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Abstract: In respect to the multi-attribute group decision making (MAGDM) problems in which the 

evaluated value of each attribute is in the form of q-rung orthopair fuzzy numbers (q-ROFNs), a 

new approach of MAGDM is developed. Firstly, a new aggregation operator, called the partitioned 

Maclaurin symmetric mean (PMSM) operator, is proposed to deal with the situations where the 

attributes are partitioned into different parts and there are interrelationships among multiple 

attributes in same part whereas the attributes in different parts are not related. Some desirable 

properties of PMSM are investigated. Then, in order to aggregate the q-rung orthopair fuzzy 

information, the PMSM is extended to q-rung orthopair fuzzy sets (q-ROFSs) and two q-rung 

orthopair fuzzy partitioned Maclaurin symmetric mean (q-ROFPMSM) operators are developed. 

To eliminate the negative influence of unreasonable evaluation values of attributes on aggregated 

result, we further propose two q-rung orthopair fuzzy power partitioned Maclaurin symmetric 

mean (q-ROFPPMSM) operators, which combine the PMSM with the power average (PA) operator 

within q-ROFSs. Finally, a numerical instance is provided to illustrate the proposed approach and a 

comparative analysis is conducted to demonstrate the advantage of the proposed approach. 

Keywords: partitioned Maclaurin symmetric mean; q-rung orthopair fuzzy set; q-rung orthopair 

fuzzy partitioned Maclaurin symmetric mean; q-rung orthopair fuzzy power partitioned 

Maclaurin symmetric; multi-attribute group decision making 

 

1. Introduction 

Multi-attribute group decision making (MAGDM) is one of the most important branches of 

modern decision making theory. Generally speaking, MAGDM is an activity in which alternatives 

are evaluated by a group of decision makers and the most suitable alternative is determined 

accordingly. In MAGDM, one of critical problems is how to represent the information of attributes 

given by decision makers, due to the appearance of fuzzy and uncertainty information. The other 

critical problem is how to aggregate the attribute information and provide the ranking of 

alternatives. For this problem, the aggregation operator is regarded as an effective tool to aggregate 

decision information. A large number of studies on aggregation operator have been done and many 

aggregation operators have been widely applied in MAGDM, such as the power average (PA) 

operator [1], the Bonferroni mean (BM) operator [2], the Maclaurin symmetric mean (MSM) 

operator [3], partitioned Bonferroni mean (PBM) operator [4], and so on. (A review of related 

literature is listed in Section 2) 
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The aforementioned aggregation approaches are used to capture various interrelationships of 

attributes in MAGDM, but they ignore this situation in which the attributes are divided into several 

parts and there are interrelationships among multiple attributes in each part. Thus, in this paper, 

we extend the traditional Maclaurin symmetric mean (MSM) [3] and propose the partitioned 

Maclaurin symmetric mean (PMSM) operator, which can model this circumstance in which 

attributes are divided into several parts and multiple attributes in each part are interrelated. In 

addition, as the complexity of MAGDM problems increase, we may encounter the following case: 

the decision maker maybe evaluate the attributes in form of q-rung orthopair fuzzy number 

(q-ROFN) and provide some unduly high or unduly low assessments owing to time shortage and a 

lack of priori experience. These unreasonable assessments may negatively affect the finally decision 

results. 

In order to solve the above issues, we utilize PMSM to aggregate q-ROFNs. Meanwhile, we 

combine the PMSM with PA in q-rung orthopair fuzzy set (q-ROFS) and propose q-rung orthopair 

fuzzy power partitioned Maclaurin symmetric mean (q-ROFPPMSM) operator and the weighted 

form of the q-ROFPPMSM operator. The q-ROFPPMSM not only reduces the negative influence of 

unreasonable evaluations on the aggregating result, but also deals with this circumstance where 

attributes are divided into several parts and multiple attributes in each part are interrelated.  

We firstly define the PMSM operator and provide the mathematical formula. Some desirable 

properties and special cases of PMSM are also investigated. It can be found that some existing 

operators can be obtained from PMSM when the parameters of PMSM are assigned different values. 

Further, we extend the PMSM in q-ROFS, and propose q-rung orthopair fuzzy partitioned 

Maclaurin symmetric mean (q-ROFPMSM) operator and q-rung orthopair fuzzy weighted 

partitioned Maclaurin symmetric mean (q-ROFWPMSM) operator to deal with q-rung orthopair 

fuzzy information. In order to reduce the negative influence of unreasonable assessments on 

decision result, we take advantage of PMSM and PA and propose q-ROFPPMSM and the weighted 

form of q-ROFPPMSM, which is called q-rung orthopair fuzzy weighted power partitioned 

Maclaurin symmetric mean (q-ROFWPPMSM) operator. Finally, a new approach based on the 

q-ROFWPPMSM operator is introduced for solving the q-rung orthopair fuzzy MAGDM problems. 

A numerical instance is also provided to illustrate the approach we proposed and a comparative 

analysis is conducted to demonstrate the advantage of the proposed approach. The contributions of 

this paper are as follows: 

(1) We propose the PMSM operator, which can handle this situation where the attributes are 

divided into several parts and there are interrelationships among multiple attributes in each 

part. 

(2) We extend the PMSM in q-ROFS for dealing with the q-rung orthopair fuzzy information. 

(3) We combine PMSM and PA in q-ROFS and introduce the q-ROFPPMSM and the weighted 

form of q-ROFPPMSM which not only take advantage of PMSM, but also reduce the negative 

influence of unreasonable arguments on the aggregating result. 

(4) We propose a new approach of MAGDM based on the proposed operator. 

The rest of this paper is organized as follows: Section 2 provides a review of related literature. 

Section 3 introduces some basic concepts. In Section 4, we define the PMSM, the q-ROFPMSM and 

the q-ROFWPMSM. Meanwhile, we propose q-ROFPPMSM and q-ROFWPPMSM based on the PA 

and PMSM operators. A new approach of q-rung orthopair fuzzy MAGDM based on 

q-ROFWPPMSM is introduced in Section 5. Section 6 gives a numerical example to illustrate the 

validity and advantages of the proposed approach and the last section summarizes the paper. 

2. Literature Review 

The application of fuzzy set theory in MAGDM and the application of aggregation operators in 

MAGDM have been widely studied by researchers. In our review, we mainly focus on the literature 

related to the q-rung orthopair fuzzy set (q-ROFS). In addition, we also concentrate on some 

aggregation operators that are widely applied in fuzzy MAGDM problems. Due to the increasing 
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complexity of real decision making problems, crisp numbers are insufficient and inadequate to 

represent attribute values. Zadeh’s [5] fuzzy set (FS) theory is regarded to an effectively tool to deal 

with impreciseness, and many works on MAGDM with fuzzy information has been done [6–8]. To 

overcome the shortcomings of FS, Atanassov [9] proposed the concept of intuitionistic fuzzy set 

(IFS), which has a membership degree and a non-membership degree simultaneously. Owing to its 

great ability for handling fuzziness and uncertainty, IFSs have been widely applied in pattern 

recognition [10,11], medical diagnosis [12,13], clustering analysis [14,15] and especially MAGDM 

[16–18]. The constraint of IFS is that the sum of membership and non-membership degrees should 

be less than or equal to one. Thus, Yager [19] generalized the IFS and proposed the Pythagorean 

fuzzy set (PFS), whose constraint is that the square sum of membership and non-membership 

degrees is less than or equal to one. Since its appearance, PFS has received much scholarly attention, 

which has led to a wider range of applications [20–26]. 

More recently, Yager [27] introduced a new concept: the q-rung orthopair fuzzy set (q-ROFS), 

which satisfies the condition that the sum of the qth power of the membership degree and the qth 

power of the non-membership degree is bounded by one. This feature makes q-ROFS more powerful 

than IFS and PFS in the aspect of dealing with the vagueness and fuzzy information. For instance, 

when a decision maker provides 0.8 and 0.7 as the membership and non-membership degrees, 

respectively, then the ordered pair (0.7, 0.8) is not valid for IFSs or PFSs, whereas it is valid for 

q-ROFS. Many works on q-ROFS have been done to handle q-rung orthopair information. Peng [28] 

defined new exponential operational laws of q-ROFNs in which the bases are positive real numbers 

and the exponents are q-ROFNs and proposed a new score function for comparing two q-ROFNs. 

Du [29] defined some Minkowski-type distance measures for q-ROFS and investigated the 

application of the distance measure in decision making. Li et al. [30] combined the q-ROFS with a 

picture fuzzy set and proposed a q-rung picture linguistic set. Liu and Wang [31] proposed a family 

of simple weighted averaging and geometric operators for solving the q-rung orthopair fuzzy 

MAGDM problems. Liu and Liu [32] and Wei et al. [33] respectively proposed some q-rung 

orthopair fuzzy Bonferroni mean operators and some q-rung orthopair fuzzy Heronian mean 

operators, which consider the interrelationship between any two q-ROFNs. Liu and Wang [34] 

proposed some q-rung orthopair fuzzy Archimedean Bonferroni mean (q-ROFABM) operators, 

which applied Bonferroni mean (BM) in the q-ROFS based on Archimedean T-norm and T-conorm. 

Obviously, aggregation operators play an important role in MAGDM, especially the ones that 

reflect the interrelationship among attributes. According to the type of relationship between 

attributes, the aggregation operator can be divided into two groups. The one assumes each attribute 

is related to the other attributes, such as the power average (PA) operator [1] and power geometric 

(PG) operator [35], which allows the attributes to be aggregated to support and reinforce each other. 

However, the PA and PG only capture the relationship by assigning the weight to each attribute 

and they do not directly reflect the interrelationship structure among the attributes. 

Thus, Yager [36] originally extended the BM [2] to capture the interrelationship between any 

two attributes. Xia et al. [37] generalized the classical BM and proposed the generalized weighted BM 

(GWBM) where the interrelationship among any three arguments can be measured. Zhang et al. [38] 

also defined the dual generalized weighted BM (DGWBM) operator. To capture the interrelationship 

among multiple attributes, Detemple and Robertson [39] explored the MSM [3] operator in MAGDM, 

which assumes that each argument is related to other k-1 arguments and the parameter k can be 

adjusted by decision maker. Owning to this flexibility of MSM, it has been used to deal with various 

MAGDM problems [40–42]. 

