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Abstract: Modelling the multimedia data such as text, images, or videos usually involves the analysis,
prediction, or reconstruction of them. The recurrent neural network (RNN) is a powerful machine
learning approach to modelling these data in a recursive way. As a variant, the long short-term
memory (LSTM) extends the RNN with the ability to remember information for longer. Whilst one
can increase the capacity of LSTM by widening or adding layers, additional parameters and runtime
are usually required, which could make learning harder. We therefore propose a Tensor LSTM
where the hidden states are tensorised as multidimensional arrays (tensors) and updated through a
cross-layer convolution. As parameters are spatially shared within the tensor, we can efficiently widen
the model without extra parameters by increasing the tensorised size; as deep computations of each
time step are absorbed by temporal computations of the time series, we can implicitly deepen the
model with little extra runtime by delaying the output. We show by experiments that our model is
well-suited for various multimedia data modelling tasks, including text generation, text calculation,
image classification, and video prediction.

Keywords: multimedia data modelling; recurrent neural network (RNN); long short-term memory
(LSTM); tensor; convolution; deep learning

1. Introduction

Multimedia data such as text, images, and videos are ubiquitous nowadays. Modelling such
data usually involves the analysis, prediction, or reconstruction of them. For instance, text modelling
relates to many natural language processing tasks such as sentiment analysis [1], part-of-speech
tagging [2], machine translation [3], and question answering [4], image modelling relates to many
computer vision tasks such as image segmentation [5], depth reconstruction [6], image generation [7],
and super-resolution [8], and video modelling also relates to many computer vision tasks such as object
tracking [9], video segmentation [10], motion estimation [11], and video prediction [12]. Although they
are diverse, these tasks usually can be formulated as a time series prediction problem, e.g., generating
a desired output yt for a given time series x1:t ={x1, x2, · · · , xt}, for time t=1, 2, . . . , T, where xt∈RU

and yt∈RV are vectors (In this paper, we assume the vectors are in row form). The recurrent neural
network (RNN) [13,14] is a popular model that can learn to encapsulate the useful information of the
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input history x1:t into a hidden state vector ht ∈RM. By concatenating the input xt to the previous
hidden state ht−1, we first get hcat

t−1∈RU+M:

hcat
t−1 = [xt, ht−1]. (1)

The hidden state ht is then updated by:

at = hcat
t−1Wh + bh, (2)

ht = φ(at), (3)

where Wh∈R(U+M)×M and bh∈RM are parameters namely the weight and bias, respectively; at∈RM is
the activation for ht, and φ(·) is the tanh function (element-wise). The RNN finally produces an output
yt for time t:

yt = ϕ(htWy + by), (4)

where Wy∈RM×V and by ∈ RV , and ϕ(·) is a differentiable transformation that depends on the task.
Nevertheless, the standard RNN is notorious for capturing the long-term dependency caused

by the vanishing and exploding gradients [15]. Long Short-Term Memories (LSTMs) [16,17] mitigate
this by (i) introducing the memory cell to store information longer, and (ii) utilising the gates for
information routing. In a standard LSTM [17], the hidden state ht is updated as follows:

[ag
t , ai

t, a f
t , ao

t ] = hcat
t−1Wh + bh, (5)

[gt, it, ft, ot] = [φ(ag
t ), σ(ai

t), σ(a f
t ), σ(ao

t )], (6)

ct = gt � it + ct−1 � ft, (7)

ht = φ(ct)� ot, (8)

where Wh∈R(U+M)×4M and bh∈R4M are parameters, ai
t,a

o
t ,ag

t ,a f
t ∈RM are respectively the activations

of the input gate it, the output gate ot, the new content gt, and the forget gate ft, ct∈RM is the updated
memory cell, σ(·) is the sigmoid function (element-wise), and � is the element-wise multiplication.
Since LSTM is successful in modelling time series, it is natural to further increase its capacity so that it
could be profitably applied to a wider range of tasks.

