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Abstract: Under the effect of initial stress and excavation disturbance, there exists interaction between
rock mass and rockbolt in deeply buried tunnels. In order to fully explore the mechanism of rock
mass supported with rockbolts, this article studied the time-dependent behavior of the rock mass
supported with discretely mechanically or frictionally coupled (DMFC) rockbolts. The interaction
model elastic solutions under distributed force model were analyzed, then the viscoelastic analytical
solutions were conducted to describe the rheological properties of the coupling model, and the
solutions were acquired by setting the constitutive models of the rockbolt and rock mass in terms of a
one-dimensional Kelvin model and a three-dimensional Burgers model based on material properties
and dimension. Several examples were performed and the influence of initial stress σ0, the viscosity
parameters η1 and η2 of the three-dimensional Burgers model as well as the pre-tension T0 on
reinforcement effect were analyzed. According to the proposed model, the smaller η2 is or the larger
the pre-tension T0 is, the more effective the support effect. However, when the pre-tension is too
large, the support effect is no longer significantly enhanced. In addition, the early reinforcement
effect is controlled by the first creep stage in the Burgers model while the ultimate support effect is
mainly influenced by the viscosity coefficient of the second creep stage in the Burgers model. This
research can provide an important theoretical reference to guide the parameter design of rockbolt
reinforcement engineering in a circular symmetrical tunnel.

Keywords: time-dependent behavior; rockbolt support; viscoelastic solutions; circular symmetrical
tunnel

1. Introduction

Rockbolts have been extensively employed for rock reinforcement in civil and mining engineering
for many years [1]. However, the interaction mechanism between rockbolt and rockmass is still not
clear at present [2]. Some engineering materials have certain rheological characteristics [3]. Due to the
time-dependent behavior of the material, the rock mass displacement and stress may increase after
excavation, and may last for several months or years [4]. Understanding the rheological mechanism of
rock mass supported with rockbolts is essential for engineering design optimization.

Various approaches have been established to describe the time-dependent behavior of rock
mass or rockbolt based on analytical solutions [5–7], empirical approaches [8–10], and numerical
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methods [11–13]. Li et al. [14] studied the effect of the stress, creep coefficient, and geometry parameters
on the stress relaxation of rockbolts. However, the time-dependence of rock mass was ignored.
Wang et al. [15] presented the viscoelastic solutions of the coupling model with a distributed force
model through using several common rheological models, since the selected rheological model does
not consider material properties and dimensional effects. Therefore, it cannot fully reflect the true
rheological behavior of the coupling model. Sharifzadeh et al. [16] simulated the long-term deformation
of a tunnel excavated in a weak rock mass, and noted that the instability of the tunnel may be attributed
to the stress induced by the creep behavior of the surrounding rock. Above-research have primarily
been focused on the evolution of rock mass or rockbolt, few studies have been conducted on the
coupling rheological behavior of the interaction model [15].

The research work in this paper is to study the coupling rheological behavior of the rock mass
supported with discretely mechanically or frictionally coupled (DMFC) rockbolts based on reasonable
rheological model and dimension. The elastic and viscoelasticity solutions were first discussed, and the
parametric study was subsequently conducted. Finally, the long-term tunnel stability was evaluated.

2. Coupling Mechanical Model of the Rockbolt and Rock Mass System

2.1. Principle of the Coupling Model

The rockmass would deform under the initial stress and support force of the rockbolt. Here,
we assumed that the rockbolt-rock mass will not be decoupled, so the deformation of the rockbolt is
coordinated with the rock mass, and the coupling process is depicted in Figure 1.
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Figure 1. Coupling process of rockbolt and rock mass.

The reinforcement mechanism for DMFC rockbolts can be divided into three models: the
distribution force model, the point load model, and the equivalent material model. Distribution
force models regard the force of the rockbolt to rock mass as the tangential uniform distribution of
the surface force. The point load model simplifies a circular tunnel as a spring device, which reduces
the force to a pair of opposing forces of equal magnitude. The equivalent material model divides the
rock mass into a reinforced and an original zone. The rock mass and rockbolt in the reinforced area are
regarded as homogeneous media. However, the equivalent material model neglects the mechanism of
the action between the rockbolt and the rock mass in the reinforced zone; thus it cannot reflect the true
rheological state of the rockbolt and rock mass. This paper employs the distribution force calculation
considering the analytic complexity of the point load model and the hypothesis error of the equivalent
material model. The distributions of the three models are shown in Figure 2.
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Figure 2. Three main analytical models of DMFC rockbolts: (a) distributed force model; (b) point load
model; (c) equivalent material model.