The aforementioned operators are based on the assumption that each attribute is related with 

the others in MAGDM. However, interrelationships do not usually exist among all attributes. Thus, 

the second group operator mainly focuses on the circumstances in which parts of attributes are 

related and others do not have any interrelationship. For such operators, the partitioned Bonferroni 

mean (PBM) operator [4] is the representative. The PBM considers this situation where the 

arguments are partitioned into several parts, and the argument in the same part is related to the 

others. Similarly, Liu et al. [43] extended the Heronian mean (HM) to the partitioned Heronian 
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mean (PHM). The PBM and PHM operators have been extensively applied in the process of 

decision making [44,45]. Table 1 summarizes main characteristics of above aggregation operators. 

Table 1. The main characteristics of different aggregation operators. 

Approaches 
Captures  

Two Attributes 

Captures  

Three Attributes 

Captures  

Multiple Attributes 
Attributes Partitions 

PA [1] Yes No No No 

PG [35] Yes No No No 

BM [2] Yes No No No 

GWBM [37] Yes Yes No No 

DGWBM [38] Yes Yes Yes No 

MSM [3] Yes Yes Yes No 

PBM [4] Yes No No Yes 

PHM [43] Yes No No Yes 

It is worthy to point that as PBM and PHM inherit the features of BM and HM respectively, 

and they fail to capture the interrelationship among multiple arguments. That motivates us to 

propose PMSM operator and extend it in q-ROFS to deal with heterogeneous among attributes and 

capture the interrelationship among multiple attributes in that same partition. In addition, we take 

advantage of PMSM and PA and propose q-ROFPPMSM and q-ROFWPPMSM. Finally, a new 

approach based on q-ROFWPPMSM operator is introduced for solving the q-rung orthopair fuzzy 

MAGDM problems.  

3. Preliminaries 

3.1. q-ROFS 

Definition 1 [27]. Let X be a universe of discourse, a q-rung orthopair fuzzy set (q-ROFS) A defined on X is 

given by 

( ) ( ) , ,
A A

A x u x v x x X=   (1) 

where ( ) [0,1]
A

x   and ( ) [0,1]
A

v x   respectively represent the membership and non-membership degrees 

of the element x to the set A satisfying ( ) ( ) 1q q

A A
u x v x+  , ( 1)q  . The indeterminacy degree of the element 

x to the set A is ( ) ( )( )
1

1 ( ) ( )
q

q q

A A A
x x v x = − + . For convenience, Liu and Wang [31] called the pair 

( )( ), ( )
A A

u x v x  as a q-rung orthopair fuzzy number (q-ROFN), which can be denoted by ( ),
A A

A u v= .  

Definition 2 [31]. Let ( )1 1 1
,a u v=  and ( )2 2 2

,a u v=  be two q-ROFNs, and   be a positive real number, 

then the operational laws of the q-ROFN are defined as follows:  

1. ( )
1

1 2 1 2 1 2 1 2
,

q
q q q qa a u u u u v v  = + − 

 
, 

2. ( )
1

1 2 1 2 1 2 1 2
,

q
q q q qa a u u v v v v  = + − 

 
, 

3. ( )
1

1 1 1
1 1 ,

q
qa u v




  = − −     
, 

4. ( )
1

1 1 1
, 1 1

q
qa u v


 

  = − −     
. 
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Definition 3 [31]. Let ( ),
a a

a v=  be a q-ROFN, then the score function of a  is defined as ( ) q q

a a
S a  = −  

and the accuracy function is defined as ( ) q q

a a
H a  = + . For any two q-ROFNs 

1 1 1
( , )a v=  and 

2 2 2
( , )a v= , then 

1. If ( ) ( )1 2S a S a , then 1 2a a ; 

2. If ( ) ( )1 2S a S a= , then 

(1) If ( ) ( )1 2H a H a , then 1 2a a ; 

(2) If ( ) ( )1 2H a H a= , then 1 2a a= . 

Distance measure, as an effective tool to comparing the fuzzy information, has been widely 

used in decision making. Recently, a distance measure for q-ROFNs called as the Minkowski-type 

distance measure was proposed by Du [29] for evaluating the fuzzy degree. The definition is 

presented as follows: 

Definition 4 [29]. Let 
1 1 1

( , )a v=  and 
2 2 2

( , )a v=  be any two q-ROFNs, then the Minkowski-type 

distance between 
1

a  and 
2

a  is given by 

( )
1

1 2 1 2 1 2

1 1
,

2 2

p
p p

d a a v v 
 

= − + − 
 

 ( 1)p   (2) 

Example 1. Assume that ( )1
0.8,0.3a = , ( )2

0.6,0.4a =  be two q-ROFNs and the parameter p is equal to 

three. Based on the Definition 4, we can obtain the Minkowski-type distance measure 

( ) ( )( )
1 3

3 31 1
0.8,0.3 , 0.6,0.4 0.8 0.6 0.3 0.4 0.1651

2 2
d

 
= − + − = 
 

  

3.2. PA Operator and MSM Operator 

The power average (PA), introduced by Yager [1], can assign lower weights for arguments by 

calculating the support degree between arguments so that they can reduce the bad influence of the 

unduly high or unduly low arguments on the aggregation result. The original form of PA is 

presented as follows: 

Definition 5 [1]. Let ( 1,2,..., )
i

a i n=  be a collection of non-negative real numbers, if 

( )( ) ( )( )( )1 2 1
1

( , ,..., ) 1 1
n

n

n i i jj
i

PA a a a T a a T a
=

=

= + +   (3) 

then the PA is called the power average operator, where 

( )
1,

( , )
n

i i jj j i
T a Sup a a

= 
=  (4) 

and the ( , )Sup a b  is denoted as the support degree for a from b, which satisfies following properties: 

1. ( , ) [0,1]Sup a b  ; 

2. ( , ) ( , )Sup a b Sup b a= ; 

3. ( , ) ( , )Sup a b Sup x y , if | | | |a b   x y−  −  

The Maclaurin symmetric mean (MSM) is firstly proposed by Maclaurin [3] and developed by 

Detemple and Robertson [39]. It can depict the interrelationship among any arguments by setting 

different values for parameter k. The mathematical form is defined as follows: 
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Definition 6 [39]. Let 
i

a ( 1,2,..., )i n=  be a collection of non-negative real numbers and 1,2,...,k n= , if  

1

( )

1 2
1 1

( , ,..., )
j

i k

k
k

k k

n i n
i i n j

MSM a a a a C
    =

 
=   
 

   (5) 

where 
1 2

( , ,..., )
k

i i i  traverses all the k-tuple combination of (1,2,..., )n  and ! !( )!k

n
C n k n k= −  is the 

binomial coefficient. Then the ( )kMSM  is called the Maclaurin symmetric mean (MSM) operator. 

4. Some q-Rung Orthopair Fuzzy Power Partitioned Maclaurin Symmetric Mean Operators  

In this section, we firstly extend the traditional MSM and propose the PMSM operator to 

handle this situation in which the input arguments are divided into several parts and there are 

interrelationships among multiple arguments in each part. Then, we extend the PMSM in q-ROFS 

and define two q-ROFPMSM operators to deal with the aggregation information in the form of 

q-ROFNs. Finally, we introduce a q-ROFPPMSM operator and the weighted form of the 

q-ROFPPMSM operator based on PMSM and PA, which not only take advantage of PMSM, but also 

reduce the negative influence of unduly high or unduly low evaluating values of attributes on the 

decision result. 

4.1. PMSM Operator 

In many practical MAGDM problems, we may encounter a situation where the input 

arguments can be divided into several classes and there are interrelationships among multiple 

arguments in each class, whereas the attributes in different classes are not related. These situations 

can be mathematically depicted as follows: 

Let 
1 2

{ , ,..., }
n

T a a a=  be a collection of nonnegative real numbers that are corresponding to the 

performance value of each attribute, respectively. On the basis of the aforementioned 

interrelationship pattern, suppose that the arguments 
i

a ( 1,2,..., )i n=  are divided into d different 

classes 
1 2
, ,...,

d
P P P , satisfying 

i j
P P =  and 

1

d

hh
P T

=
= . Furthermore, suppose that there is an 

interrelationship among any kh arguments in each class 
h

P ( 1,2,..., )h d=  and there is no relationship 

among arguments of classes Pi and Pj. Then the partitioned Maclaurin symmetric mean (PMSM) 

operator, which can aggregate the input arguments with above relationship structure, is defined as 

follows: 

Definition 7. Let 
i

a ( 1,2,..., )i n=  be a collection of nonnegative real numbers, which are divided into 

different classes 
1 2
, ,...,

d
P P P . For the parameter vector 

1 2
, ,...,

d
k k k  with 1,2,...,

h h
k P=  and the h

P  being 

the cardinality of 
h

P ( 1,2,..., )h d= , if 

1 2

1 2

1 2

1

( , ,..., )

1 2
1 , , , 1

1 1
( , ,..., )

h

h

d

jh

k hhh
kh

k

kd
k k k

n ik
h i i i P jp

i i i

PMSM a a a a
d C=  =

 

 
   
   

=    
    

   
 

  
 

(6) 

then the 1 2( , ,..., )dk k kPMSM  is called the partitioned Maclaurin symmetric mean (PMSM) operator, where 

1 2
( , ,..., )

hk
i i i  traverses all the kh-tuple combination of (1,2,..., )

h
P  and the h

h

k

P
C  is the binomial coefficient 

satisfying following formula: 

( )

!
 

! !
h

h

hk

P

h h h

P
C

k P k
=

−
 (7) 

From Equation (6), we can know that the PMSM firstly models the interrelationship of 

attributes belonged to class 
h

P ( 1,2,..., )h d=  and provides the satisfaction degree of interrelated 
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attributes of each class by the expression 1 2

1 2

, ,
1

,
1(1 )hh h

h j
k h

kh
h

i i i P

i

kk k

iP
i i j

C a
 

=
  , it is noted that the PMSM 

can model this case where the relationship type of attributes belonged to class 
i

P  and 
j

P  are 

different by setting different values for parameter 
i

k  and 
j

k . Then, the  

1 2( , ,..., )

1 2
( , ,..., )dk k k

n
PMSM a a a  gives the average satisfaction degree of all attributes, which are 

belonging to class 
1 2
, ,...,

d
P P P . Therefore, the PMSM is a more reasonable method to solve this 

situation, where the arguments are divided into several classes and there are interrelationships 

among multiple arguments in each class. 

