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Abstract: The absolute ruin insurance risk model is modified by including some valuable market
economic information factors, such as credit interest, debit interest and dividend payments.
Such information is especially important for insurance companies to control risks. We further assume
that the insurance company is able to finance and continue to operate when its reserve is negative.
We investigate the integro-differential equations for some interest actuarial diagnostics. We also
provide numerical examples to explain the effects of relevant parameters on actuarial diagnostics.
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1. Introduction

Consider the classical insurance risk model, the cash flow of company is modeled by the risk
reserve process {Ru

t ; t ≥ 0}, with

Ru
t = u + pt− S(t), t ≥ 0. (1)

Here, Ru
0 = u ≥ 0 denotes the initial reserve, and p > 0 denotes the premium density which is

assumed to be constant. S(t) = ∑Nt
k=1 Yk, representing the aggregate claim process, is a compound

Poisson process, given by a Poisson rate λ > 0, {Yk; k = 1, 2, ...} that represents the claim size process
and is independent of the Poisson process {Nt; t ≥ 0} which are i.i.d. random variables with the
distribution function G(y) and mean µ > 0. In the present paper, in order to make the risk model
closer to the actual operating situation, we added three other properties related to the risk reserve
process (1), namely, debit interest, credit interest and dividend payments. In particular, we made a
distinction between ruin and absolute ruin. That is, the insurance company can borrow money and
continue to operate when the company’s reserve is negative.

It should be mentioned that many authors have studied the problems of absolute ruin, for example,
Cai [1] studied the Gerber-Shiu function in the case of absolute ruin. Wang and Yin [2] investigated the
absolute ruin model with barrier strategy. Wang et al. [3], Yuan et al. [4] and Peng et al. [5] extended the
work of Wang and Yin [2], and studied interest income with the barrier strategy. Wang et al. [6] further
considered a threshold dividend barrier under the absolute ruin risk model. Li and Lu [7] further
explored the case of the Markov-dependent risk model under absolute ruin. The advantage of this
Markov-dependent risk model is that different economic conditions can be expressed by different states
of Markov chains. Such models can better cope with changes in the economic environment. For more
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recent studies about absolute ruin problems, see Huu et al. [8], Luo and Taksar [9], Yang et al. [10,11],
Yu [12], Cai and Yang [13], Zhu [14,15], Bi and Zhang [16], Liu and Yang [17], Zeng and Li [18],
Zeng et al. [19], Peng and Wang [20,21] and Avram et al. [22].

Motivated by the above literature, in our model, we divided the risk reserve process into three
cases according to the size of the reserve. When the risk reserve is between zero and a fixed level
(b > 0), the premium income rate is p1, at which interest is not earnt and no dividends are paid. When
the risk reserve attains the level b, its interest at a credit interest rate of γ > 0 and moreover dividends
are paid to shareholders continuously at a certain rate ε(0 < ε ≤ p1). The premium income rate at this
time is p2 = p1 − ε. When the risk reserve is at a negative value, the company is able to finance at a
debit interest rate β > 0 and carry on their business operations.

By incorporating the above-mentioned three features into the reserve process {Ru
t ; t ≥ 0} of (1),

the new resulting risk reserve process {Ru,b
t ; t ≥ 0} is given by the following equations

dRu,b
t =


(p2 + γRu,b

t )dt− dS(t), Ru,b
t > b,

p1dt− dS(t), 0 ≤ Ru,b
t ≤ b,

(p1 + βRu,b
t )dt− dS(t), − p1/Ru,b

t ≤ 0.

(2)

Here, Ru,b
0 = u, S(t) =

Nt

∑
k=1

Yk is defined in model (1).

Let us denote the set Tb = inf{t ≥ 0|Ru,b
t ≤ −p1/β} by Tb with Tb = ∞ if Ru,b

t > −p1/β for all
t ≥ 0, and name it the time of absolute ruin. α(α > 0) is defined as the force of interest, and D(t) is the
accumulated value of all dividends payable until t time. Then, the present value of all dividends until
absolute ruin time is given by

Du,b =
∫ Tb

0
e−αtdD(t) = ε

∫ Tb

0
e−αt I(Ru,b

t > b)dt. (3)

Here, I(·) denotes the indicator function. It is worth noting that Du,b satisfies 0 < Du,b ≤

ε
∫ +∞

0
e−αtdt = ε/α.

Next, we focused on the following four related actuarial functions of Du,b.
The moment generating function of Du,b is

Q(u, z; b) = E[ezDu,b ], (4)

for some values of z where it exists.
The nth moment function of Du,b is

Wn(u; b) = E{[Du,b]
n]}, n ∈ N, (5)

with W0(u; b) = 1.
The Laplace transform of absolute ruin time (ρ is a positive constant) is

ϕ(u; b) = E[e−ρTb I(Tb < ∞)|Ru,b
0 = u]. (6)

The Gerber-Shiu expected discounted penalty function is

Φ(u; b) = E[e−αTb ω(Ru,b
Tb−, |Ru,b

Tb
|)I(Tb < ∞)|Ru,b

0 = u], (7)

where, Ru,b
Tb− is the instantaneous reserve before absolute ruin time. |Ru,b

Tb
| is the deficit at absolute

ruin time. ω(x1, x2) is a measurable function defined on (−p1/β,+∞) × (p1/β,+∞) that can be
interpreted as a penalty at the time of absolute ruin.
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2. Integro-Differential Equations for Q(u, z; b) and Wn(u; b)