We consider the width and the depth to compose a network’s capacity, where the former
measures how much information could be processed in parallel, while the latter measures how
many computation steps are required for processing [18]. Whilst using more hidden units in a layer
can widen the LSTM, it scales the parameter number quadratically. On the other hand, the Stacked
LSTM (sLSTM) deepens the LSTM by using multiple layers [19]; however, the runtime scales linearly
with the layer number and the input information is likely to be lost when it vertically passes through
the LSTM layers (caused by vanishing/exploding gradients).

The goal of this paper is to make the LSTM wider and deeper and meanwhile prevent its parameter
number and runtime from growing. To summarize, we have the following contributions:

• We represent RNN hidden states as multidimensional arrays (tensors) to allow more flexible
parameter sharing, thereby being able to efficiently widen the network without extra parameters.

• We use the temporal computations of the RNN to absorb its deep computations in order that we
can deepen it without extra runtime. We call this novel RNN as the Tensor RNN (tRNN).

• We propose a memory cell convolution and apply it to the tRNN in order to mitigate gradient
vanishing and explosion, obtaining a Tensor LSTM (tLSTM).

• We generalise the tLSTM so that it can process not only non-structured time series (series of
vectors) [20], but also structured time series (series of tensors, such as videos).

• We show by experiments that our model is well-suited for various multimedia data modelling
tasks, including text generation, text calculation, image classification, and video prediction.
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2. Method

2.1. Tensor Representation

From (2), we can see that the parameter number of an RNN scales quadratically with its hidden
size. To widen the network while restricting its parameter number, one can use tensor factorisation,
where the parameters are represented by multidimensional tensors that could be factorised as low-rank
subtensors containing much fewer elements [21–29]. As the hidden state vector would be broadcast
when interacting with the parameter tensor, the network is widened implicitly. One can also limit the
parameter number of an RNN by spatially sharing a small group of parameters within its hidden state,
analogous to the convolutional neural network (CNN) [30,31].

Here, we use parameter sharing to reduce the number of parameters in RNNs. In contrast
to tensor factorisation, it provides two benefits: (i) scalability—the size of hidden state would
not affect the number of parameters; (ii) separability—we can carefully route the information
via the receptive field control so that the RNN deep computations can be shifted into its temporal
direction (Section 2.2). In addition, the hidden state vectors of RNN are explicitly tensorised, as tensors
are more: (i) flexible—we can choose the dimensions for parameter sharing and then just enlarge the
sizes of these dimensions so that no more parameters are introduced; (ii) efficient—by using tensors
of higher dimensionality, we can widen the network faster when the number of parameters is fixed
(Section 2.3).

To ease explanation, let’s firstly focus on 2D tensors (matrices). Given a hidden state ht ∈RM,
we tensorise it as Ht∈RP×M, where P and M are respectively the tensorised size and channel size. In Ht,
the 1st dimension is locally-connected for parameter sharing, and the 2nd dimension is fully-connected
for global interaction—like in CNN where only the last dimension is fully-connected so that different
feature planes (e.g., red/green/blue channels for the input image) can be globally fused. In addition,
when comparing Ht with the hidden state in the Stacked RNN (sRNN) (as in Figure 1a), P can be
thought as the layer number, and M can be thought as each layer’s size. To explain our model, we start
with 2D tensors, and then demonstrate how to use higher dimensional tensors to enhance the model,
and finally show how to extend the model to deal with structured input time series.

Figure 1. Illustration of the evolution from sRNN to tLSTM. (a) sRNN with three layers; (b) tRNN
with no feedback connection (–F); it could be obtained by skewing the sRNN shown in (a); (c) the
standard tRNN; (d) tLSTM with no memConv (–M); (e) The standard tLSTM. For each model, white
circles from column 1–4 (from left to right) represent hidden states at time (t−1) to (t+2), respectively.
Blue regions represent the output yt’s receptive fields. Note that, in (b and e), we have delayed the
outputs for L−1=2 time steps, with a depth L=3.