For the sake of illustrating the calculation procedure of the PMSM operator, a numerical 

example is provided and depicted as follows: 

Example 2. Let 
i

A ( 1,2,...,7)i =  represent a collection of attributes, which are divided into two classes 

1 1 3 4 6
{ , , , }P A A A A=  and 

2 2 5 7
{ , , }P A A A=  according to the attribute characteristic. Moreover, assume that 

each attribute is interrelated to any other two attributes in class 
1

P  and each attribute in class 
2

P  is 

interrelated to each other, that is to say, the parameter 
1

3k =  and 
2

2k = . The actual value of arguments 
i

a  

=i( 1,2,...,7)  corresponding to the attributes is as follows: a1 = 0.4, a2 = 0.7, a3 = 0.5, a4 = 0.6, a5 = 0.3, a6 = 0.8 

and a7 = 0.2. 

On the basis of Definition 7, the aggregated result of the arguments in class P1 is given as 

follows: 

1

1

1

1 2 1 1 2 3 111
1 2 31 2 1

1 1 3

3

3
, , , , ,1 14

1 1
j j

k

k

k

k

i ik
i i i P i i i Pj jP

i i ii i i

a a
CC  = =

   

     
     

=     
            

    

( ) ( )(( ( ) ( )))
1 3

3

4
1 0.4 0.5 0.6 0.4 0.5 0.8 0.4 0.6 0.8 0.5 0.6 0.8 0.5625C + + +=         =  

Then, the aggregated result of arguments in class P2 is 

2

2

2

1 2 2 1 2 222
1 21 2 2

1 1 2

2

2
, , , ,1 13

1 1
j j

k

k

k

k

i ik
i i i P i i Pj jP

i ii i i

a a
CC  = =

  

     
     

=     
            

    

( ) ( ) ( )( )
1 2

2

3

1
0.7 0.3 0.7 0.2 0.3 0.2 0.3697

C

 
=  +  +  =  
 

 

Finally, the degree of satisfaction over all arguments can be obtained 

1 2

1 2

1

2
(3 2)

1 2 7
1 , , , 1

1 1
( , ,..., ) 0.4661

2

h

h

jh

k hhh
kh

k

k

ik
h i i i P jp

i i i

PMSM a a a a
C=  =

 

 
   
   

= =   
    

   
 

  
，  

Meanwhile, the MSM operator is used to solve the aforementioned example and the 

aggregated results under the condition of the parameter k taking two or three are obtained as 

follows: 
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1 2

1 2
2

1 7 12

1 2 7 2

7

( , ,..., ) 0.4933
ji

i i j

a

MSM a a a
C

   =

 
 
 = =
 
  
 

 
, 

1 2 3

1 3
3

1 7 13

1 2 7 3

7

( , ,..., ) 0.4863
ji

i i i j

a

MSM a a a
C

    =

 
 
 = =
 
  
 

 
. 

The calculation result obtained by the PMSM is different from the results of the MSM. This 

difference is a result of the former partitioning the argument set into different classes and 

considering various relationship types among the arguments in each class, whereas the later only 

assumes that there is an interrelationship among any k arguments. 

Some special cases with respect to the cardinality of class and the parameter vector of the 

PMSM operator are investigated. 

Remark 1. When all arguments belong to same class and the types of the interrelationship among arguments 

are also the same, namely, the cardinality of 
1

P n=  and 
1

1,2,...,k k n= = , then the PMSM reduces to the 

MSM [3] operator as follows: 

1

1

1 21

1

1 2 111
1 2 1

1
1

1 1

1 2
, , , 1

1
( , ,..., )

j

k

j

k

k

k k
k

ik
i i i n jk

n ik k
i i i P j nP
i i i

a

PMSM a a a a
CC

     =

 =

  

 
    
    = =    
        

 

 
   (8) 

Remark 2. In some practical decision making situations, the attributes can be divided into different classes 

1 2
, ,...,

d
P P P  and the type of relationship structure is consistent in each class 

h
P ( 1,2,..., )h d= , that is to say, 

1 2 d
k k k k= = =  and 1,2,...,min{| |}

h
k P=  for 1,2,...,h d= . Then Equation (6), can be modified as 

follows: 

( )
1 2

1 2

1

( )

1 2
1 , , , 1

1 1
, ,...,

j

k h
h

k

k
kd

k

n ik
h i i i P jP

i i i

PMSM a a a a
d C=  =

  

 
   
   =    

     
 

    (9) 

Remark 3. It is noted that the PMSM can be reduced to a special case of the partitioned Bonferroni mean 

operator [4], with the parameters s and t being equal to one, when the attributes can be divided into different 

classes 
1 2
, ,...,

d
P P P  and there is an interrelationship between any two attributes in each class 

h
P ( 1,2,..., )h d= , that is to say, 

1 2
2

d
k k k k= = = =  for 1,2,...,h d= . 

( )(2)

1 2
, ,...,

n
PMSM a a a  

( )1 2 1 2

1 2 1 2

1 1

2 2
2 2

2
1 , 1 ,1 1

1 1 1 2 1

21j j

h h
h

d d

i i
h i i P h i i Pj jP h h

i i i i

a a
d dC P P=  = = =

 

   
         
         = =          −               

   

      
(10) 
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( ) 1 2

1 2

1 2

1 1

2 2

1 , 1

1 1 1 1 1

11
h h h

d d

i i i j
h i i P h i P j Ph hh h

i i i j

a a a a
d d P PP P=  =  

 

   
         
         =  =         −−              

  

       

(Let 
1

i i=  and 
2

i j= ) 1,1

1 2
( , ,..., )

n
PBM a a a=  

Remark 4. In some practical decision making situations, it may happen that some attributes have no 

relationship with any of the rest of the attributes, namely, they do not belong to any classes. In order to solve 

this case, we can divide the attributes into two sets. Meanwhile, we put these attributes, which are not related 

to any attributes in a single set denoted by 
1

C  and put other attributes in another set denoted by 
2

C . 

Assume that the attributes in 
2

C  are divided based on a previous relationship structure. Equation (6) can be 

modified as follows: 

1 2

1 2 1

1 2

1

1 1( , , , )

1 2
1 , , , 1 1

1 1 1
( , ,..., )

h

h

d

jh

k hhh
kh

k

kd
k k k

n i ik
h i i i P i Cjp

i i i

n C C
PMSM a a a a a

n d n CC=  =

 

  
   

 −    
= +       

     
   

  

    (11) 

In the following, some properties of PMSM operator are discussed as follows: 

Theorem 1 (Idempotency). Let 
i

a ( 1,2,..., )i n=  be a collection of nonnegative real numbers. For the 

parameter vector 
1 2
, ,...,

d
k k k  with 1,2,...,

h h
k P=  and the 

h
P  being the cardinality of 

h
P ( 1,2,..., )h d= , 

if 
1 2 n

a a a a= = = = , then we can get 

1 2( , ,..., )

1 2
( , ,..., )dk k k

n
PMSM a a a a=  (12) 

Proof. Based on the assumption that
i

a are equal to a for all 1,2,...,i n= , then we can get 

1 2

1 2 1 2

1 2 1 2

1 1

( , , , )

1 , , , 1 , , ,1

1 1 1 1
( , ,..., )

h h

h

d h

h h

k h k hh hh h
k kh h

k k

kd d
k k k k

k k
h i i i P h i i i Pjp p

i i i i i i

PMSM a a a a a
d dC C=  = =

   

   
         
         

= =         
            

         
   

      

( )

1

1

1 1
h

h k

hh

h

k
d

k k

Pk
h p

C a a
d C=

 
  
 =  = 
  
  

 

  

□ 

Theorem 2 (Monotonicity). Let 
i

a  and 
i

b  be two collections of nonnegative real numbers. For the 

parameter vector 
1 2
, ,...,

d
k k k  with 1,2,...,

h h
k P=  and the h

P  being the cardinality of 
h

P ( 1,2,..., )h d= , 

if 
i i

a b  for all 1,2,...,i n= , then 

1 2 1 2( , , , ) ( , , , )

1 2 1 2
( , ,..., ) ( , ,..., )d dk k k k k k

n n
PMSM a a a PMSM b b b  (13) 
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Proof. Based on the assumption that 
i i

a b  for all 1,2,...,i n= , then we can obtain  

1 2 1 2

1 2 1 2

, , , , , ,1 1 1 1

h h h h

j j j j

k h k hh h

k kh h

k k k k

i i i i
i i i P i i i Pj j j j
i i i i i i

a b a b
 = = = =

     

          

1 2 1 2

1 2 1 2

1 1

, , , , , ,1 1

1 1
h h

h h

j jh h

k h k hh hh h
k kh h

k k

k k

i ik k
i i i P i i i Pj jP P
i i i i i i

a b
C C = =

     

      
      

       
         

      

    

1 2 1 2

1 2 1 2

1 1

1 , , , 1 , , ,1 1

1 1 1 1
h h

h h

j jh h

k h k hh hh h
k kh h

k k

k kd d

i ik k
h i i i P h i i i Pj jp p

i i i i i i

a b
d dC C=  = = =

   

   
         
         

          
            

         
   

      

□ 

Theorem 3 (Boundedness). Let 
i

a ( 1,2,..., )i n=  be a collection of nonnegative real numbers. For the 

parameter vector 
1 2
, ,...,

d
k k k  with 1,2,...,

h h
k P=  and the 

h
P  being the cardinality of 

h
P ( 1,2,..., )h d= , 

if min{ }
ii

a a− =  and max{ }
ii

a a+ = , then 

1 2( , , , )

1 2
( , ,..., )dk k k

n
a PMSM a a a a− +   (14) 

Proof. Based on the Theorem 2, we can obtain 

1 2 1 2( , ,..., ) ( , ,..., )

1 2
( , ,..., ) ( , ,..., )d dk k k k k k

n
PMSM a a a PMSM a a a− − −   

And 

1 2 1 2( , ,..., ) ( , ,..., )

1 2
( , ,..., ) ( , ,..., )d dk k k k k k + + +

n
PMSM a a a PMSM a a a  

Furthermore, based on the Theorem 1, we can obtain 

1 2( , ,..., )( , ,..., )dk k kPMSM a a a a− − − −=  and 1 2( , ,..., )( , ,..., )dk k kPMSM a a a a+ + + +=   

Hence, we can obtain 

1 2( , , , )