In the sections below, we first give a system of partial integro-differential equations satisfied
by Q(u, z; b), through which we can further analyze the Wn(u; b). Note that Q(u, z; b) has different
expressions according to the different values of u. Hence, we discuss it for three cases by writing
Q(u, z; b) = Q1(u, z; b) for 0 ≤ u ≤ b, Q(u, z; b) = Q2(u, z; b) for u > b, and Q(u, z; b) = Q3(u, z; b) for
−p1/β < u < 0. For convenience of the following proof, we set

h1(u, t) = ueβt + p1(eβt − 1)/β, h2(u, t) = ueγt + p2(eγt − 1)/γ. (8)

Theorem 1. When 0 ≤ u ≤ b,

p1
∂Q1(u, z; b)

∂u
=λQ1(u, z; b) + αz

∂Q1(u, z; b)
∂z

− λ

[∫ u

0
Q1(u− y, z; b)dG(y)

+
∫ u+p1/β

u
Q3(u− y, z; b)dG(y) + Ḡ(u +

p1

β
)

]
,

(9)

and, when u > b,

(γu + p2)
∂Q2(u, z; b)

∂u
=λQ2(u, z; b) + αz

∂Q2(u, z; b)
∂z

− λ

[∫ u−b

0
Q2(u− y, z; b)dG(y)

+
∫ u

u−b
Q1(u− y, z; b)dG(y) +

∫ u+p1/β

u
Q3(u− y, z; b)dG(y),

+Ḡ(u +
p1

β
)

] (10)

and, when −p1/β < u < 0,

(βu + p1)
∂Q3(u, z; b)

∂u
=λQ3(u, z; b) + αz

∂Q3(u, z; b)
∂z

− λ

[∫ u+p1/β

0
Q3(u− y, z; b)dG(y) + Ḡ(u +

p1

β
)

]
.

(11)

Proof. (1) For 0 ≤ u ≤ b, as discussed in Albrecher et al. [23], and using the strong Markov property
of the risk reserve process {Ru,b

t , t ≥ 0}, we obtain

Q1(u, z; b) =(1− λt)Q1(u + p1t, ze−αt; b)

+ λt ·
[∫ u+p1t

0
Q1(u + p1t− y, ze−αt; b)dG(y)

+
∫ u+p1t+ p1

β

u+p1t
Q3(u + p1t− y, ze−αt; b)dG(y) + Ḡ(u + p1t +

p1

β
)

]
+ o(t),

(12)

where, O(t) is the high order infinitesimal of t when t→ 0, i.e., lim
t→0

O(t)
t

= 0.

By Taylor expansion,

Q1(u + p1t, ze−αt; b) =Q1(u, z; b) + p1t
∂Q1(u, z; b)

∂u
− αzt

∂Q1(u, z; b)
∂z

+ o(t). (13)

By plugging (13) into (12), we can obtain (9).
(2) The above method is applied to Q2(u, z; b) when u > b, and we have
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Q2(u, z; b) =(1− λt) ·Q2(h2(u, t), ze−αt; b) + λt ·
[∫ h2(u,t)−b

0
Q2(h2(u, t)− y, ze−αt; b)dG(y)

+
∫ h2(u,t)

h2(u,t)−b
Q1(h2(u, t)− y, ze−αt; b)dG(y)

+
∫ h2(u,t)+ p1

β

h2(u,t)
Q3(h2(u, t)− y, ze−αt; b)dG(y)

+Ḡ(h2(u, t) +
p1

β
)

]
+ o(t).

(14)

By Taylor expansion,

Q2(h2(u, t), ze−αt; b) =Q2(u, z; b) + (γu + p2)t
∂Q2(u, z; b)

∂u

− αzt
∂Q2(u, z; b)

∂z
+ o(t).

(15)

By plugging (15) into (14), we have (10).
(3) For −p1/β < u < 0, the same argument as in the proof of (10) gives

Q3(u, z; b) =(1− λt) ·Q3(h1(u, t), ze−αt; b)

+ λt ·
[∫ h1(u,t)+ p1

β

0
Q3(h1(u, t)− y, ze−αt; b)dG(y)

+Ḡ(h1(u, t) +
p1

β
)

]
+ o(t).

(16)

By Taylor expansion, we have (11).

Theorem 2. Q1(u, z; b), Q2(u, z; b) and Q3(u, z; b) satisfy

Q3(−
p1

β
, z; b) = 1, (17)

∂Q1(u, z; b)
∂u

|u=b = yQ1(b, z; b), (18)

Q1(b−, z; b) = Q2(b+, z; b), (19)

Q1(0+, z; b) = Q3(0−, z; b). (20)

Proof. (1) For (17), if u = − p1

β
, it is obvious that the absolute ruin will happen immediately, and no

dividend is paid, which implies (17).
(2) For (18), when u = b, we have

Q1(b, z; b) =(1− λt)ep1tQ1(b, ze−αt; b) + λt ·
[∫ b

0
Q1(b− y, ze−αt; b)dG(y)

+
∫ b+ p1

β

b
Q2(b− y, ze−αt; b)dG(y) + Ḡ(b +

p1

β
)

]
+ o(t).

(21)

By plugging u = b into (9) and using (21), we obtain (18).
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(3) For (19) and (20), the method is analogous to Wan [24], so we leave it out here.
Let us now consider the problem of Wn(u, b). Following the same argument as above according to

the different initial reserves, Wn(u, b) is a piecewise function. We denote

Wn(u; b) =


Wn2(u; b), u > b,

Wn1(u; b), 0 ≤ u ≤ b,

Wn3(u; b), − p1/β < u < 0,

(22)

where W01(b; b) = 1.
According to the representation theorem, we have

Qi(u, z; b) = 1 +
∞

∑
n=1

zn

n!
Wni(u; b), i = 1, 2, 3, n ∈ N+, (23)

and equating the coefficients of zn in (9)–(11), we can show that Wni(u; b) (i = 1, 2, 3.) satisfies the
following integro-differential equations and corresponding boundary conditions.