2.2. Elastic Solutions

The relative distributions of the rockbolts and rock mass is shown in Figure 3. The following
assumptions are taken: (a) the tunnel is circular and deep; (b) the support force in tunnel opening P0

and the reinforcement force Pρ are uniformly distributed on the excavation surface and the interface
between the reinforced zone and the original zone; (c) the problem is axisymmetric, and the lateral
pressure coefficient Ka = 1; and (d) the deformation is small.

For the axisymmetric problem under polar coordinates, the general stress formula and
displacement formulae can be expressed as:

σρ =
A
ρ2 + B(1 + 2 ln ρ) + 2C (1)

σθ = − A
ρ2 + B(1 + 2 ln ρ) + 2C (2)

uρ = 1
E (−(1 + µ) A

ρ + (1− 3µ)Bρ + 2
(1− µ)Bρ(ln ρ− 1) + 2(1− µ)Cρ)

(3)
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where σρ, σθ and uρ are respectively the radial stress, tangential stress and displacement; E is Young’s
modulus; µ is Poisson’s ratio; ρ is the radial coordinate; A, B, and C are coefficients.
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Figure 3. Geometric model with DMFC rockbolt in a circular symmetrical tunnel.

When the tunnel is not excavated, the displacement elastic solution of the rock mass under the
initial stress is as follows:

u0
ρ =

1 + µ

Er
(1− 2µ)σ0ρ (4)

In the reinforced zone, the mechanical problem can be regarded in terms of the elastic mechanics
of the rear wall cylinder under internal and external pressure: the internal force arises from the support
of the rockbolt. A mechanical analysis diagram is shown in Figure 4b. The general forms expressions
for the stress and displacement in the reinforcement zone (r < ρ < R) can be written as:

σρ1 =
A1

ρ2 + 2C1 (5)

σθ1 = −A1

ρ2 + 2C1 (6)

uρ1 =
1 + µ

Er
[2(1− 2µ)C1ρ− A1

ρ
] (7)

where σρ1, σθ1 and uρ1 are respectively the radial stress, tangential stress, and displacement in the
reinforced zone and A1 and C1 are the pending coefficients.

In the original zone, the mechanical problem can be regarded in terms of the elastic mechanics
of an infinite region affected by the initial stress σ0 and pressure on the inside of a circular hole. A
mechanical analysis diagram is shown in Figure 4a. The general forms expressions of the stress and
displacement in the original zone (ρ > R) are as follows:

σρ2 =
A′

ρ2 + 2C′ (8)

σθ2 = −A′

ρ2 + 2C′ (9)
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uρ2 =
1 + µ

Er
[2(1− 2µ)C′ρ− A′

ρ
] (10)

where σρ2, σθ2 and uρ2 are respectively the radial stress, tangential stress, and displacement in the
original zone, and A′ and C′ are coefficients.

Symmetry 2018, 10, x FOR PEER REVIEW  5 of 17 

 

'
'

2
1 [2(1 2 ) ]

r

Au C
Eρ

μ μ ρ
ρ

+= − −
 

(10) 

where σρ2, σθ2 and uρ2 are respectively the radial stress, tangential stress, and displacement in the 
original zone, and 'A  and 'C  are coefficients. 

 
Figure 4. Elasticity analysis mechanics model: (a) force analysis in original zone; (b) force analysis in 
reinforced zone. 

The stress boundary conditions of the pre-tension rockbolts at the tunnel face can be expressed 
as follows: 

( )
1

0 0 0
0 ( ) 1( ) 1( ) ( )

b b
r R R r r

z

T L E A xP k x u u u u
LS Sρ ρ ρ ρ ρ ρ ρ ρ ρ

θ

σ = = = = =
+= = + − + − = 

 
(11) 

0 0
1( ) 2( )

( )b b
R R

z

rP r LT E A xP
R LRS Sρρ ρ ρ ρ

θ

σ σ− += =

+− = = =   (12) 

where P0 is the support force in tunnel opening; Pρ is the reinforcement force; L is the length of the 

free part of the rockbolt; L  is the deformation of the rockbolt in the axial direction, x  is the 

pre-tension length of the rockbolt; Sz is the rockbolt spacing in the longitudinal direction; Sθ is the 

rockbolt spacing in the tangential direction; 0
1( )Ruρ ρ =  and 0

1( )ruρ ρ=  are the displacements of the 

original state without support; Ab is the area of the rockbolt cross section; and Eb is the elastic 

modulus of the rockbolt. 
The other boundary conditions can be expressed as follows: 

1( ) , ( )r rockbolt ru uρ ρ ρ ρ= ==  (13) 

2( ) , ( )R rockbolt Ru uρ ρ ρ ρ= ==  (14) 

1( ) 2( )R R
u uρ ρ ρ ρ− += =

=  (15) 

( ) 0ρ ρσ σ→∞ =  (16) 

Figure 4. Elasticity analysis mechanics model: (a) force analysis in original zone; (b) force analysis in
reinforced zone.

