric learning reduces the
complex classification task to the nearest neighbor problem [10]. In addition, this approach has the
advantage that it makes use of relationships using more data.

A Siamese network [12] is widely used as a deep metric learning-based approach. Two input
images are applied to two CNN models, and then each input image is mapped to a point
in multi-dimensional space, where the similarity of the two input images is described as the
corresponding distance. These CNN models are trained using the loss function, by which the points
are closely clustered in the case of higher similarity. A well-trained Siamese network generates
well-clustered data for the training images. The input image can be accurately labeled by selecting
the nearest clustered data compared to the features extracted from input images. Here, the nearest
neighbor selection process corresponds to our approach of estimating the labels by comparing the
input images with the training images.

However, Siamese network-based deep metric learning has the drawback of difficulty in
converging the results. When this learning method is applied for age estimation, all remaining
classes except the correct class are negative so divergence often occurs in the learning process.
Related to this issue, CRCNN trains a Siamese network using loss function to determine whether the
age is younger using two images instead of comparing the similarities. Additionally, CRCNN proposes
a selection approach for specific images compared with the input images. This avoids the side effect of
continuously learning with negative reference images.

1.2. Contribution

With these motivations, by applying a Siamese network-based deep metric learning for exact age
estimation, we propose a method to converge the process of Siamese network learning. Our proposed
approach allows a certain level of error tolerance to increase the ratio of positive data, so that it can
perform comparisons for all images in the database, while decreasing the possibility of divergence in
the training process.

Additionally, the deep metric learning method trains the CNN model to measure similarity based
only on age data, but we found that the accumulated gender data can also be used to compare the age.
Thus, we adopted a multi-task learning approach to consider the gender data for more accurate age
estimation. Multi-task learning is a method to train CNN models simultaneously with multiple tasks to
effectively assist in the training. This method enables the CNN models to be trained to simultaneously
perform the age estimation tasks and separate tasks to classify the gender, so that more relationship
data can be involved, which is helpful to increase the performance in terms of accuracy.
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The whole process is as follows. We use Inception V3 for CNN model [13], which is pre-trained
with ImageNet [14], and perform the feature-embedding by considering the value of the fully
connected layer. The loss function is designed to train our architecture to decrease the distance
between feature vectors when two images in batch are in the same class, as well as to increase the
distance between feature vectors in the case of differences in class for two images. In this step, we allow
a certain level of error tolerance for determining whether two images are in the same class. We define
the two feature vectors for measuring age similarity and for measuring gender similarity, respectively.
Two feature vectors are simultaneously trained to perform the multi-task learning method.

After training step with these conditions, the feature vectors for all training databases are extracted
and the distribution of the clustered data with respect to age similarity can be obtained.

In the test step, the featured vector of an input image is selected with the nearest one in the feature
space to compare the relative location in the clustered data distribution.

This paper is organized as follows. Section 2 explains in detail our architecture to perform the
learning for age estimation. Section 3 shows the experimental results using the proposed approach,
and discusses the performance of the proposed models. Section 4 provides the conclusion of this study.

2. Proposed Architecture

The structure of the neural network in our proposed architecture, which is a Siamese network,
is described in Figure 1 [12]. As shown in Figure 1, the structure and weights in these two networks
are completely equivalent. The outputs of two CNN models for input Images A and B are used in
loss function and the relationship is determined according to the design of loss function. These two
networks are used to apply the loss function for the inference as a result of two input Images A and B.

Same
weights

Same
structureCNN

model
CNN

model

Output

Contrastive Loss

Input image A Input image B

Figure 1. Structure of the Siamese network.

In this paper, instead of using two Siamese network-based CNN models for age comparison
from two input images, we apply the contrastive loss function using the inference results for the
corresponding images by selecting two images from a batch of training models in a single network.