1 2
( , ,..., )dk k k

n
a PMSM a a a a− +   

□ 

4.2. q-ROFPMSM Operator and q-ROFWPMSM Operator  

The PMSM can only deal with evaluation values in the form of nonnegative real numbers, but 

it is not valid to the information that is expressed by the q-ROFNs. In this section, we shall apply the 

PMSM operator in q-rung orthopair fuzzy environment and propose the q-rung orthopair fuzzy 

partitioned Maclaurin symmetric mean (q-ROFPMSM) operator and q-rung orthopair fuzzy 

weighted partitioned Maclaurin symmetric mean (q-ROFPMSM) operator 
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Definition 8. Let 
i

a ( 1,2,..., )i n=  be a collection of q-ROFNs which are divided into d different classes 

1 2
, ,...,

d
P P P . For parameter vector 

1 2
, ,...,

d
k k k  with 1,2,...,

h h
k P=  and 

h
P  the being the cardinality of 

h
P ( 1,2,..., )h d= , if 

1 2

1 2

2

1

( , , , )

1 2 1 , , , 1

1 1
( , ,..., )

h
h

d

jh k hh
h i kh

k
kd

k k k

n ikh i i i P j
P i i i

q-ROFPMSM a a a a
d C=  =

  

 
   
   =        

   
 

 (15) 

where the 
1 2

( , ,..., )
hk

i i i  traverses all the kh-tuple combination of ( 1,2,..., )
h

i P=  and h

h

k

P
C  is the binomial 

coefficient. Then the 1 2( , , , )dk k kq-ROFPMSM  is called the q-rung orthopair fuzzy partitioned Maclaurin 

symmetric mean (q-ROFPMSM) operator. 

Theorem 4. Let 
i

a ( 1,2,..., )i n=  be a collection of q-ROFNs. For the parameter vector 
1 2
, ,...,

d
k k k  with 

1,2,...,
h h

k P=  and the 
h

P  being the cardinality of 
h

P ( 1,2,..., )h d= , then the aggregating result obtained 

by Equation (15) is still a q-ROFN and presented as follows: 

1 2( , , , )

1 2
( , ,..., )dk k k

n
q-ROFPMSM a a a =   

1 2

1 2

1
1

1
1

1 , , , 1

1 1 1 1

h
kh
Ph

h

j

k hh

kh

q
d

k

Cq
kd

i
h i i i P j

i i i


=  =

  


 

                        − − − −                               


   , 

( )
1 2

1 2

1
1

1
1

1 , , , 1

1 1 1 1

h
kh
Ph

h

j

k hh

kh

d
q

k

C
kd

q

i
h i i i P j

i i i

v
=  =

  


  

                − − − −                       
 


    

(16) 

The proof of Theorem 4 is provided in Appendix A. 

Considering the influence of the partition number of the argument set and the relationship 

structure of the argument on q-ROFPMSM, some special cases of the q-ROFPMSM operator are put 

as the remark below: 

Remark 5. When all arguments belong to the same class and the types of the interrelationship among 

arguments are also the same, that is to say, the number of the class 1d = , the cardinality of 1
P n=  and the 

1
1,2,...,k k n= = , then the q-ROFPMSM reduces to the q-rung orthopair fuzzy Maclaurin symmetric mean 

(q-ROFMSM) operator as follow: 
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1
1

1 2

1 1 2 11
1 2 1

1
1

1 1( )

1 2 , , , 1

1
( , ,..., )

j
k

j
k

i k

k k
k

k ii i i n jk

n ik ki i i P j
nP i i i

a
q-ROFPMSM a a a a

CC

     =

 =

  

        =   =              

 (17) 

Remark 6. When there is no partition among argument sets and the types of the interrelationship among 

arguments are same, namely, the cardinality 
1

P n=  and the parameter 
1

1,2,...,k k n= = . Under the above 

conditions, we further investigate some special cases of q-ROFPMSM with parameter k taking some 

particular values. 

Case 1: If 1k = , then Equation (16) reduces to q-rung orthopair fuzzy average mean (q-ROFA) 

operator as follows: 

(1)

1 2
( , ,..., )

n
q-ROFPMSM a a a

  

( )
1 2 1 2

1
1 1

11
1

1 1 1 1

1 1 , 1 1 1 1

k
kn
n

j j

k k

q
k q

kC
Cq

k k
q

i i
i i i n j i i i n j

v
     =      =

                       = − − − − − −                                     

   

, 

( )

1
1

1 1

1
11

1
1 1

1 1 1 1

1 1 , 1 1

n
n

j j

q
qC

Cq

q

i i
i n j i n j

v
  =   =

                 = − − − −                             

   

 , 

( ) ( )
1

1 1

1 1
1 1

1 1

1 1
i

q q
n n

n nq q

i i
i i

v
= =

            = − −                    

 ，

 Let 1
i i=

 

( )( )
1

1 1

1 1

  1 1

q
n n

n n
q

i i
i i

v
= =

       = − −           

 ，  

(18) 

which is a special case of the q-rung orthopair fuzzy weighted average mean (q-ROFWA) operator 

defined by Liu and Wang [31]. 

Case 2: If 2k = , then Equation (16) reduces to the q-rung orthopair fuzzy Bonferroni mean 

(q-ROFBM) operator introduced by Liu and Liu [32]. 

(2)

1 2
( , ,..., )

n
q-ROFMSM a a a   

( )
1 2 1 2

1
1 2 1

2 ( 1) 1 2
2 ( 1)

2 2

1 1 1 1

1 1 , 1 1 1 1
j j

q
q

n n
n nq

q

i i
i i n j i i n j

v

−
−

   =    =

                        = − − − − − −                                     

     

( )
1 2 1 2

1 2 1 2

1
1 2 1 2

2 2
1 2 1( 1) ( 1)

2 2

, 1 1 , 1 1

1 1 , 1 1 1 1
j j

q

n n n n
q

n n
q

i i
i i j i i j
i i i i

v

− −

= = = =
 

     
                           − − − − − −                                                   

=    

1

q
 
 
 
 
 
 
 
 











 
 




 

(19) 
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( )
1 2 1 2

1 2 1 2

1 1
1 2 1 2

1 ( 1) 1 ( 1)

2 2

, 1 1 , 1 1

1 1 , 1 1 1 1
j j

q q
n n n n

q
n n

q

i i
i i j i i j
i i i i

v

− −

= = = =
 

                             = − − − − − −                                             

   

( ) ( )
1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 1
1 2 1 2

1 ( 1) 1 ( 1)

, 1 , 1

1 1 , 1 1

q q
n n n n

n nq
q q q q

i i i i i i
i i i i
i i i i

v v v v 

− −

= =
 



                      − − − − += −                              


 

 
 
 
 



 

   

which is a special case of the q-ROFBM operator with the parameters s and t being equal to 1. 

Case 3: If k n= , then Equation (16) reduces to the q-rung orthopair fuzzy geometric (q-ROFG) 

operator as follows: 

( )

1 2
( , ,..., )n

n
q-ROFPMSM a a a   

( )
1 2 1 2

1
1 1

1 1
1

1 1 1 1

1 1 , 1 1 1 1

k
kn
n

j j

k k

q
k q

k

q Ck k C
q

i i
i i i n j i i i n j

v
     =      =

 
 
 

=

                      − − − − − −          



                    

 
 
  

      

( )
1 2 1 2

1
1 1

1

1 1 1 1

1 1 , 1 1 1 1
j j

n k

q
n q

nq
n n

q

i i
i i i n j i i i n j

v
     =      =

 
 

=

           



    − − − − − −                    



 



 
 

 

     

( )
1

1 1

1 1

, 1 1
j j

q
n n

n n
q

i i
j j

v
= =

       = − −              

   

(20) 

which is a special case of the q-rung orthopair fuzzy weighted geometric (q-ROFWG) operator 

proposed by Liu and Wang [31]. 

Theorem 5 (Idempotency). Let ( , )
i i i

a v=  ( 1,2,..., )i n=  be a collection of q-ROFNs. For the parameter 

vector 
1 2
, ,...,

d
k k k  with 1,2,...,

h h
k P=  and h

P  the being the cardinality of 
h

P ( 1,2,..., )h d= , if 

( , )
i

a a v= =  for all 1,2,...,i n= , then 

1 2( , , , )

1 2
( , ,..., )dk k k

n
q-ROFPMSM a a a a=  (21) 

Theorem 6 (Monotonicity). Let be ( , )
i ii a a

a v=  and ( , )
i i

i b b
b v=  two collections of q-ROFNs. For the 

parameter vector 
1 2
, ,...,

d
k k k  with 1,2,...,

h h
k P=  and h

P  the being the cardinality of 
h

P ( 1,2,..., )h d= , 

if 
i i

a b
   and 

i i
a b

v v , then 

1 2 1 2( , , , ) ( , , , )

1 2 1 2
( , ,..., ) ( , ,..., )d dk k k k k k

n n
q-ROFPMSM a a a q-ROFPMSM b b b  (22) 

Theorem 7 (Boundedness). Let ( , )
i i i

a v=  ( 1,2,..., )i n=  be a collection of q-ROFNs. For the 

parameter vector 
1 2
, ,...,

d
k k k  with 1,2,...,

h h
k P=  and h

P  the being the cardinality of 
h

P ( 1,2,..., )h d= , 

if min{ }
ii

a a− =  and max{ }
ii

a a+ = , then 
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1 2( , , , )

1 2
( , ,..., )dk k k +

n
a q-ROFPMSM a a a a−    (23) 

The proof of Theorems 5–7 are provided in Appendix A. 

Note that the argument weights can produce a great impact on aggregated results, so we take 

into account the importance of the argument itself and propose the q-ROFWPMSM operator to 

overcome the drawbacks of q-ROFPMSM. 

Definition 9. Let ( , )
i i i

a v=  ( 1,2,..., )i n=  be a collection of q-ROFNs which are divided into d different 

classes 
1 2
, ,...,

d
P P P . For parameter vector 

1 2
, ,...,

d
k k k  with 1,2,...,

h h
k P=  and the 

h
P  being the 

cardinality of 
h

P ( 1,2,..., )h d= , if 

( )1 2

1 2

1 2

1

( , , , )

1 2 1 , , , 1

1 1
( , ,..., )

h
h

d

j jh k hh
h kh

k
kd

k k k

n i ikh i i i P j
P i i i

q-ROFWPMSM a a a w a
d C=  =

  

 
   
   =         

   
 

 (24) 

where the 1 2
( , ,..., )

hk
i i i  traverses all the kh-tuple combination of ( 1,2,..., )

h
i P=  and h

h

k

P
C  is the binomial 

coefficient. The 
i

w  denotes the weight information of 
i

a  with [0,1]
i

w  ( 1,2,..., )i n=  and 
1

1
n

ii
w

=
= . 