Theorem 3. When 0 ≤ u ≤ b,

p1W ′n1(u; b) =(λ + nα)Wn1(u; b)− λ

[∫ u

0
Wn1(u− y; b)dG(y)

+
∫ u+p1/β

u
Wn3(u− y; b)dG(y)

]
,

(24)

and when u > b,

(γu + p2)W ′n2(u; b) =(λ + nα)Wn2(u; b)− λ

[∫ u−b

0
Wn2(u− y; b)dG(y)

+
∫ u

u−b
Wn1(u− y; b)dG(y) +

∫ u+p1/β

u
Wn3(u− y; b)dG(y)

]
,

(25)

and when −p1/β < u < 0,

(βu + p1)W ′n3(u; b) =(λ + nα)Wn3(u; b)− λ
∫ u+p1/β

0
Wn3(u− y; b)dG(y), (26)

with boundary conditions

Wn3(−p1/β; b) = 0, (27)

W ′n1(u; b)|u=b = nWn−1,1(b; b), (28)

Wn1(0+; b) = Wn3(0−; b), (29)

Wn1(b−; b) = Wn2(b+; b), (30)

W ′n1(0+; b) = W ′n3(0−; b), (31)

p1W ′n1(b−; b) = (γb + p2)W ′n2(b+; b), (32)

where N+ represents non-negative integers.

3. Explicit Expressions for Exponential Claims to Wn(u; b) and Numerical Examples

We suppose that claim sizes obey an exponential distribution with mean µ > 0. Then,
Equations (24)–(26) are reduced to
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p1W ′n1(u; b) =(λ + nα)Wn1(u; b)− λ

µ
e−

u
µ

[∫ u

0
Wn1(y; b)e

y
µ dy +

∫ 0

−p1/β
Wn3(y; b)e

y
µ dy

]
,

0 ≤ u ≤ b,
(33)

(γu + p2)W ′n2(u; b) =(λ + nα)Wn2(u; b)− λ

µ
e−

u
µ

[∫ u

0
Wn2(y; b)e

y
µ dy

+
∫ b

0
Wn1(y; b)e

y
µ dy +

∫ 0

−p1/β
Wn3(y; b)e

y
µ dy

]
, u > b,

(34)

(βu + p1)W ′n3(u; b) = (λ + nα)Wn3(u; b)− λ

µ
e−

u
µ

∫ u

−p1/β
Wn3(y; b)e

y
µ dy, − p1/β < u ≤ 0. (35)

By applying the operator
(

d
du

+
1
µ

)
on (33)–(35), respectively, and then rearranging them,

we yield

W
′′
n1(u; b) +

(
1
µ
− λ + nα

p1

)
W
′
n1(u; b)− nα

µp1
Wn1(u; b) = 0, 0 ≤ u ≤ b, (36)

(γu + p2)W
′′
n2(u; b) +

(
γu + p2

µ
+ γ− (λ + nα)

)
W
′
n2(u; b)− nα

µ
Wn2(u; b) = 0, u > b, (37)

(βu + p1)W
′′
n3(u; b) +

(
βu + p1

µ
+ β− (λ + nα)

)
W
′
n3(u; b)− nα

µ
Wn3(u; b) = 0,

−p1/β < u ≤ 0.
(38)

Obviously, the general solution of Equation (36) can be expressed as

Wn1(u; b) = ξn1eδn1u + ξn2eδn2u, 0 ≤ u ≤ b, (39)

where ξn1 and ξn3 are arbitrary constants, and δn1 and δn2 are the two real roots of the following equation

δ2 + ς1nδ + ς2n = 0, (40)

with ς1n =
1
µ
− λ + nα

p1
, ς2n =

−nα

µp1
satisfying ς2

1n − 4ς2n > 0, i.e.,

δn1 =
−ς1n +

√
ς2

1n − 4ς2n

2
, δn2 =

−ς1n −
√

ς2
1n − 4ς2n

2
. (41)

Equations similar to (37) and (38) can be found in Paulsen and Gjessing [25] and Cai and Yang [26].

By introducing the new variables, x = −γu + p2

γµ
for u > b and z = − βu + p1

βµ
for −p1/β < u ≤ 0,

and letting Wn2(u, b) = gn(x) and Wn3(u, b) = fn(z), Equations (37) and (38) can be converted into
Kummer’s confluent hypergeometric equation (see Salter [27] and Seaborn [28]) for functions gn(x)
and fn(z):

xg′′n(x) +
(

1− λ + nα

γ
− y
)

g′n(x)− nα

γ
gn(x) = 0, − p2

γµ
< x < 0, (42)

z f ′′n (z) +
(

1− λ + nα

β
− z
)

f ′n(z)−
nα

β
fn(z) = 0, − p1

βµ
< z < 0. (43)

Using the solutions of (42) and (43), we conclude that

Wn2(u; b) = gn(x) = ξn3ηn3(u) + ξn4ηn4(u), u > b, (44)

Wn3(u; b) = fn(x) = ξn5ηn5(u) + ξn6ηn6(u), − p1/β < u ≤ 0, (45)
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where, ξn3, ξn4, ξn5 and ξn6 are arbitrary constants, and