Figure 2 shows an illustration of the overall algorithm. Inception V3 is used for the
construction of the CNN model, but with a fully connected layer, not using a softmax layer. To apply
the multi-task learning to estimate age and gender simultaneously, one more fully connected layer is
constructed. The first fully connected layer performs age comparison and the second fully connected
layer assists age comparison by performing the gender comparison task.
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Figure 2. Illustration of the proposed algorithm.

As shown in Figure 2a, two input images are selected from the batch, by considering all selectable
combinations. The selected A and B images are mapped to the feature vector which is a final output of
the fully connected layers in Figure 2d. In the proposed loss function, the gradient value is propagated
into the network to decrease the distance between feature vectors when two images in batch are in
same class, as well as to increase the distance between feature vectors then the two images are in
different classes, as shown in Figure 2b. Our architecture is trained using the proposed algorithm to
determine the similarity between two input images.

In the test step, feature vector of test image is compared to feature vectors of the entire training
database to perform age estimation by selecting the most similar age class, as shown in Figure 2c.
The detailed process of the proposed algorithm is as follows.

2.1. Inception V3

The proposed algorithm in this paper adopted Inception V3 [13], which is an enhanced version
with batch normalization and filter size reduction.

Figure 3 compares module of the Inception model and module of the Inception V3 model.
In the Inception model, the filter sizes are 5 × 5 and 1 × 1, but the Inception V3 model uses
1× 1 and N × 1 filters continuously; as a result, the calculation cost and the number of parameter
coefficients are reduced. In this paper, we adopt the Inception V3 model and configure the (N = 3)× 1
filter. To perform Siamese network-based deep metric learning using this Inception V3 model, the final
output of fully connected layers is used as the feature vector instead of using the softmax layer,
as shown in Figure 2b.
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Figure 3. Inception module.

2.2. Selection of Two Images and the Feature-Embedding Process

To implement the Siamese network using a single network, two images are selected from the batch,
as shown in Figure 4, and they are used to measure the similarity. The comparison repeats the number
of available combinations by selecting two images from the batch. Unlike in the previous CRCNN,
this approach performs the comparisons and trains the model between all images in the batch instead
of selecting only specific images [11].

𝑋2

𝑋3

𝑋4

𝑋1

𝑋𝑛

.
.

.

. .
.

Figure 4. Image selection for comparison in batch.

The two selected images Xi, Xj in the batch, as shown in Figure 5, are mapped and shrunk to the
final fully connected layer in Na dimensions, which is described using Inception V3. The shrunk
data are represented with the corresponding features FV(Xi), FV(Xj), in which integers i and j are
indices in the batch.
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2.3. Distance as Similarity between Two Images

The feature vectors are extracted by the Inception V3-based feature-embedding method,
as shown in Figure 5.

The proposed algorithm aims to effectively train the model by mapping the feature vectors
into feature space so that similar images are clustered with smaller distance. Therefore, similarity
between two images and distance between feature vectors of two images have a reciprocal proportion
relationship. The distance between the feature vectors is calculated using L1 − norm, which calculates
the absolute distance of the corresponding value in each dimension with the following equation in
terms of the distance D between two feature vectors.

D = ||FV(Xi)− FV(Xj)||L1 (1)

Some previous approaches [11,13] use the Euclidean distance calculation method called norm2,
but the preferred approach in previous studies has been to use norm1 instead of norm2 for Siamese
networks [12].

In this paper, we define the distance using L1 − norm and we can successfully converge the
training result, as evaluated in the experiment.

2.4. Loss Function for the Training Comparison Task

Feature vector comparison, as a representative descriptor for a given image, is equivalent to
comparing the image itself. Our proposed approach defines the loss function and trains the comparison
task of the CNN model so that the extracted features are relatively positioned in the feature space in
terms of the similarity of two feature vectors.

The loss function used in this paper is described as follows. The loss function corresponds to the
contractive loss function in the Siamese network, which is introduced as a contrastive loss function [12].

loss = (1− Z)L−(D) + (Z)L+(D) (2)

Z is a Boolean function that outputs 1 in the case of two similar images; otherwise, it outputs 0.
L− has to satisfy the condition in the manner of a decreasing function, and L+ of an increasing function,
as shown in the following equation.