The stress boundary conditions of the pre-tension rockbolts at the tunnel face can be expressed
as follows:

P0 = σρ1(ρ=r) = k
(
4x + u0

ρ=R − uρ1(ρ=R) + uρ1(ρ=r) − u0
ρ(ρ=r)

)
=

T0L + Eb Ab4 x
LSθSz

(11)

σρ1(ρ=R−) − σρ2(ρ=R+) = Pρ =
rP0

R
=

r(LT0 + Eb Ab4 x)
LRSθSz

(12)

where P0 is the support force in tunnel opening; Pρ is the reinforcement force; L is the length of the free
part of the rockbolt;4L is the deformation of the rockbolt in the axial direction,4x is the pre-tension
length of the rockbolt; Sz is the rockbolt spacing in the longitudinal direction; Sθ is the rockbolt spacing
in the tangential direction; u0

ρ1(ρ=R) and u0
ρ1(ρ=r) are the displacements of the original state without

support; Ab is the area of the rockbolt cross section; and Eb is the elastic modulus of the rockbolt.
The other boundary conditions can be expressed as follows:

uρ1(ρ=r) = urockbolt,ρ(ρ=r) (13)

uρ2(ρ=R) = urockbolt,ρ(ρ=R) (14)

uρ1(ρ=R−) = uρ2(ρ=R+) (15)

σρ(ρ→∞) = σ0 (16)

The elastic solutions of the rockbolt and rock mass can be presented by combining the
displacement and stress conditions. Solutions have been discussed [17–20].
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2.3. Viscoelastic Solutions

Wang et al. [15] selected several common rheological models to explain the rheological
characteristic of rockbolts and rock masses; the Maxwell and the Kelvin model are respectively
used to describe the rheological properties of the rockbolts and rock masses in this paper. While the
Maxwell model cannot characterize the elastic after-effect and deformation limit characteristics of rock
mass, the Kelvin model cannot characterize the transient and viscous flow of a rock mass. However,
in practical engineering, the rock mass will have transient deformation and viscous flow due to the
disturbance of excavation [3]. Therefore, there may be some drawbacks in fully expressing the rheology
of a rock mass based on the selected models. Choosing a rheological model that is more consistent
with the material properties to reflect the time-dependency of the rockbolt-rock mass coupling model
fully is necessary.

2.3.1. Rheological Model of Rockbolt and Definition of Operator Function

With respect to the material properties, the rockbolt is primarily composed of a hot rolled ribbed
bar, the amount of creep for steel is small, and the creep of the steel is dominated by stable creep.
With respect to the scale effect, the axial stiffness of the rockbolt is much greater than the tangential
stiffness, and the rockbolt can be regarded as an ideal one-dimensional viscoelastic material. Based on
the analysis of the rheological properties of the steel bar, this paper uses a one-dimensional Kelvin
model to describe the rheological properties of the rockbolt.

The variation between the viscoelasticity and the one-dimensional elastic parameters of the
rockbolt is shown in Equation (8), where Qb(D) and Pb(D) are the operator functions of the
one-dimensional Kelvin rheological model. The space parameter transformation based on the Laplace
transform is

Eb =
Qb(D)

Pb(D)

Laplace trans f orm−−−−−−−−−−→ Eb(s) =
QbK

′
(s)

PbK
′
(s)

(17)

The Laplace form of the one-dimensional Kelvin model operator is

PbK
′
(s) = 1 (18)

QbK
′
(s) = Eb + ηbs (19)

where ηb is the rockbolt’s viscosity coefficient, s is the variable obtained from the Laplace
transformation.