ηn3(u) = exp{−γu + p2

γµ
} ·U

(
1− λ

γ
, 1− λ + nα

γ
;

γu + p2

γµ

)
,

ηn4(u) =
(

γu + p2

γµ

)(λ+nα)/γ

· exp{−γu + p2

γµ
} ·M

(
1 +

nα

γ
, 1 +

λ + nα

γ
;

γu + p2

γµ

)
,

ηn5(u) = exp{− βu + p1

βµ
} ·U

(
1− λ

β
, 1− λ + nα

β
;

βu + p1

βµ

)
,

ηn6(u) =
(

βu + p1

βµ

)(λ+nα)/β

· exp{− βu + p1

βµ
} ·M

(
1 +

nα

β
, 1 +

λ + nα

β
;

βu + p1

βµ

)
,

M(a1, a2; x) =
Γ(a2)

Γ(a2 − a1)Γ(a1)

∫ 1

0
extta1−1(1− t)a2−a1−1dt, a2 > a1 > 0,

U(a1, a2; x) =
1

Γ(a1)

∫ ∞

0
e−xtta1−1(1 + t)a2−a1−1dt, y > 0, a1 > 0.

Using the confluent hypergeometric function property, if β 6= λ + nα, we get

lim
u↓− p1

β

ηn5(u) = Γ
(

λ + nα

β

)
/Γ
(

β + nα

β

)
, lim

u↓− p1
β

ηn6(u) = 0, (46)

where ↓ denotes a decreasing approach. Letting u ↓ − p1

β
in (45) on both sides and together with (45),

(46) and (27), we see that ξn5 = 0, which means that for − p1

β
< u < 0,

Vn3(u; b) = ξn6ηn6(u). (47)

Next, we give the explicit values of ξn1, ξn2, ξn3, ξn4, ξn6 (ξn5 = 0) for n = 1 and n ≥ 2.
When n = 1, according to (28)–(32), (39), (44) and (47), we have

ξ11δ11eδ11b + ξ12δ12eδ12b = 1,

ξ11 + ξ12 = ξ16η16(0),

ξ11δ11 + ξ12δ12 = ξ16η′16(0),

ξ11eδ11b + ξ12eδ12b = ξ13η13(b) + ξ14η14(b),

p1(ξ11δ11eδ11b + ξ12δ12eδ12b) = (γb + p2)[ξ13η′13(b) + ξ14η′14(b)].

(48)

By solving the above equations (48), we obtain

ξ11 =
η′16(0)− δ12η16(0)

δ11eδ11b[η′16(0)− δ12η16(0)] + δ12eδ12b[δ11η16(0)− η′16(b)]
,

ξ12 =
δ11η16(0)− η′16(0)

δ11eδ11b[η′16(0)− δ12η16(0)] + δ12eδ12b[δ11η16(0)− η′16(b)]
,

ξ13 =
1

η13(b)
{θ1 − η14(b)

(γb + p2)η
′
13(b))θ1 − η13(b)p1

(γb + p2)[η′13(b)η14(b)− η13(b)η′14(b)]
},

ξ14 =
(γb + p2)η

′
13(b)θ1 − η13(b)p1

(γb + p2)[η′13(b)η14(b)− η13(b)η′14(b)]
,

ξ16 =
δ11 − δ12

δ11eδ11b[η′16(0)− δ12η16(0)] + δ12eδ12b[δ11η16(0)− η′16(b)]
,
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where δ11 and δ12 are given by (41) in the case of n = 1, and

θ1 =
eδ11b[η′16(0)− δ12η16(0)] + eδ12b[δ11η16(0)− η′16(0)]

δ11eδ11b[η′16(0)− δ12η16(0)] + δ12eδ12b[δ11η16(0)− η′16(0)]
.

Therefore, we arrive at the explicit expressions for W11(u; b),W12(u; b) and W13(u; b), namely,

W11(u; b) =
[η
′
16(0)− δ12η16(0)]eδ11u + [δ11η16(0)− η

′
16(0)]e

δ12u

δ11eδ11b[η
′
16(0)− δ12η16(0)] + δ12eδ12b[δ11η16(0)− η

′
16(0)]

, 0 ≤ u ≤ b, (49)

W12(u; b) =
η13(u)
η13(b)

{W11(b; b)− η14(b)
(γb + p2)η

′
13(b)W11(b; b)− η13(b)p1

(γb + p2)[η
′
13(b)η14(b)− η13(b)η

′
14(b)]

}

+
η14(u)[(γb + p2)η

′
13(b)θ2 − η13(b)p1]

(γb + p2)[η
′
13(b)η14(b)− η13(b)η

′
14(b)]

, u > b,

(50)

W13(u; b) =
η16(u)(δ11 − δ12)

δ11eδ11b[η
′
16(0)− δ12η16(0)] + δ12eδ12b[δ11η16(0)− η

′
n6(0)]

, − p1/β ≤ u ≤ 0. (51)

When n ≥ 2, we provide the explicit expressions of ξn1, ξn2, ξn3, ξn4 and ξn6 (ξn5 = 0) by recursive
formulas. It follows from (28)–(32), (39) (44), and (47) that

ξn1δn1eδn1b + ξn2δn2eδn2b = nWn−1,n(b; b),

ξn1 + ξn2 = ξn6ηn6(0),

ξn1δn1 + ξn2δn2 = ξn6η′n6(0),

ξn1eδn1b + ξn2eδn2b = ξn3ηn3(b) + ξn4ηn4(b),

p1(ξn1δn1eδn1b + ξn2δn2eδn2b) = (γb + p2)[ξn3η′n3(b) + ξn4η′n4(b)].