Z =

{
1, if two images are considered as same class
0, otherwise

(3)
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L−(x) = 2×Qe−
2.77
Q x, L+(x) =

2
Q
× x2 (4)

Q is a constant to determine the upper limit of dissimilarity, which is 100 in this paper. Figure 6
is a graph to describe the loss function in terms of the distance between feature vectors. Z is 1 in the
case of two similar images in the same class, and the L+ term remains. The gradient is propagated
into the network so that the distance is reduced to minimize the loss in the designed loss function.
Z is 0 in the case of two images that are considered to be in different classes, and the L− term remains.
The gradient is propagated into the network so that the distance is increased for the decreased loss
function. With these operations in the network, the weights for feature vector extraction is updated.

: 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐿+ 𝑥

: 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐿− 𝑥

𝑥

𝐿+
𝑥
,
𝐿−

(𝑥
)

Figure 6. A designed loss function for the proposed algorithm.

Because this designed loss function is used to train the network to determine the distance
between feature vectors, there is no inefficiency limiting the basis of the mapping plane.
However, unlike the trained database, the proposed method has to search and determine a nearest
neighbor from feature vectors. In addition, an approach using this loss function enables the multi-class
classification for age estimation of various bands to be simplified as a binary classification problem
which only measures the similarity. It mitigates imbalance of the accuracy over all classes, which is
caused by the biased training database. However, if this loss function is applied to the binary
classifier as it is, the images in the same age class are considered positive, and all other classes are
negative; as a result, the trained database becomes imbalanced due to the large number of classes,
which is why Siamese networks do not easily converge the training results.

To resolve this issue, CRCNN adopts a technique to select the comparison images in advance to
prevent the network from being continuously trained with the negative database. Instead of comparing
the similarities in age, it redesigns the loss function to only determine whether the age is younger or
older; as a result, it can converge the training results of the Siamese network.

Our approach succeeds in converging the training result by adopting a method to increase the
ratio of the positive data, for which the Boolean function Z determining age class allows for error
tolerance. For example, if three years is allowed as a margin, the loss function considers classes between
N − 3 and N + 3 years old to be the same class. The proposed technique is helpful to increase the ratio
of positive data, so the entire process of training the CNN model is not negatively influenced by the
error tolerance.

In fact, while our approach loses discrimination by class in the CNN model with the
margin-allowed error, it results in more accurate age estimation by enabling all comparisons for
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all age ranges. Even though a specific feature vector is involved with the class within a certain range
of marginal error tolerance, clustering can be processed further with accuracy of the margin value,
by comparing with the feature vector within (margin+1) and −(margin+1) compared to the currently
clustered age. The entire clustering procedure using the proposed approach is described in Figure 7.
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Figure 7. Clustering process allowing marginal error tolerance.

Figure 7 assumes that the margin is defined as 3; the feature vectors of the images are compared
and clustered using the proposed loss function. For example, as shown in Figure 7a, if only the
feature vectors of the images that are 20–22 years old are compared, then all images are considered
similar because the margin is defined as 3, so only the distance decreases, but the clustering does
not proceed further. This means that the estimation accuracy is three years. However, as shown in
Figure 7b, if the feature vector for an image classified as 24 years old is compared to one classified as
20 years old, the network is trained to increase the distance, so the feature vector of age 24 is clustered
to be positioned far away. As shown in Figure 7c, the network is trained so that the feature vector
for 21–22 age is clustered to be closely positioned, because ages 20–21 and 24 are within the margin,
which can be considered the same class. When a feature vector with 25 is compared, 22 and 25 are
considered the same class through the same process, so the network is trained to have a close distance
between 22 and 25. As a result, the feature vectors of 20, 21, 22, 24, and 25 are separately clustered,
so we can distinguish the age of the images with an accuracy of one year.