2.3.2. Rheological Model of Rock Mass and Definition of Operator Function

With respect to the material properties, the characteristics of the rock mass are complicated
and changeable in underground engineering. The Burgers model consists of the Maxwell model
and the Kelvin model; the model can describe rheological properties such as elastic deformation,
creep, stress relaxation, elastic effect and viscous flow. With respect to the scale effect, the size of one
direction is much longer than the other two directions for some engineering fields, the problem should
be considered as three-dimensional problem [21]. In tunnel engineering, the excavation direction
is substantially longer than the other two directions; thus, the rock mass should be regarded as
a three-dimensional viscoelastic material. The one-dimensional constitutive equation needs to be
extended to a three-dimensional form, and the three-dimensional viscoelastic constitutive relation can
be derived from the corresponding relation of the one-dimensional viscoelastic constitutive relation.
The distribution of rheological model diagram is shown in Figure 5.
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For the rock mass, the three-dimensional viscoelastic constitutive equation can be obtained by
developing the one-dimensional constitutive equation based on the generalized Hooke’s law

σij = 2G0eij + Kεijδij (20)

The relationships among the shear modulus, bulk modulus, Young’s modulus, and Poisson’s
ratio µ are

Er =
9G0K

3K + G0
(21)

µ =
3K− 2G0

2(3K + G0)
(22)

Therefore, the constitutive models of the elastic and viscoelastic materials can be written as

Sij = 2G0eij = 2
Q′(D)

P′(D)
eij (23)

σij = 3Kεij = 3
Q′′ (D)

P′′ (D)
εij (24)

where Sij is the partial stress tensor; eij is the partial strain tensor; σij is the stress tensor; εij is the strain
tensor; and Q′(D), P′(D), Q′′ (D) and P′′ (D) are the operator functions of the rock mass viscoelastic
constitutive model.

The transformation expressions of the elastic parameters and viscoelasticity parameters are
expressed as

E(s) =
9Q′(s)Q′′ (s)

3P′(s)Q′′ (s) + P′′ (s)Q′(s)
(25)

µ s =
3P′(s)Q′′ (s)− 2P′′ (s)Q′(s)

2[3P′(s)Q′′ (s) + P′′ (s)Q′(s)]
(26)
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where s is the Laplace variable, and the operator functions of the Laplace space form in
three-dimensional Burgers model can be expressed as

P′(s) = 1 + (
η2

G0
+

η1 + η2

G1
)s +

η1η2

G0G1
s2 (27)

Q′(s) = η2s +
η1η2

G1
s2 (28)

P′′ (s) = 1 (29)

Q′′ (s) = K (30)

where η1 is the viscous coefficient of the first creep stage; η2 is the viscous coefficient of the second
creep stage; G0 is the elastic shear modulus of the rock mass; G1 is the corresponding viscoelastic shear
modulus of the rock mass; and K is the elastic bulk modulus of the rock mass.

The Laplace space solutions can be obtained by replacing the elastic parameters of the elastic
solutions with the viscoelastic parameters and substituting the Laplace operator function of the selected
rheological model, which enables the viscoelastic problem to be solved. The viscoelastic solution can
be obtained by the Laplace inverse.

The parameters of the elastic solutions are replaced by viscoelastic parameters and substituted
into the operator functions of the corresponding rheological model. The main process is expressed
as follows

Er
replaced by−−−−−−→ 9Q′(s)Q′′ (s)

3P′(s)Q′′ (s) + P′′ (s)Q′(s)
(31)

µ
replaced by−−−−−−→ 3P′(s)Q′′ (s)− 2P′′ (s)Q′(s)

2[3P′(s)Q′′ (s) + P′′ (s)Q′(s)]
(32)

k
replaced by−−−−−−→ Ab

SθSzL
QbK

′
(s)

PbK
′
(s)

(33)

2.4. Analytical Solutions in the Laplace Space

The Laplace space analytical solutions can be described by substituting in the operator function
of the corresponding rheological model, and the stress and displacement fields of the rock mass are
expressed in Appendix A (A1)–(A6).

Then, the tunnel surface support stress can be calculated as follows

P0 =
(T0+

Eb Ab4x
L )rockbolt

Sθ Sz
= Ab

Sθ Sz

QbK
′
(s)

PbK
′
(s)

εrockbolt

= Ab
SθSz

QbK
′
(s)

PbK
′
(s)
4x
L = k · 4x = k ·

[
lim

ρ→R+
uρ2s − lim

ρ→r−
uρ1s

] (34)

Therefore, the axial force of the rockbolt can be written as

T =

AbQbK
′
(s)
[

lim
ρ→R+

uρ2s − lim
ρ→r−

uρ1s

]
LPbK

′
(s)

(35)

where the tensioned rockbolt deformation is 4x = T0L
Eb Ab

. Hence, the axial force of rockbolt can be
expressed in Appendix A (A7).
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3. Analysis of the Analytical Solution Using Engineering Parameters

3.1. Axial Force Changes over Time

The corresponding parameter values are provided in Table 1. The analytical curves can be
obtained by substituting the parameters into the corresponding expression and performing the inverse
Laplace transformation.

Table 1. Imputing parameters of rockbolt and rockmass.