2.2. Deep Computation through Time

As RNN is already deep when unfolded in time, we can associate the input xt with a future
(delayed) output to also make the input-to-output computation deep. To achieve this, we should
guarantee that the output yt is separable, i.e., it is independent of the future input xt:T . Therefore, we first
stack xt’s projection on top of Ht−1; then move the input content downwards through the temporal
computation, and finally produce yt from the bottom of a future hidden state Ht+L−1, where L−1
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denotes the delayed time steps and L denotes the depth. Figure 1b shows an example with L = 3,
which can be thought as a skewed sRNN that is mentioned in [7,32]. However, in our implementation,
the network structure does not need to be changed, and various interactions are also allowed if the
output satisfies the separability. For instance, we can use wider local connections or introduce feedback
connections (as in Figure 1c) to improve the model (similar to [33]). In addition, we update Ht by
convolving it with a learnable kernel so that the parameters can be shared. In doing this, we have
increased the input–output mapping complexity (via output delay) and limited the growth of the
parameter number (via parameter sharing by convolution).

To define the above described tRNN, we denote the concatenated hidden state as Hcat
t−1∈R(P+1)×M,

and the location at a tensor as p∈Z+. At location p of Hcat
t−1, the channel vector hcat

t−1,p∈RM satisfies:

hcat
t−1,p =

{
xtW x + bx, if p = 1

ht−1,p−1, if p > 1,
(9)

where W x ∈ RU×M and bx ∈ RM. The hidden state Ht is then updated through a convolution:

At = Hcat
t−1 ~ {Wh, bh}, (10)

Ht = φ(At), (11)

where Wh ∈RK×Mi×Mo
and bh ∈RMo

are the kernel’s weight and bias, respectively, with K denoting
the kernel size, Mi = M the input channel, and Mo = M the output channel, At∈RP×Mo

denotes the
activation of Ht, and ~ denotes the convolution operation (detailed in Appendix A.1). As kernels
convolve across different layers of the hidden state, we call the convolution as a cross-layer convolution,
which allows the interaction among layers (from both top-down and bottom-up). Finally, the channel
vector ht+L−1,P∈RM, located at the bottom of Ht+L−1, is used to generate yt:

yt = ϕ(ht+L−1,PWy + by), (12)

where Wy ∈ RM×V and by ∈ RV . To ensure yt’s receptive field only covers historical inputs x1:t
(as in Figure 1c), a constraint among L, P, and K needs to be satisfied:

L =
⌈ 2P

K− K%2

⌉
, (13)

where % is the modulus operator and d·e denotes the ceil operation. Please see in Appendix B for the
derivation of (13).

We call the RNN described in (9)–(12) as a Tensor RNN (tRNN), where one can increase the
tensorised size P to widen the model, and meanwhile keep the number of parameters fixed (by using
convolution). Moreover, different from the sRNN with a runtime complexity of O(TL), the runtime
complexity of a tRNN is broken down to O(T+L), indicating that the runtime would not be significantly
affected by T or L.

2.3. Using LSTMs

To capture the long-term dependency across different time steps, the tRNN can be
straightforwardly extended with LSTM by modifying (10) and (11) as:

[Ag
t , Ai

t, A f
t , Ao

t ] = Hcat
t−1 ~ {Wh, bh}, (14)

[Gt, It, Ft, Ot] = [φ(Ag
t ), σ(Ai

t), σ(A f
t ), σ(Ao

t )], (15)

Ct = Gt � It + Ct−1 � Ft, (16)

Ht = φ(Ct)�Ot, (17)



Symmetry 2018, 10, 370 5 of 20

where {Wh, bh} is the kernel with kernel size K, input channel Mi =M, and output channel Mo = 4M,
Ai

t, Ao
t , Ag

t , A f
t ∈RP×M are respectively the activations of the input gate It, the output gate Ot, the new

content Gt, and the forget gate Ft, and Ct∈RP×M is the updated memory cell. However, as (16) only
gates the previous memory cell Ct−1 along the temporal direction (as in Figure 1d), when the tensorised
size P grows large, the long-term dependency from the input–output direction is likely to be lost.