2.5. Age Estimation

In the test step using the database trained by the proposed approach, the age estimation process
initially involves calculating the feature vectors in Na dimensions to search for similar images
compared to the trained database. Because the CNN model has already been trained to determine the
age similarity, the test model comparing the input image is prepared with the clustered feature vectors.
The feature vector for the input image is extracted using the same CNN model, and then compared
with the clustered data in the test model. The test process involves age estimation performed by
calculating mean age of among Mth nearest neighborhoods. The distance-based nearest neighborhood
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search method is also based on L1 − norm which is used in the training process. The entire test process
is described in Figure 8.
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Figure 8. Age estimation process selecting the nearest neighborhood in the feature space.

2.6. Multi-Task Learning for Age and Gender Estimation

The loss function for the proposed method is designed to train the CNN model with age
similarity as the relation of classes. Even though the CNN model is trained to determine a similar
level using the age data, it can be further trained by clustering the classes closely with similar images
using detailed conditions, such as face angle, hair length, and beard. An algorithm that determines age
using various conditions, in addition to the absolute age data, is more appropriate. That is why the
detailed conditions are automatically configured and applied to the training model by only defining
the age-based similarity.

With this concept, we first tried gender classification using the model trained with only the age
data, and then we measured the accuracy of the gender-matching result. We found that our approach
using only age-based estimation could classify the gender with 81.23% accuracy compared to the result
of gender-based classification. The result is summarized in Table 2. The result gave us the following
two insights. First, our approach internally uses gender-based conditions to perform the age estimation.
Second, the gender data can be an important clue to estimate age. In fact, the 81.23% accuracy of
gender classification based on age data means that the age estimation is tightly coupled with gender.

Based on this speculation, our approach adopts the multi-task learning approach so that it
additionally provides gender data to the trained model when comparing age. The multi-task learning
simultaneously trains the model to increase the performance in terms of accuracy of age estimation.
If the individual tasks have a cross-coupled relationship, the multi-task learning approach enables
the model to be trained by selecting commonly important variables in the multiple tasks. Utilizing
the ability to train the model considering the relationships between tasks, we could assist the age
estimation with gender data, thus training the model to consider age and gender simultaneously.

The multi-task learning technique applied in this paper is described in Figure 9. A fully connected
layer in Ng dimensions is added for the gender comparison used to compare age in Inception V3.
We also designed a loss function to train the logic of the gender comparison so that the weights in the
layer are updated in a similar way as in the age comparison algorithm. The margin of comparison in the
loss function is 0, and it divides the positive and negative data on the basis of gender. This additional
task for gender comparison is temporarily used to assist the data in training the age estimation logic.
The finally calculated loss is the sum of the loss by the age estimation and gender classification.
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Figure 9. Multi-task learning for the age algorithm considering age and gender simultaneously.

3. Experimental Results and Discussion

The purpose of this experiment was to verify the age estimation accuracy performance based on
our architecture in an open image database. We implemented our algorithm using TensorFlow [15],
an open source deep learning framework based on Python. We used Inception V3 for CNN model [13],
which was pre-trained with ImageNet [14]. The batch size was 128, the image size was 227 and
dropout was performed with a probability of 50%. The first fully connected layer’s dimension, Na,
tasked with measuring age similarity, was 70, and Ng, i.e. the dimension of the second fully-connected
layer for measuring gender similarity, was 10. Each dimension was experimentally selected. In the
gradient descent procedure to optimize network weights, the Adadelta [16] method was used.
The margin-allowed error, newly defined in our proposed method, was set to 4. This means that,
if the difference between age was less than 4, the two ages were considered to be in the same class.
In the test step, mean age of the nearest 20 (M = 20) was calculated for prediction. The age estimation
performance was evaluated by mean absolute error (MAE), which is generally used in previous
research as defined in the following equation. MAE indicates how close a prediction is to the true age.

MAE =
∑n

i=1|Ai − Ãi|
n

(5)

Ãi and Ai are the estimate and true age of the sample image j, and n is the total number of samples.
We also calculated the cumulative score (CS) [17–19]. CS indicates the percentage of samples correctly
estimated in the range of [Ai − T, Ai + T], a neighbor range of the true age where T is the parameter
representing the tolerance. CS is calculated using the following equation.