Parameters Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

R/m 8 8 8 8 8 8 8 8
r/m 4 4 4 4 4 4 4 4

Ab/10−4 m2 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Eb/1011 Pa 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

L/m 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
K/109 Pa 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2
G0/109 Pa 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
G1/1010 Pa 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0

ηb/1020 Pa·s 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
η1/1010 Pa·s 5.0 3.0 7.0 5.0 5.0 5.0 5.0 5.0
η2/1011 Pa·s 2.0 2.0 2.0 4.0 6.0 2.0 2.0 2.0

T0/104 N 4.0 4.0 4.0 4.0 4.0 5.0 5.5 4.0
σ0/106 Pa −2.0 −2.0 −2.0 −2.0 −2.0 −2.0 −2.0 −3.0

As shown in Figure 6a, the influences of η1 and σ0 on the axial force evolve over time. The results
indicate that η1 affects not only the axial force initial value but also the rockbolt rheological state.
When η1 = 3.0 × 1010 and 5.0 × 1010 Pa·s, the axial force decreases to a stable value over time, the
rockbolt rheological state is stress relaxation. When η1 = 7.0 × 1010 Pa·s, the axial force increases
to a stable value over time, the rheological state of the rockbolt is stable creep. The axial force will
converge to a stable value regardless of whether the rheological state of a rockbolt is creep or stress
relaxation; thus η1 does not affect the stable value of the axial force and only influences the early
support effect. When η1 and η2 remain unchanged, a larger σ0 will generate a larger initial force and
higher stability. Figure 6b indicates that the influences of η2 and σ0 on the axial force evolve over time.
The results indicate that η2 affects not only the initial value and stable value of axial force but also
the rheological state of the rockbolt; thus, η2 affects not only the early reinforced effect but also the
final support effect. When η2 = 1.0 × 1011 Pa·s, 1.5 × 1011 Pa·s, and 2.0 × 1011 Pa·s, the axial force
decreases to a stable value over time; thus, the rheological state of the rockbolt is stress relaxation.
A smaller value of η2 produces a larger initial value and convergent value of the axial force. When
η2 = 3.0 × 1011 Pa·s, the axial force increases to a stable value over time, and the convergent value
is less than η2 = 1.0 × 1011 Pa·s, 1.5 × 1011 Pa·s, and 2.0 × 1011 Pa·s; thus, the rheological state of
the rockbolt is creep. As shown in Figure 6c, the influence of ηb on axial force evolves over time.
When ηb = 1.0 × 1020 Pa·s and 3.0 × 1020 Pa·s, the axial force decreases to a stable value over time, the
rockbolt rheological state is stress relaxation. When ηb = 5.0 × 1020 Pa·s, the axial force is gradually
reduced to zero and then increases to a stable value over time; the stable value is the same as when
ηb = 1.0 × 1020 Pa·s and 3.0 × 1020 Pa·s. When ηb = 6.0 × 1020 Pa·s, the axial force of the rockbolt
increases to a stable value over time; thus, the rockbolt rheological state is creep, and the initial value
is the same as when η1 = 3.0 × 1010 Pa·s. Figure 6d reveals that the influence of T0 on the axial force
evolves over time; larger values of T0 produce a greater absolute value of initial axial force. Thus, the
larger is T0, the better the support effect. When T0 = 4.0 × 104 N, 5.0 × 104 N, and 5.5 × 104 N, the
axial force absolute value gradually decreases over time and converges to a fixed value. A larger value
of T0 yields a higher fix value. But, when the T0 is too large, the fix value will not increase significantly.
At this time, the rockbolt support to the rock mass is in the stage of relaxation.
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3.2. Radial Stress Changes over Time