Then the 1 2( , , , )dk k kq-ROFWPMSM  is called the q-rung orthopair fuzzy weighted partitioned Maclaurin 

symmetric mean (q-ROFPMSM) operator. 

Theorem 8. Let ( , )
i i i

a v= ( 1,2,..., )i n=  be a collection of q-ROFNs and
i

w denote the weight 

information of 
i

a  with [0,1]
i

w  ( 1,2,..., )i n=  and 
1

1
n

ii
w

=
= . For the parameter vector 

1 2
, ,...,

d
k k k  

with 1,2,...,
h h

k P=  and 
h

P  the being the cardinality of 
h

P ( 1,2,..., )h d= , then the aggregating result 

obtained by Equation (24) is still a q-ROFN and presented as follows: 

1 2( , , , )

1 2
( , ,..., )dk k k

n
q-ROFWPMSM a a a =  

( )
1 2

1 2

1
1

1

1

1 , , , 1

1 1 1 1 1 1

h

khh ij Ph

j

k hh

kh

q
d

k

kd w C
q

i
h i i i P j

i i i


=  =

  


 

             = − − − − − −                
  
 


   , 

( )
1 2

1 2

1
1

1

1

1 , , , 1

1 1 1

h

khh ij Ph

j

k hh

kh

d
q

k

kd qw C

i
h i i i P j

i i i

v
=  =

  


  

             − − −                
   
  



  1-  

(25) 

The proof of this theorem is similar to Theorem 4, so it is omitted here. 

Meanwhile, it is easily proved that the q-ROFWPMSM satisfies the Monotonicity and 

Boundedness properties.  

Remark 7. When the arguments can be divided into d different class 
1 2
, ,...,

d
P P P  and each member of class 

h
P ( 1,2,..., )h d=  is interrelated to each other, namely, 2

h
k k= =  for all 1,2,...,h d= . Then the 
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q-ROFWPMSM reduces to a special case of q-rung orthopair fuzzy weighted partitioned Bonferroni mean 

(q-ROFWPBM) operator with the parameters s and t being equal to one. 

(2,2, ,2)

1 2
( , ,..., )

n
q-ROFWPMSM a a a

  

( )
( )

( )
1 2 1 2

1 2 1 2

1 1

2 2
2 2

21 , 1 1 , 1

1 1 1 2 1

21j j j j
h h

h

d d

i i i ih i i P j h i i P j
P i i i ih h

w a w a
d dC P P=  = =  =

 

   
         
      =     =        
      −            

     

( )
( )

( )
( )

1 1 2 2
1 2

1 2

1 1

2 2

1 , 1 ,

1 1 1 1

1 1h h

d d

i i i i i i j jh i i P h i j P
i i i jh h h h

w a w a w a w a
d dP P P P=  = 

 

   
         
      =    =      

     − −           
  

 

(26) 

4.3. q-ROFPPMSM Operator and q-ROFWPPMSM Operator 

In a practical decision making process, the decision maker may provide unduly high or unduly 

low evaluation values for attributes due to the lack of time and the difference of knowledge. The PA 

can reduce the bad influence of unreasonable argument on aggregation result by calculating the 

support measure between arguments. Thus, we propose the q-rung orthopair fuzzy power 

partitioned Maclaurin symmetric mean (q-ROFPPMSM) and the q-rung orthopair fuzzy weighted 

power partitioned Maclaurin symmetric mean (q-ROFPPMSM) operators that take advantage of 

PMSM and PA. 

Definition 10. Let 
i

a ( 1,2,..., )i n=  be a collection of q-ROFNs which are divided into d different classes 

1 2
, ,...,

d
P P P . For parameter vector 

1 2
, ,...,

d
k k k  with 1,2,...,

h h
k P=  and the 

h
P  being the cardinality of 

h
P , if 

( )
( )=  =

   =

 
    +    =        

+        
 


，

h

h
j

d

jh k hh
h kh

k
kd ik k k

n ik nh i i i P j
P li i i l

n T a
q-ROFPPMSM a a a a

d C T a

1 2

1 2

1 2

1

( , , , )

1 2 1 , , , 1

1

1 ( )1 1
( , ,..., )

1 ( )

 (27) 

then 1 2( , , , )dk k kq-ROFPPMSM  the is called the q-rung orthopair fuzzy power partitioned Maclaurin 

symmetric mean (q-ROFPPMSM) operator, where the 1 2
( , ,..., )

hk
i i i  traverses all the kh-tuple combination of 

( )1,2,...,
h

i P=  and h

h

k

P
C  is the binomial coefficient. Meanwhile, the 

1,
( ) ( , )

n

i i ll l i
T p Sup a a

= 
=  and 

( , )
i l

Sup a a  is the support for 
i

a and
l

a which satisfies following properties:  

(1) ( , ) [0,1]
i l

Sup a a  ; 

(2) ( , ) ( , )
i j r l

Sup a a Sup a a ; 

(3) if ( , ) ( , )
i j r l

d a a d a a , the ( , )
i j

d a a  is the distance of q-ROFNs 

In order to simplify Equation (27), we define 

( ) ( )
1

1 ( ) 1 ( )
n

i i ll
T a T a

=
= + +  (28) 

And 
1 2

( , ,..., )
n

   = . The  is called as the power weighting vector which satisfies 

[0,1]
i

   and 
1

1
n

ii


=
= . Therefore Equation (27) can be expressed as follows: 
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( )1 2

1 2

2

1

( , , , )

1 2 1 , , , 1

1 1
( , ,..., )

h
h

d

j jh k hh
h i kh

k
kd

k k k

n i ikh i i i P j
P i i i

q-ROFPPMSM a a a n a
d C


=  =

  

 
   
   =         

   
 

 (29) 

Theorem 9. Let ( , )
i i i

a v=  ( 1,2,..., )i n=  be a collection of q-ROFNs. For the parameter vector 

1 2
, ,...,

d
k k k  with 1,2,...,

h h
k P=  and the 

h
P  being the cardinality of 

h
P ( 1,2,..., )h d= , then the 

aggregating result obtained by Equation (29) is still a q-ROFN and is presented as follows: 

1 2( , , , )

1 2
( , ,..., )dk k k

n
q-ROFPPMSM a a a  

( )
1 2

1 2

1
1

1

1

1 , , , 1

1 1 1 1 1 1

h

khh ij Ph

j

k hh

kh

q
d

k

kd n C
q

i
h i i i P j

i i i




=  =

  


 

             = − − − − − −                
  
 


   ， 

( )
1 2

1 2

1
1

1

1

1 , , , 1

1 1 1

h

khh ij Ph

j

k hh

kh

d
q

k

kd qn C

i
h i i i P j

i i i

v


=  =

  


  

             − − −                
   
  



  1-  

(30) 

The proof of this theorem is similar to Theorem 4, so it is omitted here. 

Theorem 10 (Idempotency). Let ( , )
i i i

a v=  ( 1,2,..., )i n=  be a collection of q-ROFNs. For the 

parameter vector 
1 2
, ,...,

d
k k k  with 1,2,...,

h h
k P=  and 

h
P  the being the cardinality of 

h
P ( 1,2,..., )h d= , 

if ( , )
i

a a v= =  for all 1,2,...,i n= , then 

1 2( , , , )

1 2
( , ,..., )dk k k

n
q-ROFPPMSM a a a a=  (31) 

Theorem 11 (Boundedness). Let ( , )
i i i

a v=  ( 1,2,..., )i n=  be a collection of q-ROFNs. For the 

parameter vector 
1 2
, ,...,

d
k k k  with 1,2,...,

h h
k P=  and the h

P  being the cardinality of 

h
P ( 1,2,..., )h d= , if min{ }

ii
a a− =  and max{ }

ii
a a+ = , then 

1 2( , , , )

1 2
( , ,..., )dk k k

n
x q-ROFPPMSM a a a y   (32) 

where  

( )( )
1 2

1 2

1
1

1

1

1 , , , 1

1 1 1 1 1 1 ,

h
kh
Phh ij

k hh

kh

q
d

k

C
k nd q

h i i i P j

i i i

x


 −

=  =

  

            = − − − − − −                 
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( )( )
1 2

1 2

1
1

1

1

1 , , , 1

1 1 1

h
kh
Phh

ij

k hh

kh

d
q

k

C
kd qnw

h i i i P j

i i i

v−

=  =

  

            − − −                  

  1-   

and 

( )( )
1 2

1 2

1
1

1

1

1 , , , 1

1 1 1 1 1 1 ,

h
kh
Phh ij

k hh

kh

q
d

k

C
k nd q

+

h i i i P j

i i i

y



=  =

  

            = − − − − − −                 

     

( )( )
1 2

1 2

1
1

1

1

1 , , , 1

1 1 1

h
kh
Phh

ij

k hh

kh

d
q

k

C
kd qnw

+

h i i i P j

i i i

v
=  =

  

            − − −                  

  1-   

The proof of these theorems is provided in Appendix B. 

In the following, we provide the weighted form of q-ROFPPMSM operator. 

