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Abstract: In the current note, we investigate the mathematical relations among the weighted
arithmetic mean–geometric mean (AM–GM) inequality, the Hölder inequality and the weighted
power-mean inequality. Meanwhile, the proofs of mathematical equivalence among the weighted
AM–GM inequality, the weighted power-mean inequality and the Hölder inequality are fully achieved.
The new results are more generalized than those of previous studies.
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1. Introduction

In the field of classical analysis, the weighted arithmetic mean–geometric mean (AM–GM)
inequality (see e.g., [1], pp. 74–75) is often inferred from Jensen’s inequality, which is a more generalized
inequality compared to the AM–GM inequality; refer to, e.g., [1,2]. In addition, the Hölder inequality [2]
found by Leonard James Rogers (1888) and discovered independently by Otto Hölder (1889) is a basic
and indispensable inequality for studying integrals and Lp spaces, and is also an extension of the
Cauchy–Bunyakovsky–Schwarz (CBS) inequality [3]. The Hölder inequality is used to prove the
Minkowski inequality, which is the triangle inequality in the space Lp(µ) [4,5]. The weighted power
mean (also known as the generalized mean) Mm

r (a) for a sequence a = (a1, a2, . . . , an) is defined as
Mm

r (a) = (m1ar
1 + m2ar

2 + · · ·+ mnar
n)

1
r , which is a family of functions for aggregating sets of numbers,

and plays a vital role in analytical inequalities; see [2,6] for instance.
In recent years, many researchers have been interested in studying the mathematical equivalence

among some famous analytical inequalities, such as the Cauchy–Schwarz inequality, the Bernoulli
inequality, the Wielandt inequality, and the Minkowski inequality; see [7–13] for details. Additionally,
these studies note the relations among the weighted AM–GM inequality, the Hölder inequality, and
the weighted power-mean inequality are still less clear, although one inequality is often helpful to
prove another inequality [1,12]. Motivated by these aforementioned studies, in the present note,
the mathematical equivalence among three such well-known inequalities is proved in detail; the result
introduced in [14] is also extended.

The rest of the present note is organized as follows. In the next section, we will present the
detailed proofs of mathematical equivalence among three celebrated mathematical inequalities. Finally,
the paper ends with several concluding remarks in Section 3.
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2. Main Results

The weighted AM–GM inequality, the Hölder inequality, and the weighted power-mean
inequality [1] (pp. 111–112, Theorem 10.5) are first reviewed and they are often related to each
other. Then the results of mathematical equivalence among three such inequalities will be shown.
Weighted AM–GM Inequality. If 0 ≤ ci ∈ R (i = 1, . . . , n) and 0 ≤ λi ∈ R (i = 1, . . . , n) such that

n
∑

i=1
λi = 1, then

n

∏
k=1

cλk
k ≤

n

∑
k=1

λkck. (1)

Hölder Inequality. If 0 ≤ ai, bi ∈ R (i = 1, . . . , n) and p, q ∈ R+ such that p−1 + q−1 = 1, then

n

∑
k=1

akbk ≤
(

n

∑
k=1

ap
k

) 1
p
(

n

∑
k=1

bq
k

) 1
q

. (2)

Weighted Power-Mean Inequality. If 0 ≤ ci, λi ∈ R (i = 1, . . . , n) such that
n
∑

i=1
λi = 1, and r, s ∈ R+

such that r ≤ s, then (
n

∑
k=1

λkcr
k

) 1
r

≤
(

n

∑
k=1

λkcs
k

) 1
s

. (3)

The word “equivalence" between two statements A and B, by convention, is understood as follows:
A implies B and B implies A. Two equivalent sentences have the same truth value. Thus, this note
reveals a connection (in the sense of art) between these two well-known facts.

Theorem 1. The Hölder inequality is equivalent to the weighted AM–GM inequality.

Proof. To show that (2) implies (1), let ak = (λkck)
1
p , bk = (λk)

1
q in (2) for all k; then

n

∑
k=1

[
(λkck)

1
p (λk)

1
q

]
≤
(

n

∑
k=1

λkck

) 1
p
(

n

∑
k=1

λk

) 1
q

. (4)

Since p−1 + q−1 = 1 and λ1 + λ2 + · · ·+ λn = 1, the inequality (4) can be rewritten as:

n

∑
k=1

λkck ≥
(

n

∑
k=1

λkc
1
p
k

)p

. (5)

Now using the inequality (5) successively, it follows that

n

∑
k=1

λkck ≥
(

n

∑
k=1

λkc
1
p
k

)p

≥
(

n

∑
k=1

λkc
1

p2

k

)p2

≥ · · · ≥
(

n

∑
k=1

λkc
1

pm

k

)pm

≥ · · · .

(6)

By L’Hospital’s rule, it is easy to see that

lim
x→0+

ln

(
n

∑
k=1

λkcx
k

)/
x =

n

∑
k=1

λk ln ck.
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Thus,

lim
x→0+

(
n

∑
k=1

λkcx
k

) 1
x

=
n

∏
k=1

cλk
k .

Thus, in (6), we can pass to the limit by m→ +∞, giving
n
∑

k=1
λkck ≥

n
∏

k=1
cλk

k ; hence, (2) implies (1).