(52)

By solving the equations above, one finds

ξn1 =
nWn−1,n(b; b)[η′n6(0)− δn2ηn6(0)]

δn1eδn1b[η′n6(0)− δn2ηn6(0)] + δn2eδn2b[δn1ηn6(0)− η′n6(b)]
,

ξn2 =
nWn−1,n(b; b)[δn1ηn6(0)− η′n6(0)]

δn1eδn1b[η′n6(0)− δn2ηn6(0)] + δn2eδn2b[δn1η16(0)− η′n6(b)]
,

ξn3 =
1

ηn3(b)
{θ2 − ηn4(b)

(γb + p2)η
′
n3(b))θ2 − nWn−1,n(b; b)ηn3(b)p1

(γb + p2)[η′n3(b)ηn4(b)− ηn3(b)η′n4(b)]
},

ξn4 =
(γb + p2)η

′
n3(b)θ2 − nWn−1,n(b; b)ηn3(b)p1

(γb + p2)[η′n3(b)ηn4(b)− ηn3(b)η′n4(b)]
,

ξn6 =
nWn−1,n(b; b)(δn1 − δn2)

δn1eδn1b[η′n6(0)− δn2ηn6(0)] + δn2eδn2b[δn1ηn6(0)− η′n6(b)]
,

(53)

where δn1 and δn2 are given by (41), and

θ2 =
nWn−1,n(b; b){eδn1b[η′n6(0)− δn2ηn6(0)] + eδn2b[δ11ηn6(0)− η′n6(0)]}

δn1eδn1b[η′n6(0)− δn2ηn6(0)] + δn2eδn2b[δn1ηn6(0)− η′n6(0)]
.

Thus, we get the recursive formula for Wn1(u; b), Wn2(u; b) and Wn3(u; b) as being

Wn1(u; b) =
nWn−1,1(b; b){[η′n6(0)− δn2ηn6(0)]eδn1u + [δn1ηn6(0)− η

′
n6(0)]e

δn2u}
δn1eδn1b[η

′
n6(0)− δn2ηn6(0)] + δn2eδn2b[δn1ηn6(0)− η

′
n6(0)]

,

0 ≤ u ≤ b,

(54)
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Wn2(u; b) =
ηn3(u)
ηn3(b)

{θ2 − ηn4(b)
(γb + p2)η

′
n3(b)θ2 − nWn−1,1(b; b)ηn3(b)p1

(γb + p2)[η
′
n3(b)ηn4(b)− ηn3(b)η

′
n4(b)]

}

+
ηn4(u)[(γb + p2)η

′
n3(b)θ2 − nWn−1,1(b; b)ηn3(b)p1]

(γb + p2)[η
′
n3(b)ηn4(b)− ηn3(b)η

′
n4(b)]

,

u > b,

(55)

Wn3(u; b) =
ηn6(u)nWn−1,1(b; b)(δn1 − δn2)

δn1eδn1b[η
′
n6(0)− δn2ηn6(0)] + δn2eδn2b[δn1ηn6(0)− η

′
n6(0)]

,

−p1/β ≤ u ≤ 0,

(56)

with an initial value of

W11(b; b) =
[η′16(0)− δ12η16(0)]eδ11b + [δ11η16(0)− η′16(0)]e

δ12b

δ11eδ11b[η′16(0)− δ12η16(0)] + δ12eδ12b[δ11η16(0)− η′16(0)]
.

In the following examples, n = 1, and we illustrate the influences of relevant parameters on
W1(u; b).

Example 1. Suppose λ = 0.02, µ = 0.5, p1 = 0.2, p2 = 0.1, γ = 0.08, α = 0.02. Figure 1 shows the curves
of W11(u, b) using the formulas derived above for dividend barriers of b = 6, b = 8 and b = 10, respectively.
Figure 2 shows the curves of W11(u, b) for α = 0.02, α = 0.03 and α = 0.04 (b = 10), respectively. Figure 3
shows the surface of W11(u, b) with respect to two variables u and b. From the figures, we see that W11(u, b)
decreases when b and α increase, respectively.

b=6

b=8

b=10

1 2 3 4 5 6
u

2

4

6

8

W11

Figure 1. The curves of W11(u, b) for dividend barriers of b = 6, b = 8 and b = 10.

0.02

0.03

0.04

2 4 6 8 10
u

2

4

6

8

W11

on V11
Figure 2. The curves of W11(u, b) for α = 0.02, α = 0.03 and α = 0.04 (b = 10).
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0

2
4

6 u

0

5

10
b

5

10

15

W11

Figure 3. The surface of W11(u, b) with respect to two variables u and b.

Example 2. Suppose λ = 0.02, β = 0.05, p1 = 0.2, p2 = 0.1, and µ = 0.5. Figure 4 shows the curves
of W12(u, b) for dividend barriers of b = 6, b = 8 and b = 10. Figure 5 shows the curves of W12(u, b) for
α = 0.02, α = 0.03 and α = 0.04 (b = 10, γ = 0.08). Figure 6 shows the curves of W12(u, b) for γ = 0.05,
γ = 0.07 and γ = 0.09 (b = 10, α = 0.02). Figure 7 shows the surface of W12(u, b) with respect to variables u
and b.

b=6

b=8 b=10

2 4 6 8 10 12 14
u

2

4

6

8

10

W12

Figure 4. The curves of W12(u, b) for dividend barriers of b = 6, b = 8 and b = 10.