Definition 11. Let ( , )
i i i

a v=  ( 1,2,..., )i n=  be a collection of q-ROFNs which are divided into d 

different class 
1 2
, ,...,

d
P P P  and the 

h
P  represent the cardinality of 

h
P . The 

1 2
( , , , )T

n
w w w w=  is the 

weighted vector with [0,1]
i

w  ( 1,2,..., )i n=  and 
1

1
n

ii
w

=
= . For the parameter vector r

1 2
, ,...,

d
k k k  

with 1,2,...,
h h

k P=  for all 1,2,...,h d= , if 

1 2

1 2

1 2

1

( , , , )

1 2 1 , , , 1

1

(1 ( ))1 1
( , ,..., )

(1 ( ))

h
h

j jd

jh k hh
h kh

k
kd i ik k k

n ik nh i i i P j
P l li i i l

nw T a
q-ROFWPPMSM a a a a

d C w T a=  =

   =

 
    +
    =        +      

 


 (33) 

then the 1 2( , , , )dk k kq-ROFWPPMSM  is called the q-rung orthopair fuzzy weighted power partitioned 

Maclaurin symmetric mean (q-ROFWPPMSM) operator, where the 1 2
( , ,..., )

hk
i i i  traverses all the kh-tuple 

combination of ( )1,2,...,
h

i P=  and h

h

k

P
C  is the binomial coefficient. Meanwhile, the 

1,
( ) ( , )

n

i i ll l i
T p Sup a a

= 
=  and ( , )

i l
Sup a a  is the support for

i
a and

l
a which satisfies following properties:  

(1) ( , ) [0,1]
i l

Sup a a  ; 

(2) ( , ) ( , )
i l l i

Sup a a Sup a a= ; 

(3) ( , ) ( , )
i j r l

Sup a a Sup a a , the ( , )
i j

d a a is the distance of q-ROFNs 

In order to simplify Equation (33), we define 

( ) ( )
1

1 ( ) 1 ( )
n

i i ll
T a T a

=
= + +  (34) 

and 
1 2

( , ,..., )
n

   = . The  is called as the power weighting vector which satisfies [0,1]
i

   

and 
1

1
n

ii


=
= . Therefore Equation (33) can be expressed as follows: 
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1 2

1 2

1 2

1

( , , , )

1 2 1 , , , 1

1

1 1
( , ,..., )

h
h

j jd

jh k hh
h kh

k
kd i ik k k

n ik nh i i i P j
P l li i i l

nw
q-ROFWPPMSM a a a a

d C w



=  =

   =

 
    
    =              

 


 (35) 

Theorem 12. Let ( , )
i i i

a v=  ( 1,2,..., )i n=  be a collection of q-ROFNs and 
i

w  denote the weight 

information of 
i

a  with [0,1]
i

w   ( 1,2,..., )i n=  and 
1

1
n

ii
w

=
= . For parameter vector 

1 2
, ,...,

d
k k k  

with 1,2,...,
h h

k P=  and 
h

P  the being the cardinality of 
h

P ( 1,2,..., )h d= , then the aggregating result 

obtained by Equation (35) is still a q-ROFN and presented as follows: 

1 2( , , , )

1 2
( , ,..., )dk k k

n
q-ROFWPPMSM a a a   

( ) 1

1 2

1 2

1
1

1
1

1 , , , 1

1 1 1 1 1 1 ,

hkh
Phi ij j

h
n

l ll
j

k hh

kh

q
d

k
C

nw
kd

q w
i

h i i i P j

i i i



 =

=  =

  

                = − − − − − −                   

     

( ) 1

1 2

1 2

1
1

1
1

1 , , , 1

1 1 1

hkh
Phi ij j

h
n

l ll
j

k hh

kh

d
q

k
C

nw
kd

q w
i

h i i i P j

i i i

v




=

=  =

  

                − − −                     

  1-  

(36) 

The proof of the theorem is similar to the Theorem 4, which is omitted here. 

5. A Novel Approach of MAGDM Based on q-ROFWPPMSM Operator 

In order to solve MAGDM problems, a new approach based on a q-ROFWPPMSM operator is 

proposed. 

A typical MAGDM is the process that the most desirable alternative is selected from a set of 

alternatives 
1 2

{ , ,..., }
m

X X X X=  based on a collection of attributes 
1 2

{ , ,..., }
n

C C C C= . The process is 

carried out by a group of decision makers 
1 2

{ , ,..., }
t

D D D D=  whose weight vector is 

1 2
( , ,..., )

t
   =  satisfying [0,1]

k
   ( 1,2,..., )k t=  and 

1
1

t

kk


=
= . Meanwhile, the attribute 

weight vector 
1 2

( , ,..., )
n

w w w w= , which satisfies [0,1]
i

w   ( 1,2,..., )i n=  and 
1

1
n

ii
w

=
= , 

represents the importance of attribute j
A ( 1,2,..., )j n=  in the decision making process. Suppose 

that the attributes are divided into d different classes 
1 2
, ,...,

d
P P P  and there is an interrelationship 

among any kh attributes in each class 
h

P ( 1,2,..., )h d=  whereas the attributes in different classes are 

not related. Due to the existence of uncertainty in a MAGDM problem, the performance value of 

alternative 
i

X  with respect to the attribute j
A  given by decision maker 

k
D  is provided in the 

form of q-ROFN and is summarized in the decision matrix [ ]k

k ij m n
R r


= . 

For the sake of select the best alternative, an algorithm based on q-ROFWPPMSM operator is 

provided and the key steps of the algorithm are given as follows:  

Step 1: To ensure the consistence of the type of each attribute, we transform the given decision 

matrix [ ]k

k ij m n
R r


=  into normalized q-rung orthopair fuzzy decision matrix [ ]k

k ij m n
R r


=  by the 

following method: 
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,       for benefit attribute of 

( ) ,   for cost attribute of 

k

ij jk

ij k c

ij j

r C
r

r C


= 


 (37) 

where the ( ) ( , )k c k k

ij ij ij
r  = . 

Step 2: Calculate the support between the q-ROFN k

ij
r with other q-ROFNs l

ij
r ( , 1,2,..., )k l t= . 

( , ) 1 ( , )k l k l

ij ij ij ij
Sup r r d r r= −  ( 1,2,..., ; 1,2,..., )i m j n= =  (38) 

where the ( , )k l

ij ij
d r r  is the distance of q-ROFNs based on Definition 4. 

Step 3: Calculate the ( )k

ij
T r  of the q-ROFN k

ij
r ( 1,2,..., )k t= . 

1( ) ( , )
tk k l
lij ij ij
l k

T r Sup r r=


=  ( 1,2,..., ; 1,2,..., )i m j n= =  (39) 

Step 4: Calculate the power weights k

ij
  corresponding to the q-ROFNs k

ij
r ( 1,2,..., )k t= . 

( )( ) ( )( )1
1 1

tk k l

ij ij ijl
T r T r

=
= + +  ( 1,2,..., ; 1,2,..., )i m j n= =  (40) 

Step 5: For the alternative Xi, aggregate the evaluation of attributes 
j

A  provided by decision 

makers 
k

D ( 1,2,..., )k t=  based on q-ROFWPPMSM operator. 

1 2( , ,..., )t

ij ij ij ij
r q-ROFWPPMSM r r r=  ( 1,2,..., ; 1,2,..., )i m j n= =   (41) 

and obtain the comprehensive decision matrix [ ]
ij m n

R r


= . 

Step 6: Calculate the supports ( , )
ij il

Sup r r  ( , 1,2,..., )j l n= . 

( , ) 1 ( , )
ij il ij il

Sup r r d r r= − , 1,2,...,i m=  (42) 

Step 7: Calculate the ( )
ij

T r ( 1,2,..., ; 1,2,..., )i m j n= = . 

1,
( ) ( , )

n

ij ij ill j l
T r Sup r r

= 
=  (43) 

Step 8: Calculate the power weights ij
  which are corresponded to attributes 

j
A ( 1,2,..., )j n= , respectively. 

( ) ( )( )1
1 ( ) 1

n

ij ij ill
T r T r

=
= + + , 1,2,...,i n=  (44) 

Step 9: Calculate the overall performance value of alternatives 
i

X ( 1,2,..., )i m=  over all 

attributes. 

1 2
( , ,..., )

i i i in
r q-ROFWPPMSM r r r=  (45) 

Step 10: Calculate the score function of alternatives and rank the alternatives based on the 

comparison rule presented in Definition 3 

6. Numerical Instance 

In this section, a MAGDM problem about company location selection is provided to illustrate 

the application of the proposed approach (cited from Liu et al. [12]). 

Example 3. A corporation needs to select a best location to build new company building from five 

alternatives denoted by 
i

X ( 1,2,...,5)i = . Considering the company’s strategic benefits, the company decides 

to evaluate the alternatives based on the following four factors, including: the cost of rent C1, the convenience 
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of transportation C2, the cost of labor C3, and the influence of surrounding environment C4. The 

corresponding attribute weighting vector is (0.25,0.1,0.3,0.35)w = . Assume that the attributes are divided 

into two classes 
1 1 3

{ , }P C C=  and 
2 4

{ , }P C C= , there is interrelationship between any two attributes in 

each class, that is to say, the 
1 2

2k k= = . Three experts 
l

D ( 1,2,3)l = , whose weight vector is 

(0.35,0.45,0.2) = , are invited to evaluate five alternatives by taking form of q-ROFNs according to the 

above four attributes and the decision matrices 
5 4

[ ]l l

ij
R r


= ( 1,2,3)l = are presented in Tables 2–4. 

Table 2. The q-rung orthopair fuzzy decision matrix R1 provided by D1. 

 C1 C2 C3 C4 

X1 (0.5,0.4) (0.5,0.3) (0.2,0.6) (0.5,0.4) 

X2 (0.6,0.2) (0.6,0.3) (0.6,0.2) (0.6,0.3) 

X3 (0.5,0.4) (0.2,0.6) (0.6,0.2) (0.4,0.4) 

X4 (0.6,0.2) (0.6,0.2) (0.4,0.2) (0.3,0.6) 

X5 (0.4,0.3) (0.7,0.2) (0.4,0.5) (0.4,0.5) 

Table 3. The q-rung orthopair fuzzy decision matrix R2 provided by D2. 

 C1 C2 C3 C4 

X1 (0.4,0.2) (0.6,0.2) (0.4,0.4) (0.5,0.3) 

X2 (0.5,0.3) (0.6,0.2) (0.6,0.2) (0.5,0.4) 

X3 (0.4,0.4) (0.3,0.5) (0.5,0.3) (0.7,0.2) 

X4 (0.5,0.4) (0.7,0.2) (0.5,0.2) (0.7,0.2) 

X5 (0.6,0.3) (0.7,0.2) (0.4,0.2) (0.4,0.2) 

Table 4. The q-rung orthopair fuzzy decision matrix R3 provided by D3. 