As shown in Figure 7, the case considered in this test primarily investigated how the viscosity
coefficients η1, η2 and σ0 influenced the radial stress. Figure 7a shows the jump value fitting curve
between the reinforced and the original zone when the time is zero. When η2 is fixed, the fitting curve is
y1 = −4334.5× x + 49929. R2 = 0.9198. When η1 is fixed, the fitting curve is y2 = −1160.3× x + 27924.
R2 = 0.9513. As shown in Figure 7a, η1 and η2 are negatively correlated with the radial stress jump
value, and the slope of y1 is greater than the slope of y2, which indicates that the effect of η1 on the
radial stress jump value is larger than the effect of η2. The radial stress jumps at the junction of the
reinforced zone and the original zone due to the support of the rockbolt. Figure 7b shows the radial
stress fitting curve in the excavation surface when the time is zero; when η2 is fixed, the fitting curve is
y3 = −19850× x+ 214942. R2 = 0.936. When η1 is fixed, the fitting curve is y4 = −3148.1× x+ 109336.
R2 = 0.9678. Note that η1 and η2 are negatively correlated with the radial stress in excavation surface.
The slope of y3 is greater than y4, which indicates that the effect of η1 on the excavation surface radial
stress is also larger than the effect of η2. Therefore, the magnitude of the radial stress in the excavation
surface of the tunnel is equivalent to the supporting force of the rock mass in the coupling model,
and the greater the support force is, the better the support effect. The smaller η1 or η2 is, the better
the support effect in the excavation moment. Figure 7c shows the evolution of the radial stress of the
reinforced zone monitoring point ρ = 4 m over time (influence of η1 and σ0). The absolute value of
radial stress gradually decreases over time because the stress of the rock mass is gradually released
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over time. When the parameters η1 and η2 are constant, a larger σ0 yields a greater absolute value of
the initial and convergence values. When the parameter η2 is fixed, a larger η1 produces a smaller
absolute value of the initial radial stress. The radial stress converges to a fixed value over time, and
the fixed value is independent of η1. A smaller η1 produces a larger change rate. Figure 7d shows the
evolution of the radial stress over time for the reinforced zone monitoring point ρ = 4 m (influence of
η2 and σ0). The absolute value of radial stress gradually decreases over time; when the parameters
η1 and η2 are fixed, a greater value of σ0 yields a higher absolute value of initial radial stress and
convergence value. When η1 is constant, a smaller η2 produces a larger absolute value of the initial
and convergence values. Thus, the smaller is the η2, the better is the support effect. η2 does not have a
significant effect on the rate of change, which remains fairly constant.
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Figure 7. Mechanical states in cases 1–7: (a) influence of η1 and η2 on the radial stress jump value and its
fitting; (b) influence of η1 and η2 on the excavation surface radial stress and its fitting. (c,d) reinforced
zone monitoring points ρ = 4 m (influences η1, σ0, and η2, σ0).

3.3. Tangential Stress Changes over Time

The tangential stress at the monitoring point ρ = 6 m of the reinforced zone is shown in Figure 8a,b.
Figure 8a shows the influence of η2 on the tangential stress in the reinforced zone over time. The
tangential stress gradually decreases over time and then converges to a stable value. When η1 is fixed,
a larger η2 generates a larger initial and stable values of the tangential stress. Figure 8b shows the
influence of η1 on the reinforced zone tangential stress over time. The tangential stress also decreases
over time and finally converges to a stable value. The constant value is independent of η1, and a
smaller η1 yields a smaller initial value but a larger change rate. Figure 8c shows the influence of η2 on
the tangential stress of the original zone over time: η1 influences not only the initial value but also
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the stable value; a smaller η2 yields greater initial and stable values of the tangential stress. Figure 8d
shows the influence of η1 on the tangential stress in the original zone over time. The tangential stress
also decreases over time, and η1 influences only the initial value. The tangential stress finally converges
to a certain value. The constant value is independent of η1, and a smaller η1 produces not only a
greater initial value but also a larger change rate.
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3.4. Displacement Evolution over Time

Figure 9a shows the displacement of the rock mass along the radial distance when the time is
zero. When the radial distance increases, the displacement exponentially decreases and converges to
zero along the depth of the rock mass. In the moment of excavation, when η2 is fixed, a smaller η1

causes a larger displacement at any position. If η1 is fixed, a smaller η2 yields a larger displacement.
Figure 9b shows the displacement when t = 4 d along the radial distance. The amount of displacement
significantly changes from the excavation moment. Figure 9c shows the displacement evolution rule
of ρ = 7 m over time, the displacement gradually increases and exponentially converges to a fixed
value. A smaller η1 produces larger absolute convergence values. A smaller η2 yields larger absolute
convergence values. Therefore, important support measures should be taken when η1 or η2 is small.
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4. Conclusions

During tunnel excavation, the stresses and deformation of rock mass and the axial force of rockbolt
will change over time. This paper established a rheological model of the rock mass supported with
DMFC rockbolts. The main findings can be summarized as follows:

(1) The axial force of DMFC rockbolts are positively correlated with the support force at the
excavation face in a tunnel, and the greater the convergence value of the axial force is, the
better the support effect. In addition, the greater the pre-tension of rockbolt, the better the
reinforcement effect, however, when the pre-tension is too large, the rock bolt support effect will
not increase significantly.

(2) The η1 of the three-dimensional Burgers model influences the early support effect, η2 of
three-dimensional Burgers model affects both the early and the ultimate reinforcement effect. In
addition, there is a significant negative correlation between rock mass displacement and η1 or η2.
Therefore, important support measures should be taken when η1 or η2 is small.