0.02

0.03

0.04

2 4 6 8 10 12 14
u

2

4

6

8

10

W12

on V12
Figure 5. The curves of W12(u, b) for α = 0.02, α = 0.03 and α = 0.04 (b = 10, γ = 0.08).



Symmetry 2018, 10, 377 11 of 19

0.09
0.07

0.05

5 10 15 20 25
u

2

4

6

8

10

12

W12

on V12
Figure 6. The curves of W12(u, b) for γ = 0.05, γ = 0.07 and γ = 0.09 (b = 10, α = 0.02).

0

5

10

15

20

u

0

5

10
b

5

10

15

W12

Figure 7. The surface of W12(u, b) with respect to variables u and b.

From Figures 4–7, we can see that W12(u, b) is a decreasing function of b, α, and γ, respectively.
The results can be compared to the results of Peng et al. [5] who considered a compound Poisson risk
model with a constant dividend barrier and liquid reserves in the case of absolute ruin. From the
comparative results, we obtained the conclusion that the influence of parameter b on the moment of
the present value of all dividends until absolute ruin is the same, regardless of whether a constant
dividend barrier or the threshold dividend strategy is used. In addition, the effect of parameter γ is
the opposite. This is consistent with the actual situation.

Example 3. The parameters used were as follows: λ = 0.02, β = 0.05, α = 0.02, γ = 0.08, p1 = 0.2,
p2 = 0.1, µ = 0.5. Figure 8 shows the curves of W13(u, b) for dividend barriers of b = 6, b = 8 and b = 10.
Figure 9 shows the curves of V13(u, b) for α = 0.01, α = 0.015 and α = 0.02 (b = 10, γ = 0.08). Figure 10
shows the curves of W13(u, b) for β = 0.05, β = 0.07 and β = 0.09 (b = 10, α = 0.02). Figure 11 shows the
surface of W13(u, b) with respect to variables u and b. The results show that W13(u, b) decreases as b, α, and β

increase but increases as u increases.
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b=6
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u

1

2

3

4

5

W13

Figure 8. The curves of W13(u, b) for dividend barriers of b = 6, b = 8 and b = 10.

0.01

0.015

0.02

-4 -3 -2 -1
u

2

4

6

8

10

W13

on V13
Figure 9. The curves of V13(u, b) for α = 0.01, α = 0.015 and α = 0.02 (b = 10, γ = 0.08).
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0.07 0.09

-4 -3 -2 -1
u

0.5

1.0

1.5

2.0

2.5

3.0

W13

on V13
Figure 10. The curves of W13(u, b) for β = 0.05, β = 0.07 and β = 0.09 (b = 10, α = 0.02).
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Figure 11. The surface of W13(u, b) with respect to variables u and b.
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4. The Gerber-Shiu Expected Discounted Penalty Function

Similarly, Φ(u; b) can be expressed as

Φ(u; b) =


Φ2(u; b), u > b,

Φ1(u; b), 0 ≤ u ≤ b,

Φ3(u; b), − p1/β < u < 0.

(57)

Similar to the arguments in Theorem 1, we can easily show that the Gerber-Shiu expected
discounted penalty function satisfies the following integro-differential equations:

Theorem 4. When 0 ≤ u ≤ b,

p1Φ′1(u; b) =(λ + α)Φ1(u; b)− λ

[∫ u

0
Φ1(u− y; b)dG(y)

+
∫ u+p1/β

u
Φ3(u− y; b)dG(y) + B(u)

]
,

(58)

and when u > b,

(γu + p2)Φ′2(u; b) =(λ + α)Φ2(u; b)− λ

[∫ u−b

0
Φ2(u− y; b)dG(y)

+
∫ u

u−b
Φ1(u− y; b)dG(y) +

∫ u+p1/β

u
Φ3(u− y; b)dG(y) + B(u)

]
,

(59)

and when −p1/β < u < 0,

(βu + p1)Φ′3(u; b) =(λ + α)Φ3(u; b)− λ
∫ u+p1/β

0
Φ3(u− y; b)dG(y) + B(u), (60)

with boundary conditions

Φ1(0+; b) = Φ3(0−; b), (61)

Φ1(b−; b) = Φ2(b+; b), (62)

p1Φ′1(b−; b) = (γb + p2)Φ′2(b+; b), (63)

Φ′1(0+; b) = Φ′3(0−; b), (64)

where, B(u) =
∫ ∞

u+p1/β
ω(u, y− u)dG(y).

Theorem 5. The integro-differential Equations (58)–(60) can be expressed by the Volterra equations

Φ1(u; b) =
∫ u

0
k1(u, x)Φ1(x; b)dx + ψ1(u), 0 ≤ u ≤ b, (65)

Φ2(u; b) =
∫ u

b
k2(u, x)Φ2(x; b)dx + ψ2(u), u > b, (66)

Φ3(u; b) =
∫ u

−p1/β
k3(u, x)Φ3(x; b)dx + ψ3(u), − p1/β < u < 0, (67)
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where
k1(u, x) =