 C1 C2 C3 C4 

X1 (0.4,0.5) (0.5,0.2) (0.5,0.3) (0.5,0.2) 

X2 (0.5,0.4) (0.5,0.3) (0.6,0.2) (0.7,0.2) 

X3 (0.4,0.5) (0.3,0.4) (0.4,0.3) (0.3,0.3) 

X4 (0.5,0.3) (0.5,0.3) (0.3,0.5) (0.5,0.2) 

X5 (0.6,0.2) (0.6,0.3) (0.4,0.4) (0.6,0.3) 

6.1. The Decision-Making Process 

Step 1: It is noted that the same type of each attribute is consistent, then we can get the 
k k

ij ij
r r= ( 1,2,3)k =  based on Equation (37) and the normalized the decision matrix 5 4

[ ]k

k k ij
R R r


= = ; 

Step 2: Calculate the support ( , )k k

ij ij
Sup r r  ( 1,2,...,5; 1,2,3,4; , 1,2,3)i j k l= = =  based on 

Equation (38). To simplify, ( )
5 4

( , )k l

ij ij
Sup r r


 is denoted as klSup  and presented as follows: 

12 21

0.8349 0.9000 0.8000 0.9206

0.9000 0.9206 1 0.9000

0.9206 0.9000 0.9000 0.7404

0.8349 0.9206 0.9206 0.6000

0.8413 1 0.7619 0.7619

Sup Sup

 
 
 
 = =
 
 
 
 

; 13 31

0.9000 0.9206 0.7000 0.8413

0.8349 0.9206 1 0.9000

0.9000 0.8349 0.8349 0.9000

0.9000 0.9000 0.7590 0.6698

0.8349 0.9000 0.9026 0.8000

Sup Sup

 
 
 
 = =
 
 
 
 

;  
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23 32

0.7619 0.9206 0.9000 0.9206

0.9206 0.9000 1 0.8000

0.9206 0.9206 0.9206 0.6809

0.9206 0.8349 0.7404 0.8413

0.9206 0.9000 0.8413 0.8349

Sup Sup

 
 
 
 = =
 
 
 
 

; 

Step 3: Calculate the ( )k

ij
T r  ( 1,2,...,5; 1,2,3,4; 1,2,3)i j k= = =  based on Equation (39). For 

simplify, ( )
5 4

( )k

ij
T r


 is denoted as 

k
T  and presented as follows:  

1

1.7349 1.8206 1.5000 1.7619

1.7349 1.8413 2 1.8000

1,8206 1.7349 1.7349 1.6404

1.7349 1.8206 1.6796 1.2698

1.6762 1.9000 1.6825 1.5619

T

 
 
 
 =
 
 
 
 

; 
2

1.5968 1.8206 1.7000 1.8413

1.8206 1.8206 2 1.7000

1.8413 1.8206 1.8206 1.4213

1.7555 1.7555 1.6610 1.4413

1.7619 1.9000 1.6031 1.5968

T

 
 
 
 =
 
 
 
 

; 

3

1.6619 1.8413 1.6000 1.7619

1.7555 1.8206 2 1.7000

1.8206 1.7555 1.7555 1.5809

1.8206 1.7349 1.4994 1.5111

1.7555 1.8000 1.7619 1.6349

T

 
 
 
 =
 
 
 
 

; 

 

Step 4: Calculate the power weights k

ij
  ( 1,2,...,5; 1,2,3,4; 1,2,3)i j k= = =  based on Equation 

(40). For simplify, ( )
5 4

k

ij



 is denoted as 

k
W  and presented as follows: 

1

0.3601 0.3495 0.3352 0.3455

0.3446 0.3517 0.3500 0.3583

0.3489 0.3446 0.3446 0.3653

0.3467 0.3559 0.3559 0.3317

0.3430 0.3524 0.3526 0.3459

W

 
 
 
 =
 
 
 
 

;
2

0.4396 0.4493 0.4655 0.4570

0.4570 0.4489 0.4500 0.4442

0.4518 0.4570 0.4570 0.4307

0.4491 0.4470 0.4544 0.4587

0.4552 0.4531 0.4399 0.4508

W

 
 
 
 =
 
 
 
 

; 

3

0.2003 0.2012 0.1992 0.1974

0.1984 0.1995 0.200 0.1974

0.1993 0.1984 0.1984 0.2040

0.2043 0.1972 0.1897 0.2097

0.2018 0.1944 0.2075 0.2033

W

 
 
 
 =
 
 
 
 

 

 

Step 5: For alternative Xi, we aggregate the evaluation of attributes Aj given by decision makers 

Dk (k = 1, 2, 3) based on Equation (41) and the comprehensive decision matrix is presented in Table 5 

(Suppose k1 = 1). 

Table 5. Comprehensive q-rung orthopair fuzzy decision matrix. 

 C1 C2 C3 C4 

A1 (0.3096, 0.6756) (0.3896, 0.6131) (0.2707, 0.7564) (0.3518, 0.6738) 

A2 (0.3815, 0.6512) (0.4144, 0.6300) (0.4271, 0.5848) (0.4191, 0.6802) 

A3 (0.3088, 0.7478) (0.1902, 0.7986) (0.3716, 0.6390) (0.4078, 0.6541) 

A4 (0.3817, 0.6669) (0.4569, 0.6006) (0.3085, 0.6197) (0.4193, 0.6603) 

A5 (0.3894, 0.6514) (0.4941, 0.6004) (0.2794, 0.6833) (0.3223, 0.6681) 

Step 6: Calculate the ( , )
ij il

Sup r r  ( 1,2,...,5; , 1,2,3,4)i j l= =  based on Equation (42). To simplify, 

( )
5 4

( , )
ij il

Sup r r


 is denoted as jl
Sup  and obtain 
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12 21

0.9277

0.9717

0.9035

0.9290

0.9138

Sup Sup

 
 
 
 = =
 
 
 
 

; 
13 31

0.9336

0.9421

0.9084

0.9371

0.9120

Sup Sup

 
 
 
 = =
 
 
 
 

; 
14 41

0.9662

0.9433

0.9036

0.9701

0.9465

Sup Sup

 
 
 
 = =
 
 
 
 

; 

23 32

0.8678

0.9638

0.8288

0.8822

0.8263

Sup Sup

 
 
 
 = =
 
 
 
 

; 
24 42

0.9482

0.9602

0.8118

0.9489

0.8609

Sup Sup

 
 
 
 = =
 
 
 
 

; 
34 43

0.9181

0.9243

0.9706

0.9106

0.9654

Sup Sup

 
 
 
 = =
 
 
 
 

; 

 

Step 7: Calculate the ( )
ij

T r  ( 1,2,...,5; 1,2,3,4)i j= =  based on Equation (43). To simplify, 

( )
5 4

( )
ij

T r


 is denoted as T and obtain  

2.8278 2.7437 2.7195 2.8329

2.8800 2.8958 2.8302 2.8506

2.7154 2.5441 2.7078 2.6860

2.8362 2.7601 2.7299 2.8296

2.7722 2.6010 2.7038 2.7728

T

 
 
 
 =
 
 
 
 

  

Step 8: Calculate the power weight vector of alternative Xi ( 1,2,...,5)i =  with respect to the 

attributes Aj ( 1,2,3,4)j =  based on Equation (44) and obtain 

1
=(0.2526,0.0988,0.2945,0.3541) ;

2
(0.2515,0.1010,0.2980,0.3495)= ; 

3
=(0.2520,0.0962,0.3018,0.3500) ;

4
=(0.2518,0.0991,0.2949,0.3533) ; 

5
(0.2525,0.0964,0.2975,0.3536) = ; 

 

Step 9: Calculate the overall performance of alternative Xi ( 1,2,...,5)i =  over all attributes based 

on Equation (45). 

1 2 3
(0.2015,0.9181); (0.2532,0.9009); (0.1953,0.9263)r r r= = =  

4 5
(0.2394,0.9029); (0.2228,0.9080)r r= =  

 

Step 10: Calculate the score function of alternative Xi ( 1,2,...,5)i =  based on Definition 4. 

1 2 3 4 5
( ) 0.7657; ( ) 0.7150; ( ) 0.7874; ( ) 0.7223; ( ) 0.7377S r S r S r S r S r= − = − = − = − = −   

and on the basis the value of the score function of alternative, we rank the alternatives by using the 

comparison and get 
2 4 5 1 3

X X X X X  

6.2. The Influence of the Parameters on the Results 

It is noted that the parameter q and the parameter vector (k1, k2) have great impacts on the 

aggregated result of alternatives in Example 3. Firstly, the influence of parameter q on aggregation 

results of alternatives is investigated by calculating the score functions of alternatives under the 

condition of parameter q taking different values. The results are presented in Figure 1. 
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Figure 1. Score values of the alternatives Xi ( 1,2,...,5)i =  when [1,10],q . 

From Figure 1, we can know that the aggregation results depend on the parameter q, the score 

values of alternatives 
i

X ( 1,2,...,5)i =  become greater as the parameter q increases. However, it is 

noted that the ranking result of alternatives is still 
2 4 5 1 3

X X X X X  no matter what values 

the parameter q takes. That means the parameter q is robust. The parameter q represents the space of 

acceptable orthopairs, that is to say, the decision maker can set an appropriate value of parameter q 

to model the uncertainty and fuzzy information in decision making. 

In the following, under the condition of parameter vector (k1, k2) taking some special values, the 

score functions of alternatives are calculated and the calculation results are showed in Table 6. 

Table 6. Score values of alternatives with different values of parameter vector. 

(k1, k2) S(r1) S(r2) S(r3) S(r4) S(r5) Ranking 

(1,1) −0.7492 −0.6960 −0.7407 −0.7036 −0.7219 2 4 5 3 1
X X X X X   

(2,1) −0.7497 −0.6996 −0.7473 −0.7058 −0.7224 2 4 5 3 1
X X X X X   

(1,2) −0.7651 −0.7113 −0.7806 −0.7201 −0.7372 2 4 5 1 3
X X X X X   

(2,2) −0.7657 −0.7150 −0.7874 −0.7223 −0.7377 2 4 5 1 3
X X X X X   

It is known from Table 6 that the ranking order of X2, X4, and, X5 remain unchanged no matter 

what values the parameter vector takes, whereas the ranking order of alternatives X3 and X1 

is
3 1

X X  when the parameter vector takes (1,1) or (2,1) and the ranking order of alternatives X3 

and X1 is
1 3

X X  when the parameter vector takes (1,2) or (2,2). The difference is due to the 

relationship structure of the attributes has changed when the parameter vector takes different 

values. The parameter vector models the types of interrelationships among attributes, therefore, a 

decision maker can set the appropriate values of a parameter vector to model any kind of 

interrelationship among attributes in decision making. Meanwhile, we can observe that the more 

interrelationships of attributes in each class we consider, the smaller the score values will become. 