2.3.1. Memory Cell Convolution

Here, we propose a novel memory cell convolution (memConv) for capturing the long-term
dependency from multiple directions, where, like the hidden state, the memory cell could also have a
wider receptive field (as in Figure 1e). In addition, the kernel for memConv is generated on the fly and
therefore varies with time and location, flexibly controlling the long-term dependency from different
directions. Concretely, we define the tensor update for tLSTM as follows:

[Ag
t , Ai

t, A f
t , Ao

t , Aq
t ] = Hcat

t−1 ~ {Wh, bh}, (18)

[Gt, It, Ft, Ot, Qt] = [φ(Ag
t ), σ(Ai

t), σ(A f
t ), σ(Ao

t ), ς(Aq
t )], (19)

W c
t (p) = reshape

(
qt,p, [K, 1, 1]

)
, (20)

Cconv
t−1 = Ct−1 ~W c

t (p), (21)

Ct = Gt � It + Cconv
t−1 � Ft, (22)

Ht = φ(Ct)�Ot, (23)

where, unlike (14)–(17), the kernel {Wh, bh} contains additional 〈K〉 output channels (〈·〉 computes
the cumulative product of the input variable elements) for generating the activation Aq

t ∈RP×〈K〉 of
the dynamic kernel bank Qt∈RP×〈K〉, qt,p∈R〈K〉 denotes the vectorised dynamic kernel selected from
Qt’s entry p, and W c

t (p)∈RK×1×1 is the dynamic kernel reshaped from qt,p (illustrated in Figure 2a),
with a size K and a single input/output channel. Equation (21) defines the memConv (detailed in
Appendix A.2), where we use W c

t (p), the value of which varies with p, to convolve every channel of
Ct−1, producing a convolved memory cell Cconv

t−1 ∈RP×M. Analogous to [34], in (19), a softmax function
ς(·) is employed to normalise Qt along its channel dimension, which can stabilise the memory cell
values and thereby mitigate the vanishing and exploding gradients (please check Appendix C for
more discussion).

There are many works [22,23,27,35–37] using the concept of dynamically producing the model
weights, where [36] also dynamically generates location-dependent convolution kernels for improving
the CNN. Unlike these works, we aim to broaden the receptive fields for tLSTM memory cells.
Whilst being flexible, fewer parameters are needed for generating the memConv kernel as it can be
shared by different channels of the memory cell.

Figure 2. Illustration of how to generate the memConv kernels for 2D (a) and 3D (b) tensors.
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2.3.2. Channel Normalisation

We adapt the recently proposed layer normalisation (LN) [38] to speed-up the training of tLSTM.
In [38], LN has been observed unsuitable for the CNN where different statistics are possessed
by different channel vectors. Similarly, we have found that LN also performs not well for the
tLSTM, in which low-level information is possessed by channel vectors close to the input and vice
versa. Therefore, we propose a channel normalisation (CN), which normalises each channel vector
independently. The CN operator is defined as:

CN (Z; Γ, B) = Ẑ� Γ + B, (24)

where Γ, B, Z, Ẑ ∈ RP×Mz
, Γ and B are parameters namely the gain and bias, respectively, Z is the

input tensor, and Ẑ is the normalised tensor. Let zmz ∈RP be the mz-th channel of Z, it is normalised
element-wisely:

ẑmz = (zmz − zµ)/zσ, (25)

where zµ, zσ∈RP are respectively the mean and the standard deviation which are computed along Z’s
channel dimension, and ẑmz ∈RP denotes the mz-th channel in Ẑ. As the parameter number introduced
by CN/LN is quite small in terms of the model parameters, it could be reasonably neglected.

2.3.3. Leveraging Higher-Dimensional Tensors

In (13), we can see that given the kernel size K, the tensorised size P scales linearly w.r.t. the
depth L. To widen the tLSTM more efficiently, we resort to using higher-dimensional tensors, where the
tensor volume can be expanded more rapidly. Based on the tLSTM defined in previous sections, we can
generalise the tensors from 2D to (D+1)-dimensional where D>1, resulting in Ht, Ct∈RP1×P2×...×PD×M

with the tensorised size P = [P1, P2, . . . , PD]. As the hidden states are more than 2D, we instead
concatenate xt’s projection to the corner of Ht−1, thereby extending (9) as:

hcat
t−1,p =


xtW x + bx, if pd = 1 for 1 ≤ d ≤ D

ht−1,p−1, if pd > 1 for 1 ≤ d ≤ D

0, otherwise,

(26)

where the channel vector hcat
t−1,p ∈ RM is the entry p ∈ ZD

+ of the concatenated hidden state

Hcat
t−1∈R(P1+1)×(P2+1)×...×(PD+1)×M. Accordingly, the output yt is generated at the opposite corner of Ht+L−1,

thus we modify (12) as:
yt = ϕ(ht+L−1,PWy + by). (27)