λ + α

p1
− λ

p1
G(u− x),

ψ1(u) =Φ1(0; b)− λ

p1

∫ 0

−p1/β
Φ3(x; b)[G(u− x)− G(−x)]dx +

λ

p1

∫ u

0
B(x)dx,

k2(u, x) =
λ + α + γ

γu + p2
− λ

γu + p2
G(u− x),

ψ2(u) =
γb + p2

γu + p2
Φ2(b; b)− λ

γu + p2

∫ b

0
Φ1(x; b)[G(u− x)− G(b− x)]dx

− λ

γu + p2

∫ 0

−p1/β
Φ3(x; b))[G(u− x)− G(b− x)]dx

− λ

γu + p2

∫ u

0
B(x)dx,

k3(u, x) =
λ + β + γ

βu + p1
− λ

βu + p1
G(u− x),

ψ3(u) =
λ

βu + p1

∫ u

0
B(x)dx.

Proof. In (58), integrating (58) over (0, u) yields

p1Φ1(u; b) =p1Φ1(0; b) +
∫ u

0
Φ1(x; b)(λ + α− λG(u− x))dx

− λ
∫ 0

−p1/β
[G(u− x)− G(−x)]dx− λ

∫ u

0
B(x)dx.

(68)

In (68), integrating (68) over (0, u), one concludes

p1

∫ u

0
Φ1(y; b)dy =p1Φ1(0; b)u +

∫ u

0

[∫ y

0
Φ1(x; b)(λ + α− λG(y− x))dx

]
dy

− λ
∫ u

0
G(y)dy,

(69)

where, G(y) =
∫ 0

−p1/β
Φ3(x; b)(G(y− x)− G(−x))dx +

∫ y

0
B(x)dx, since

∫ u

0

[∫ y

0
Φ1(x; b)(λ + α− λG(y− x))dx

]
dy =

∫ u

0

[∫ u

x
Φ1(x; b)(λ + α− λG(y− x))dy

]
dx. (70)

Substituting (70) into (69) yields (65).
Similarly to the proof of (65), we can obtain (66) and (67).

Remark 1. We point out that ψ1(u), ψ2(u), and ψ3(u) are absolutely integrable, and k1(u; b), k2(u; b),
and k3(u; b) are all continuous. In accordance with Cai and Dickson [29], Φ1(u; b), Φ2(u; b) and Φ3(u; b) can
be approximated recursively by Picards sequence, i.e.,

Φ1(u; b) = ψ1(u) +
∞

∑
n=1

∫ u

0
k1n(u, x)ψ1(x)dx, 0 ≤ u ≤ b,

where, k11(u, x) = k1(u, x), k1n(u, x) =
∫ u

x
k1(u, y)k1,n−1(y, x)dy, n = 2, 3, ....

Φ2(u; b) = ψ2(u) +
∞

∑
n=1

∫ u

b
k2n(u, x)ψ2(x)dx, u > b,
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where, k21(u, x) = k2(u, x), k2n(u, x) =
∫ u

x
k2(u, y)k2,n−1(y, x)dy, n = 2, 3, ....

Φ3(u; b) = ψ3(u) +
∞

∑
n=1

∫ u

−p1/β
k3n(u, x)ψ3(x)dx, 0 ≤ u ≤ b,

where, k31(u, x) = k3(u, x), k3n(u, x) =
∫ u

x
k3(u, y)k3,n−1(y, x)dy, n = 2, 3, ....

Hence, at least in theory, if we can provide these values of Φ1(0; b), Φ′1(0; b), Φ2(b; b), Φ′2(b; b),
Φ3(−p1/β; b), and Φ′3(−p1/β; b), we can obtain the exact expression of the solutions for Φ1(u; b),
Φ2(u; b), and Φ3(u; b), recursively.

5. The Laplace Transform of Absolute Ruin Time

In this section, we set

ϕ(u; b) =


ϕ2(u; b), u > b,

ϕ1(u; b), 0 ≤ u ≤ b,

ϕ3(u; b), − p1/β < u < 0.

(71)

Theorem 6. When 0 ≤ u ≤ b,

p1 ϕ′1(u; b) =(λ + ρ)ϕ1(u; b)− λ

[∫ u

0
ϕ1(u− y; b)dG(y)

+
∫ u+p1/β

u
ϕ3(u− y; b)dG(y) + Ḡ(u +

p1

β
)

]
,

(72)

and when u > b,

(γu + p2)ϕ′2(u; b) = (λ + ρ)ϕ2(u; b)− λ

[∫ u−b

0
ϕ2(u− y; b)dG(y)

+
∫ u

u−b
ϕ1(u− y; b)dG(y) +

∫ u+p1/β

u
ϕ3(u− y; b)dG(y)

+Ḡ(u +
p1

β
)

]
,

(73)

and when −p1/β < u < 0,

(βu + p1)ϕ′3(u; b) =(λ + ρ)ϕ3(u; b)− λ

[∫ u+p1/β

0
ϕ3(u− y; b)dG(y)

+Ḡ(u +
p1

β
)

]
,

(74)

with the conditions

ϕ1(0+; b) = ϕ3(0−; b), (75)

ϕ1(b−; b) = ϕ2(b+; b), (76)

ϕ′1(0+; b) = ϕ′3(0−; b), (77)

p1 ϕ′1(b−; b) = (γb + p2)ϕ′2(b+; b), (78)
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lim
u→−p1/β

ϕ3(−
p1

β
; b) =

λ

λ + ρ
, (79)

lim
u→∞

ϕ2(−
p1

β
; b) = 0, (80)

where, Equation (80) is acquired from the fact that Tb = ∞ and E[e−ρTb I(Tb < ∞)|Ru,b
0 = u] = 0 when

u→ ∞.