CS(T) = 100× ∑n
i=1[|Ai − Ãi| <= T]

n
(6)

Here, [.] is the truth-test operator. A higher value of CS(T) means a better performance of the
architecture. We experimented with two public datasets. The first was the MORPH database [20].
There are 55,132 face images from more than 13,000 subjects in this database. The ages of the face
images range from 16 to 77. The frontal face images are from different races, among which African faces
account for about 77%, European faces account for about 19% and the remaining 4% include Hispanic,
Asian, Indian, and other races [11]. The second was MegaAge-Asian [21]. It contains 40,000 face
images of Asians with ages from 0 to 70. Table 1 shows the size of each dataset and the corresponding
splits for training and testing. We first selected test images randomly and the remaining images were
used as training images. Therefore, there is no intersection between training and test sets.
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Table 1. The proposed method was evaluated using two datasets.

DB Name The Number of Training Images The Number of Test Images

MegaAge-Asian 40,000 4000
MORPH 45,132 10,000

The proposed architecture was trained with each dataset in Table 1. We experimented to verify
the performance of our method, as described in the following sections.

3.1. Toy Example: Visualization of Feature Embedding Computed by Our Method Using a Subset of the
MORPH Dataset

To verify that the clustering process improves the accuracy of the margin value, feature
vectors were visualized using a small subset of the MORPH dataset. For visualization on
two-dimensional space and to facilitate convergence, we collected face images with ages from 16
to 63 (only 48 classes) and each class had 1–3 images randomly. Hyper parameters for the toy example
are as follows. The batch size was 48, and the dimension of the feature vector was 2 for visualization
on two-dimensional space. In the case of the toy example, the margin value was set as 2. After the
training step with these conditions, extracted feature vectors were clustered, as shown in Figure 10.
The vertical axis is the true age of each feature vector and the others are axes of feature space. Most
of the feature vectors were well-clustered, as shown in the zoomed graph (red box). The clustering
process had an accuracy of one year but our CNN model had an accuracy of two years, thus putting
those images that were two years younger or two years older in the same class.
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Figure 10. Visualization of feature embedding with the toy example.

3.2. Multi-Task Learning for Age and Gender Estimation

The first row of Table 2 is the result of the gender classification rate on the MORPH dataset using
only age data. Even though gender data were not used, the gender classification rate was quite high.
The classification rate was much lower than in the other CNN model using gender data. Even AlexNet,
which is a relatively simple model, had a better classification rate. However, 80% accuracy means that
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the age estimation is tightly coupled with the gender. Therefore, we tried using gender data in the CNN
model by applying multi-task learning for age and gender estimation simultaneously. The results of the
experiment before and after applying the multi-task learning method are shown in Figure 11.
The MAE of our method with multi-task learning slightly decreased from 2.24 to 2.28, but CS(T)
values were improved. In particular, the CS(5) value increased by about 2%. Therefore, performance
was improved by using gender data to estimate age through multi-task learning.

Table 2. Gender classification rates on the MORPH dataset.

Method Accuracy (%)

Our method without gender data 81.23
Alexnet [5] with gender data 97.38

Inception V3 [7] with gender data 99.1

100

80
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40

20

0
0 1 2 3 4 5 6 7 8 9 10

: w/o multi-task
: w multi-task

Figure 11. Comparison of our method with and without multi-task learning.

3.3. Comparison with Deep Metric Learning-Based Approaches on the MORPH Dataset

Table 3 shows the age estimation result of the dataset and a comparison with traditional methods
based on deep metric learning. The MAE of our method was 2.24, indicating better accuracy than
the MAE of the CRCNN [11], which is 3.74. This means that applying our method of deep metric
learning based on a Siamese network is suitable for age estimation. Moreover, M-LSDML [22], the latest
age estimation method based on deep metric learning, has a slightly lower MAE than our method.
Additionally, the MAE of the ResNet with each loss function for deep metric learning is shown.