(3) In this paper, the interaction model elastic solutions were solved based on the distributed force
model. However, the axial force of the rockbolt is similar to the concentrated force to rock mass
(Bobet 2006), Hence, a more suitable theoretical model should be explored to solve the coupling
model in future.

(4) Continuously Mechanically Coupled (CMC) rockbolts applications are more extensive than
DMFC rockbolts, the reasonable and simplified method for the theoretical model of CMC
rockbolts can be further studied based on this model, which lays a foundation of the preliminary
research for solving the theoretical model of CMC rockbolts.
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Nomenclature

Ab Area of the rockbolt cross-section
L Length of rockbolt free part
ρ Radial coordinate
r Radius of tunnel
T Axial force of the rockbolt bolt
P0 Support force in tunnel opening
k Stiff of the support system
σρ1 Radial stress in the reinforced zone
σθ1 Tangential stress in the reinforced zone
uρ1 Displacement in the reinforced zone
σρ1s Radial stress of the reinforced zone in Laplace
σθ1s Tangential stress of the reinforced zone in Laplace
uρ1s Displacement of the reinforced zone in Laplace
Sθ Rockbolt spacing in the tangential direction
ηb Viscosity coefficient of the rock bolt
η2 Viscosity coefficient of the second creep stage
∆x Pre-tension length of the rockbolt
G1 Viscoelastic shear modulus of rock mass
t Time
Sij Partial stress tensor
Qb(D), Pb(D) Operator functions of the Kelvin model

P′(D), P′′ (D)

Q′(D), Q′′ (D)
Operator function of rock mass viscoelastic constitutive model

Er Deformation modulus of the rock mass
Eb Deformation modulus of the rockbolt
θ Circumferential angle
σ0 Initial stress
µ Poisson’s ratio of rock mass
Pρ Reinforcement force
R Radius of the reinforced rock zone
σρ2 Radial stress in the original zone
σθ2 Tangential stress in the original zone
uρ2 Displacement in the original zone
σρ2s Radial stress of the original zone in Laplace
σθ2s Tangential stress of the original zone in Laplace
uρ2s Displacement of the original zone in Laplace
Sz Rockbolt spacing in the longitudinal direction
η1 Viscosity coefficient of the first creep stage
∆L Deformation of rockbolt in the axial direction
G0 Elastic shear modulus of the rock mass
K Elastic bulk modulus of the rock mass
σij Stress tensor
eij Partial strain tensor
PbK
′
(s), QbK

′
(s) Operator functions of the Kelvin model in Laplace space

P′(s), Q′(s)
P′′ (s), Q′′

(s)
Operator function of rock mass viscoelastic constitutive model
after Laplace transformation
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Appendix A

The analytical solutions of the interaction model with pre-tension in Laplace space are shown below.
The radial stress of the reinforced zone (r < ρ < R) in Laplace is expressed as follows:

σρ1s =

−R

 (−AbEbbσ0r4ac + ( 2
3 LcT0 + a(AbEbRσ0 + 2KLT0))bcr3 + ( 8

3 LR(EbSzSθσ0
−bT0)c2 + 7

3 ((AbEbσ0ρ2 − 6
7 T0LRK)b + 6

7 Ebσ0dRK)ac + AbEba2Kbρ2σ0)r2

−ρ2( 2
3 Lc2T0 +

7
3 (AbEbσ0R + 6

7 T0LK)ac + AbEba2KRσ0)br− 2(aK + 4
3 c)ρ2Sθ LSz)


ρ2(Abba(aK + 1

3 c)r3 − 2(aK + 4
3 c)abAbRr2 + AbbR2a(aK + 7

3 c)r + 2(aK + 4
3 c)Sθ R2cLSz)Eb

(A1)

The radial stress of the original zone (ρ > R) in Laplace is expressed as follows:

σρ2s =

1
3

 −3brc(AbEbarσ0 + 2LcT0)R3 + (−6c(aK + 4
3 c)L(EbSzSθσ0 − bT0)r2 + 3ρ2σ0(aK

+ 7
3 c)AbEbr + 6cρ2(aK + 4

3 c)SzSθσ0LEb)R2 + 3r2(AbEbσ0r2 − 2cT0L(aK + 1
3 c)r

−2ρ2(aK + 4
3 b)aσ0 AbEb)bR + 3r3ρ2aσ0bEb(aK + 1

3 c)Ab


(

ρ2((Abba(aK + 7
3 c)r + 2c(aK + 4

3 c)SzSθ L)R2 − 2r2(a + 4
3 c)Ab + Abbr3a(aK + 1

3 c)Eb

) (A2)