In the following, we solve the closed form expression for ϕ(u; b) according to the exponential

distribution of claims with mean µ. By applying the operator
(

d
du

+
1
µ

)
on (72)–(74), respectively,

and then rearranging them, one deduces

ϕ′′1 (u; b) +
(

1
µ
− λ + ρ

p1

)
ϕ′1(u; b)− ρ

µp1
ϕ1(u; b) = 0, 0 ≤ u ≤ b, (81)

(γu + p2)ϕ′′2 (u; b) +
(

γu + p2

µ
+ γ− λ− ρ

)
ϕ′2(u; b)− ρ

µ
ϕ1(u; b) = 0, u > b, (82)

(βu + p1)ϕ′′3 (u; b) +
(

βu + p1

µ
+ β− λ− ρ

)
ϕ′3(u; b)− ρ

µ
ϕ3(u; b) = 0, − p1/β < u ≤ 0. (83)

By comparing (81)–(83) with (36)–(38) respectively, we have

ϕ1(u; b) = m1eσ1u + m2eσ2u, − p1/β < u ≤ 0, (84)

where, m1 and m2 are arbitrary constants, q1 =
1
µ
− λ + ρ

p1
and q2 = − ρ

µp1
satisfying q2

1 − 4q2 > 0, i.e.,

σ1 =
−q1 +

√
q2

1 − 4q2

2
, σ2 =

−q1 −
√

q2
1 − 4q2

2
, (85)

and
ϕ2(u; b) = m3τ3(u) + m4τ4(u), u > b, (86)

ϕ3(u; b) = m5τ5(u) + m6τ6(u), − p1/β < u ≤ 0, (87)

with

τ3(u) = exp{−γu + p2

γµ
} ·U

(
1− λ

γ
, 1− λ + ρ

γ
;

γu + p2

γµ

)
,

τ4(u) =
(

γu + p2

γµ

)(λ+ρ)/γ

· exp{−γu + p2

γµ
} ·M

(
1 +

ρ

γ
, 1 +

λ + ρ

γ
;

γu + p2

γµ

)
,

τ5(u) = exp{− βu + p1

βµ
} ·U

(
1− λ

β
, 1− λ + ρ

β
;

βu + p1

βµ

)
,

τ6(u) =
(

βu + p1

βµ

)(λ+ρ)/β

· exp{− βu + p1

βµ
} ·M

(
1 +

ρ

β
, 1 +

λ + ρ

β
;

βu + p1

βµ

)
.

If β 6= λ + ρ, we have

lim
u↓−p1/β

τ5(u) =
Γ
(

λ + ρ

β

)
Γ
(

β + ρ

β

) = τ5(−p1/β), lim
u↓−p1/β

τ6(u) = 0. (88)
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From (75)–(80), (84), (86)–(88), it follows that

m1 + m2 −m5τ5(0)−m6τ6(0) = 0,

m1eσ1b + m2eσ2b −m3τ3(b)−m4τ4(b) = 0,

m1σ1 + m2σ2 −m5τ′5(0)−m6τ′6(0) = 0,

m1 p1σ1eσ1b + m2 p1σ2eσ2b −m3(γb + p2)τ
′
3(b)−m4(γb + p2)τ

′
4(b) = 0,

m5τ5(−p1/β) =
λ

λ + ρ
,

m3τ3(∞) + m4τ4(∞) = 0.

(89)

We let Π be the the matrix, defined as

Π =



1 1 0 0 −τ5(0) −τ6(0)
eσ1b eσ2b −τ3(0) −τ4(0) 0 0
σ1 σ1 0 0 −τ′5(0) −τ′6(0)

p1σ1eσ1b p1σ2eσ2b −(γb + p2)τ
′
3(b) −(γb + p2)τ

′
4(b) 0 0

0 0 0 0 τ5(−p1/β) 0
0 0 τ3(∞) τ4(∞) 0 0


,

and the column vector ~B is defined as

~B = (0, 0, 0, 0,
λ

λ + ρ
, 0)T ,

where, T denotes the transpose. Let Πi denote the matrix except that the ith column of Π is replaced
by ~B. Then, we have

mi =
det(Πi)

det(Π)
, i = 1, 2, 3, 4, 5, 6,

where, det(·) denotes the determinant of a matrix. Hence, we have provided the closed form
expressions for ϕi(u; b), i = 1, 2, 3.

6. The Time to Reach the Dividend Barrier

Let us explore how long it takes for the risk reserve process to attain the barrier b from the initial
reserve u without absolute ruin. Let χb denote the first time that the risk reserve arrives at b, define

Ψ(u; b) = E[e−ρχb I(χb < T)|Ru,b
0 = u], ρ > 0. (90)

For notational convenience, we set

Ψ(u; b) =

{
Ψ1(u; b), 0 ≤ u ≤ b,

Ψ2(u; b), − p1/β < u < 0.
(91)

Using a method similar to Theorem 1, we have
For 0 ≤ u ≤ b,

p1Ψ′1(u; b) = (λ + ρ)Ψ1(u; b)− λ

[∫ u

0
Ψ1(u− y; b)dG(y)

+
∫ u+p1/β

u
Ψ2(u− y; b)dG(y)

]
,

(92)
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and, for −p1/β < u < 0,

(βu + p1)Ψ′2(u; b) = (λ + ρ)Ψ2(u; b)− λ[
∫ u+p1/β

0
Ψ2(u− y; b)dG(y)], (93)

with boundary conditions
Ψ1(0+; b) = Ψ2(0−; b),

Ψ
′
1(0+; b) = Ψ

′
2(0−; b)

lim
u→−p1/β

Ψ2(u; b) = 0,

Ψ1(b; b) = 1.

Using the same methods as in Section 5, we can get the explicit expressions for Ψ1(u; b) and
Ψ2(u; b) when the claim size is exponentially distributed with mean µ. We omit it.
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