Table 3. Age estimation results on test images of the dataset and a comparison with traditional deep
metric learning methods.

Method Kinds of Loss Function MORPH(MAE)

Our method Revised contrastive loss function 2.24
Our method with multi-task learning Revised contrastive loss function 2.28

CRCNN [11] Contrastive loss function 3.74
M-LSDML [22] Custom-defined loss function 2.89

ResNet (contrastive loss) [22] Contrastive loss function 3.72
ResNet (triplet hinge loss) [22] Triplet hinge loss function 3.59

ResNet (lifted structural loss) [22] Lifted structural loss function 3.24

3.4. Comparison with State-of-Art Method on Each Dataset

In addition, we compared the state-of-the-art methods. Most techniques using the MegaAge-Asian
dataset evaluate age estimation performance by CS(T), as shown in Table 4. Our method achieved a
slightly higher score than the other methods on the MegaAge-Asian dataset. In the case of techniques
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using the MORPH dataset, the MAE is widely used to evaluate the age estimation performance.
In Table 5, the MAE of each technique is shown. In the experiment on MORPH dataset, our method
achieved the best MAE (2.24).

Table 4. Comparison of CS(T) with state-of-the-art methods on the MegaAge-Asian dataset (* face
alignment method is applied, ** additional labels are used).

Method CS(3) CS(5)

Our method 69.70 84.64
MobileNet [23] 44.0 60.6
DenseNet [24] 51.7 69.4

Zhang et al. [25] ** 64.08 82.43
SSR-Net [26] * 54.9 74.1

Table 5. Comparison of MAE with state-of-the-art methods on the MORPH dataset (* face alignment
method is applied, ** additional labels are used).

Method MAE

Our method 2.24
Our method with multi-task ** 2.28

Ranking-CNN [9] 2.96
DEX [4] * 3.25

DEX w IMDB [4] * 2.68
Zhang et al. [25] ** 2.87

Zhang et al. w IMDB-WIKI [25] ** 2.52
SSR-Net [26] * 2.52

In terms of age estimation, the accuracy of our method is improved with respect to CS value and
MAE by using more data from relationship between images. However, to deal with bigger datasets,
comparing all images may not be an efficient strategy because of the increased computation and
clustered data. Our architecture has the disadvantage of longer training time: in the case of applying
our multi-task method in MORPH datasets, our architecture needs 275 epochs to converge. In future
work, to reduce the training time, we will consider a strategy of automatically selecting images which
can be references to compare with training dataset and used for a gallery. This strategy is more
appropriate to apply for bigger and more varied datasets (e.g., FG-net and IMDB-WIKI). Additionally,
for optimizing our method, more analysis on dimension of feature vector, the consideration of simpler
networks with statistical significance according to random initialization and more efficient loss function
are needed, which will be researched in future work.

4. Conclusions

This study was motivated by the fact that training a CNN model based on age comparison is
easier than directly estimating the absolute age. The proposed approach trains a CNN model for
age comparison using a Siamese network-based deep metric learning method. We designed a binary
classifier, which is applied to train a Siamese network to cluster the classes within the margin of
tolerance as the same class, allowing us to successfully train the Siamese network by adopting
L1 − norm instead of L2 − norm. The experimental test indicated that the proposed approach itself
performs the gender classification in processing the age estimation, thus we tried training the
CNN model by comparing age and gender simultaneously using the multi-task learning technique.
The proposed method was evaluated using the MORPH dataset. Although our architecture needs many
epochs to converge, it results in better performance. There was also an additional enhancement using
multi-task learning for age and gender compared to CRCNN, the original Siamese network-based
deep metric learning, and the latest M-LSDML. Additionally, our method also has better results than
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the state of the art on MegaAge-Asian and MORPH datasets. In future work, more analysis is needed
to reduce the training time by selecting reference images to compare rather than comparing all images.
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