The tangential stress of the reinforced zone (r < ρ < R) in Laplace is expressed as follows:

σθ1s =

−

 R(AbEbbσ0r4ac + cb( 2
3 LcT0 + a(AbEbRσ0 + 2KLT0))r3 + (− 8

3 LR(EbSzSθ − bT0)c2

− 7
3 a((AbEbσ0ρ2 − 6

7 T0LRK)b + 6
7 EbSzSθ LRK)c− AbEba2Kbρ2σ0)r2 + b( 2

3 Lc2T0
+ 7

3 a(AbEbσ0R + 6
7 T0LK)c + AbEba2KRσ0)ρ

2r + 2cEbR(aK + 4
3 c)LSθSzσ0)


Ebρ2(Aba(aK + 1

3 c)r3 − 2AbR(aK + 4
3 c)r2 + AR2a(a + 7

3 c)r + 2R2(aK + 4
3 c)LSθSz)

(A3)

The tangential stress of the original zone (ρ > R) in Laplace is expressed as follows:

σθ2s =

1
3

 3brc(AbEbarσ0 + 2LcT0)R3 + (6Lc(EbSθSzσ0 − bT0)(aK + 4
3 c)r2 + 3AbEbbσ0

(aK + 7
3 c)ρ2ar + 6Ebσ0SzLcρ2Sθ(aK + 4

3 c))R2 − 3(AbEbσ0r2ac− 2T0((aK + 1
3 c)

+2AbEbσ0ρ2a(aK + 4
3 c))br2R + 3AbEbbσ0(aK + 1

3 c)ρ2ar3


(
(Ebρ2(Abba(aK + 7

3 c)r + 2SzLSθc(aK + 4
3 c))R2 − 2Abbar29aK + 4

3 c)R + (aK + 1
3 c)
) (A4)

The displacement of the reinforced zone (r < ρ < R) in Laplace is expressed as follows:

uρ1s =

1
2

(
(AbEbabRr3σ0 + b(σ0aR2 AbEb + 2(aK + 1

3 c)T0LR− aρ2σ0 AbEb)r2

+(2(aK + 4
3 c)(EbSzSθσ0 − bT0)LR + AbEbabρ2σ0)Rr− 2LcbRρ2T0ar

)
(

Ebρ(Abba(aK + 1
3 c)r3 − 2(aK + 4

3 c)aAbbRr2 + AbbR2a(aK + 7
3 c)r + 2(aK + 4

3 c)LSzSθ

) (A5)

The displacement of the original zone (ρ > R) in Laplace is expressed as follows:

uρ2s =

1
2

(
(raR(−AbEbabr3σ0 + 2T0Lb)(aK + 1

3 c)r2 + (((AbEbRσ0 − 2RKLT0)a
− 8

3 LcT0)b + 2SθSzσ0LEb(aK + 4
3 c))Rr + 2LcbR2T0)

)
(
(Abba(aK + 1

3 c)r3 − 2abAb(aK + 4
3 c)Rr2 + AbbR2a(aK + 7

3 c)r + 2SθSzL(aK + 4
3 c)R2)

) (A6)

The axial force of tensioned rockbolt in Laplace is expressed as follows:

T =
1

2(1 + ηbs
Eb

)L


(ar(−Eb Ababr3σ0 + 2T0Lb(Ka + 1

3 c)r2 + (((Eb AbRσ0 − 2KLT0)a− 8
3 LT0c)b + 2LSθSz

(aK + 4
3 c))Rr + 2LR2T0bc))

((Abbar3(Ka+ 1
3 c)−2Ab Rabr2(Ka+ 4

3 c)+Ab abrR2(Ka+ 7
3 c)+2LSzSθ c(Eb R2(Ka+ 4

3 c))

−

((Eb AbRr3abσ0 + 2b((Ka + 1
3 c)T0LRr2 + (2(Ka + 4

3 c)(EbSzSθσ0 − bT0)LR + Eb AbR2)
Rr− 2LT0R3bc)ar)

(Eb R(Abba(aK+ 1
3 c)r3−2abAb(Ka+ 4

3 c)Rr2+abAb(Ka+ 7
3 c)+2LSzSθ(Ka+ 4

3 c)R2)))s)


(A7)

where

a = P′(s) = 1 + (
η2
G0

+
η1 + η2

G1
)s +

η1η2s2

G0G1

b = QbK
′
(s) = sηb + Eb
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c = Q′(s) = η2s +
η1η2s2

G1
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