To show the converse, all that is needed is a special case of (1),

λ1c1 + λ2c2 ≥ cλ1
1 cλ2

2 . (7)

Since p−1 + q−1=1, and by (7), thus

1
p

ap
k

n

∑
k=1

bq
k +

1
q

bq
k

n

∑
k=1

ap
k ≥ akbk

(
n

∑
k=1

bq
k

) 1
p
(

n

∑
k=1

ap
k

) 1
q

.

Summing over k = 1, 2, . . . , n, it follows that

n

∑
k=1

ap
k

n

∑
k=1

bq
k ≥

n

∑
k=1

akbk

(
n

∑
k=1

bq
k

) 1
p
(

n

∑
k=1

ap
k

) 1
q

.

Thus, (1) implies (2).

Remark 1. The CBS inequality (the AM–GM inequality) is the special case of the Hölder inequality
(the weighted AM–GM inequality); therefore, Theorem 1 is a generalization of the result established in [14].

Theorem 2. The Hölder inequality is equivalent to the weighted power-mean inequality.

Proof. For r ≤ s, let p = s
r ≥ 1 and ck = ds

k in (5) for k = 1, . . . , n, then

n

∑
k=1

λkds
k ≥

(
n

∑
k=1

λkdr
k

) s
r

. (8)

Thus, rewriting (8) as
(

n
∑

k=1
λkds

k

) 1
s
≥
(

n
∑

k=1
λkdr

k

) 1
r
. Now the task is to prove that (3) implies (2);

let λk = bq
k
( n

∑
k=1

bq
k
)−1, dk = ak/bq−1

k , r = 1, s = p in (3), then

n

∑
k=1

akbk =

(
n

∑
k=1

bq
k

) n

∑
k=1

bq
k

n
∑

k=1
bq

k

· ak

bq−1
k



≤
(

n

∑
k=1

bq
k

) n

∑
k=1

bq
k

n
∑

k=1
bq

k

·
(

ak

bq−1
k

)p


1
p

=

(
n

∑
k=1

ap
k

) 1
p
(

n

∑
k=1

bq
k

) 1
q

.

Remark 2. Here, we can give another proof that (3) implies (2). Repeatedly using inequality (3), it follows that
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n

∑
k=1

λkck ≥
(

n

∑
k=1

λkc
1
2
k

)2

≥
(

n

∑
k=1

λkc
1
3
k

)3

≥ · · · ≥
(

n

∑
k=1

λkc
1
n
k

)n

≥ · · · .

By L’Hospital’s rule, it is easy to see that

n

∑
k=1

λkck ≥
n

∏
k=1

cλk
k .

By using analogous methods from Theorem 1, it can be proved that

n

∑
k=1

ap
k

n

∑
k=1

bq
k ≥

n

∑
k=1

akbk

(
n

∑
k=1

bq
k

) 1
p
(

n

∑
k=1

ap
k

) 1
q

.

Theorem 3. The weighted power-mean inequality is equivalent to the weighted AM–GM inequality.

Proof. To show that (1) implies (3), we merely exploit a special case of (1),

aλ1
1 aλ2

2 ≤ λ1a1 + λ2a2. (9)

Here, we define Un(a) = λ1as
1 + λ2as

2 + · · ·+ λnas
n; let a1 = λkas

k(Un(a))−1, a2 = λk and λ1 =
r
s , λ2 = 1− r

s in (9), then

λkar
k(Un(a))−

r
s ≤ r

s
· λkas

k(Un(a))−1 +
(

1− r
s

)
· λk.

Summing over k = 1, 2, . . . , n, then

n

∑
k=1

λkar
k(Un(a))−

r
s ≤

n

∑
k=1

[ r
s
· λkas

k(Un(a))−1 +
(

1− r
s

)
· λk

]
= 1.

Therefore, (
n

∑
k=1

λkcr
k

) 1
r

≤
(

n

∑
k=1

λkcs
k

) 1
s

.

The converse is trivial from Remark 2.

3. Concluding Remarks

In this note, the mathematical equivalence among the weighted AM–GM inequality, the Hölder
inequality, and the weighted power-mean inequality is investigated in detail. Moreover, the interesting
conclusions of Lin’s paper [14] are also extended. At the end of the present study, for convenience,
the results on the equivalence of some well-known analytical inequalities can be summarized
as follows:

• Equivalence of the Hölder’s inequality and the Minkowski inequality; see [9].
• Equivalence of the Cauchy–Schwarz inequality and the Hölder’s inequality; see [8].
• Equivalence of the Cauchy–Schwarz inequality and the Covariance–Variance inequality; see [7].
• Equivalence of the Kantorovich inequality and the Wielandt inequality; see e.g., [11]
• Equivalence of the AM–GM inequality and the Bernoulli inequality; see e.g., [10]
• Equivalence of the Hölder inequality and Artin’s theorem; see e.g., [12] (pp. 657–663) for details.
• Equivalence of the Hölder inequality and the weighted AM–GM inequality; refer to Theorem 1.
• Equivalence of the Hölder inequality and the weighted power-mean inequality; see Theorem 2.
• Equivalence of the weighted power-mean inequality and the weighted AM–GM inequality; refer

to Theorem 3.
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