To update the hidden state, we also tensorise the convolution kernel Wh and W c
t (·) so that they

have a kernel size of K = [K1, K2, . . . , KD], where W c
t (·) is still reshaped from the vector (see Figure 2b).

In order to make every dimension of P and K meet the constraint (13) with a same L, we set Pd =P
and Kd =K for d=1, 2, . . . , D. For CN, it is still applied to normalise the channel dimension of tensors.

Since D is the additional dimensionality introduced by tensorisation, we call D the tensorised
dimensionality and denote the resulting tLSTM as a D-tLSTM. For instance, the untensorised LSTM
defined in (5)–(8) is a 0-tLSTM, and the tLSTM (with 2D tensors) defined in (18)–(23) is an 1-tLSTM.

2.4. Handling Structured Inputs

Until now, we have limited our discussion to the case where the input at each time step is a vector,
which is non-structured. However, as structured data (e.g., image time series) also emerges in many
multimedia modelling tasks (e.g., video segmentation, motion estimation, and video prediction), it is
essential to generalise the model to handle structured inputs.



Symmetry 2018, 10, 370 7 of 20

We use Xt ∈ RS1×S2×...×SE×U to denote the structured input at time step t, where E ∈ Z+

is the structure dimensionality and S = [S1, S2, . . . , SE] the structure size, e.g., when Xt is a 2D
image, then S=[S1, S2] is the image size (height and width) and U is the image depth (channel).
Correspondingly, we have a hidden state Ht∈RP1×P2×...×PD×S1×S2×...×SE×M. In contrast to (26), we define
the sub-tensor Hcat

t−1,p∈RS1×S2×...×SE×M locating at entry p of Hcat
t−1 as:

Hcat
t−1,p =


Xt ~ {W x, bx}, if pd = 1 for 1 ≤ d ≤ D

Ht−1,p−1, if pd > 1 for 1 ≤ d ≤ D

0, otherwise,

(28)

where the convolution kernel {W x, bx} is used for linear projection and is of size 1∈RE, with U input
channels and M output channels.

To update the hidden state tensor, the size of convolution kernels Wh and W c
t (·) becomes

K = [K1, K2, . . . , KD, KD+1, KD+2, . . . , KD+E], where the first D dimensions, K1:D, are related to the
tensorised size P, and the succeeding E dimensions, KD+1:D+E, are related to the structure size E.
This also means that KD+1:D+E are free of the constraint (13).

Finally, we generate the output from the sub-tensor Ht+L−1,P∈RS1×S2×...×SE×M. Note that for many
tasks such as video prediction, the output usually has the same structure (i.e., a same S) as the input.
In this case, the output can be generated by:

Yt = ϕ(Ht+L−1,P ~ {Wy, by}), (29)

where Yt ∈ RS1×S2×...×SE×V is the structured output and {Wy, by} is the convolution kernel of size
1∈RE, with M input channels and V output channels. In addition, it is straightforward to generate a
non-structured output yt∈RV from Ht+L−1,P, e.g., by using a CNN or a fully-connected network.