6.3. Comparative Analysis 

In the following, some comparisons of the proposed approach with existing approaches are 

conducted to illustrate the validity and advantage of the q-ROFWPPMSM operator. We select 

following approaches to solve aforementioned example, including: the approach proposed by Wei 

and Lu [26] based on the Pythagorean fuzzy power weighted averaging (PFPWA) operators, the 
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approach introduced by Wei and Lu [40] based on Pythagorean fuzzy weighted Maclaurin 

symmetric mean (PFWMSM) operator, and the approach defined by Liu et al. [16] based on 

intuitionistic fuzzy weighted interaction partitioned Bonferroni mean (IFWIPBM) operator. The 

aggregated results of the alternatives obtained by the reference approaches and the proposed 

approach are presented in Table 7. 

Table 7. Score values and ranking results by different approaches in Example 3. 

Operator Score Values of ri (i = 1, 2, 3, 4) Ranking Result 

PFPWA [26] 
S(r1) = 0.5510, S(r2) = 0.6347, S(r3) = 0.5170, 

S(r4) = 0.6065, S(r5) = 0.5829; 2 4 5 3 1
X X X X X  

PFWMSM [40] 

(Suppose k = 2) 

S(r1) = 0.0914, S(r2) = 0.1135, S(r3) = 0.0919, 

S(r4) = 0.1091, S(r5) = 0.1029; 2 4 5 3 1
X X X X X  

IFWIPBM [16] 

(Suppose p = q = 2) 

S(r1) = −0.0294, S(r2) = −0.0046, S(r3) = −0.0213 

S(r4) = −0.0115, S(r5) = −0.0252; 2 4 3 5 1
X X X X X  

q-ROFWPPMSM 

(Supposek1 = k2 = 2) 

S(r1) = −0.7657, S(r2) = −0.7150, S(r3) = −0.7874 

S(r4) = −0.7223, S(r5) = −0.7377; 2 4 5 1 3
X X X X X   

It is can be observed from Table 7 that the alternatives X2 and X4 are respectively identified as 

the best alternative and second best alternative by all approaches, though the ranking orders of the 

rest of alternatives X1, X3, and, X5 are slightly different. Thus, the validity of the proposed approach 

is verified. 

In Example 3, the attributes are divided into two classes and the attributes of each class are 

interrelated to each other. In order to further demonstrate the advantage of the proposed approach, 

a new example with more complicated scenarios is provided and it is depicted as follows: 

Example 4. A corporation wants to select a new investment area from four alternatives 
i

X ( 1,2,3,4)i = . After 

preliminary screening, there are the following five factors denoted by 
j

C ( 1,2,...,5)j = , which are selected as 

evaluation attributes, including: C1: the risk of losing capital sum, C2: the amount of interest received, C3: the 

vulnerability of capital sum to modification by inflation, C4: the market potential and, C5: the growth potential. 

The corresponding attribute weight vector is (0.3,0.1,0.25,0.15,0.2)w = . Considering the attribute 

characteristics, the attributes are divided into two class P1 = {C1, C2, C3} and P2 = {C4, C5}. Moreover, there is 

interrelationship among any three attributes in
1

P and there is interrelationship between any two attributes 

in
2

P , that is to say, the 
1

3k =  and 
2

2k = . The evaluating values of alternatives 
i

X ( 1,2,3,4)i =  with 

respect to attributes Cj are given in form of q-ROFNs and the decision matrix is present in Table 8 

Table 8. The q-rung orthopair fuzzy decision matrix. 

 C1 C2 C3 C4 C5 

X1 (0.3, 0.6) (0.7, 0.2) (0.2, 0.8) (0.8, 0.1) (0.7, 0.3) 

X2 (0.1, 0.8) (0.8, 0.2) (0.2, 0.6) (0.7, 0.2) (0.8, 0.1) 

X3 (0.1, 0.85) (0.6, 0.2) (0.2, 0.75) (0.8, 0.2) (0.8, 0.2) 

X4 (0.2, 0.7) (0.9, 0.1) (0.2, 0.7) (0.6, 0.3) (0.8, 0.1) 

We utilize the aforementioned approaches to solve Example 4. The score value of alternatives 

over all attributes and ranking order obtained by different approaches are presented in Table 9. 
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Table 9. Score values and ranking results by different approaches in Example 4. 

Method Score Values Ranking Result 

PFPWA [26] 
S(r1) = 0.6708; S(r2) = 0.6949; S(r3) = 0.6710; S(r4) = 

0.7086; 4 2 3 1
X X X X  

PFWMSM [40] 

(Suppose k = 2) 

S(r1) = 0.2201; S(r2) = 0.2315; S(r3) = 0.2061; S(r4) = 

0.2384; 4 2 1 3
X X X X  

IFWIPBM [16] 

(Suppose p = q= 1) 

S(r1) = −0.5967; S(r2) = −0.4690; S(r3) = −0.3541; S(r4) = 

−0.3835; 3 4 2 1
X X X X  

q-ROFWPPMSM 

(Suppose k1 = 3, k2 = 2) 

S(r1) = −0.4101; S(r2) = −0.3609; S(r3) = −0.4052; S(r4) = 

−0.4189; 2 3 1 4
X X X X   

It is known from Table 9 that the ranking order obtained by the proposed approach is 

significantly different from the results given by the three existing approaches. The difference is due 

to none of the above three approaches can exactly model the relationship structure where attributes 

are divided into several classes and there is interrelationship among the arguments of each class. 

In the following, we compare the differences of the ranking orders of alternatives obtained by 

the aforementioned approaches in detail and analyze the principal cause of the above discrepancy 

from the perspective of the model structure. 

(1) Comparing the approach introduced by Wei and Lu [26] with the proposed approach, the 

alternative X4 is respectively identified as the best alternative and worst alternative and the 

alternative X2 is respectively identified as the second best alternative and the best alternative 

by the approach of Wei and Lu [26] and the proposed approach. The difference is due to the 

former only using the power aggregation operator, which can calculate the support degree 

between arguments whereas the later not only includes the power aggregation operation, but 

also considers the interrelationship among arguments. In Example 4, it is obvious that the 

interrelationship exists among attributes, so the proposed approach may be more reasonable 

than Wei and Lu’s approach [22]. 

(2) Similar to the ranking order of alternatives given by the PFPWA operator, the approach of Wei 

and Lu [40] also respectively identified the alternatives X4 and X2 as the best alternative and 

the second best alternative, whereas the proposed approach identifies the X4 and X2 as the 

worst alternative and best alternative, respectively. The ranking order of the rest alternatives 

X1 and X3 obtained by Wei and Lu’s [40] approach and the proposed approach is 

1 3
X X and

3 1
X X , respectively. The difference is due to the approach of Wei and Lu [40], 

which can capture the interrelationships among attributes by using a MSM operator, which 

can calculate the average of the sum of satisfaction among any k attributes. However, the 

proposed approach considers this situation where the attributes can be divided into different 

classes and there is an interrelationship among any attribute in each class, whereas there is no 

interrelationship among attributes of any two classes. 

(3) The ranking orders obtained by the approach of Liu et al. [16] and the proposed approach are 

significantly different. The alternative X3 and the alternative X2 are respectively identified as 

the best alternative by the approach of Liu et al. [16] and the proposed approach. The approach 

of Liu et al. [16], based on the IFIPBM operator, divides attributes into different classes and 

assumes attributes in each class are interrelated to each other. But in Example 4, each attribute 

is interrelated to any other two attributes in class P1 and each attribute in class P2 is interrelated 

to each other, that is to say, the type of interrelationship of attributes in each class are different. 

It is obvious that the proposed approach can model the above situation better than the 

approach of Liu et al. [16]. Therefore the proposed approach may be more reasonable than Liu 

et al. [16]. 
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7. Conclusions 

In this paper, a new approach is proposed for dealing with q-rung orthopair fuzzy MAGDM 

problems. The contribution of this paper includes three phases. Firstly, a new aggregation operator, 

which is called the partitioned PMSM operator, is proposed for dealing with a situation where the 

attributes are divided into several parts and there is interrelationship among any attributes in each 

part whereas the attributes in different parts are not related. The mathematical form of the PMSM is 

introduced and some special cases and desirable properties of a PMSM operator are also 

investigated. Secondly, in order to aggregate the q-rung orthopair fuzzy information, the PMSM 

operator is extended in a q-ROFS and q-rung orthopair fuzzy partitioned Maclaurin symmetric 

mean (q-ROFPMSM) and q-rung orthopair fuzzy weighted partitioned Maclaurin symmetric mean 

(q-ROFWPMSM) operators are proposed. Finally, to eliminate the negative effects of unreasonable 

assessment values obtained by the decision maker on the decision results, we take advantage of the 

PA operator and propose a q-rung orthopair fuzzy power partitioned Maclaurin symmetric mean 

(q-ROFPPMSM) and q-rung orthopair fuzzy weighted power partitioned Maclaurin symmetric 

mean (q-ROFWPPMSM) operators, which combine the advantages of PMSM and PA operators. A 

new approach based on the q-ROFWPPMSM operator is proposed for solving q-rung orthopair 

fuzzy MAGDM problems. A numerical example and some comparative analysis are also 

conducted. 

Based on the results of the comparative analysis, the main advantages of the proposed 

approach include: (1) the proposed PMSM can reflect the relationship structure of attributes that 

attributes are partitioned into several parts, and there is interrelationship among any attributes in 

each part; (2) the proposed PMSM can reduce MSM or PBM operator by adjusting the cardinality of 

set and setting different values of parameter vector; (3) the q-ROFPPMSM operator can reduce the 

influence of the unduly high and low arguments on ranking results. In future works, we will apply 

the proposed approach in other practical decision making problems, such as low carbon supplier 

selection, risk management, medical diagnosis, and resource evaluation, etc.  
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Proof of Theorem 4. Based on the operational laws of q-ROFNs described in Definition 2, we can 
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thus, the proof of Theorem 4 is completed. □ 

Proof of Theorem 5. Since q-ROFNs 
i

a  are equal to a for all 1,2,...,i n= , then we can get 

1 2( , , , )( , ,..., )dk k kq-ROFPMSM a a a    
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thus, the proof of Theorem 5 is completed. □ 

Proof of Theorem 6. 
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thus, the proof of Theorem 6 is completed. □ 

Proof of Theorem 7. Based on the Theorem 5 and Theorem 6, we can obtain that  
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Thus, the proof of Theorem 7 is completed. □ 
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Similarly, we can easily prove that 1 2( , , , )
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