3. Related Work

3.1. Convolutional LSTMs

The Convolutional LSTM (cLSTM) parallelises the computation of LSTM where at each time step
the input is structured (as in Figure 3a), such as an array vector [7], a matrix of vectors [39–42], and a
tensor of vectors [43,44]. Different from the cLSTM, tLSTM focuses on increasing the capacity of LSTM
where each input can also be non-structured (a single vector), and has the following advantages: (i)
the convolution in tLSTM is performed across different hidden layers, the structure of which can be
different from the input structure, integrating information top-down and bottom-up, whereas the
convolution in cLSTM is only performed within each hidden layer, the structure of which depends
on the input structure, thereby falling back to the standard LSTM when each input is a single vector;
(ii) by increasing the tensorised size, one can efficiently widen the tLSTM without introducing more
parameters, whereas to widen the cLSTM, either increasing the kernel size or kernel channel can
significantly increase the parameter number; (iii) by delaying the output, one can deepen the tLSTM
with little additional runtime, whereas to deepen the cLSTM, increasing the number of hidden layers
can significantly increase the runtime; (iv) with the memConv, tLSTM can capture the long-term
dependency of multiple directions, whereas, cLSTM only gates the memory cell along one direction,
thereby struggling to capture the long-term dependency of multiple directions.
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Figure 3. Examples of the related models. (a) The cLSTM [7] with one layer, where the input at each
time step is an array of vectors; (b) the sLSTM [45] with three layers; (c) the Grid LSTM [46] with
three layers; (d) the recurrent highway network (RHN) [47] with three layers; (e) the quasi-recurrent
neural network [48] with three layers and a kernel size of 2, where temporal convolution is utilised to
parallelise costly computations.

3.2. Deep LSTMs

The Deep LSTM (dLSTM) improves the sLSTM by further deepening it (as shown in Figure 3b–d).
In order to limit the number of parameters as well as make training easy, in [46,47,49,50],
another RNN/LSTM is applied to the depth direction of dLSTMs. However, the runtime is still
multiplied by the depth. Though deep computations are accelerated in [32,51], they mainly focus on
simple architectures, e.g., sLSTMs. Unlike dLSTMs, in tLSTM, deep computations are performed with
little extra runtime, and feedback is enabled by cross-layer convolutions. Furthermore, by utilising
higher dimensional tensors, one can increase tLSTM’s capacity with higher efficiency, while the whole
stacked hidden layers in a dLSTM only compose a 2D tensor, whose dimensionality is fixed.

3.3. Other Parallelisation Methods

When full input and target sequences are available for training, temporal computations of the
time series are parallelised (for instance, by using temporal convolutions like in Figure 3e) in [48,52–56].
Nevertheless, for online inference, since inputs are presented sequentially, these methods can no
longer parallelise temporal computations, which will also be blocked by deep computations of each
time step, rendering themselves not well-suited for the real-time application which requires a high
sampling/output frequencies. On the contrary, as tLSTM performs deep computations through
temporal computations, it can accelerate both training and online inference for many tasks. This is
human-like: when converting the input signal into action, we simultaneously process newly arrived
signals in a nonblocking manner. One should also notice that for some tasks (such as autoregressive
sequence generation) which take the previous output yt−1 as the current input xt, tLSTM is unable to
parallelise the deep computation for online inference, since additional L−1 time steps are required to
generate yt−1 for each xt.

4. Experiments

To evaluate our tLSTM, we experiment on seven challenging multimedia data modelling tasks,
and are interested in the following configurations:

• sLSTM: We implement the sLSTM [45] and share the parameters for different layers.
This configuration is served as our baseline.

• tLSTM: tLSTM with 2D tensors, which is defined in (18)–(23).
• 1-tLSTM–M: 1-tLSTM with no memConv (–M), i.e., using (14)–(17).
• 1-tLSTM–F: 1-tLSTM with no feedback connection (–F).
• 2-tLSTM: Tensorising 1-tLSTM by using 3D tensors, which is explained in Section 2.3.3, with D=2.
• 2-tLSTM+LN: 2-tLSTM with the LN [38].
• 2-tLSTM+CN: 2-tLSTM with the CN described in Section 2.3.2.
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To make different configurations comparable, for sLSTM, we use L and M to represent the layer
number and the size of each layer, respectively. Let K be the value of the first D dimensions of the
kernel size K, we set K=2 for 1-tLSTM–F and K=3 for other tLSTM configurations, so that according
to (13), we have L=P.

To check if tLSTM’s performance can be improved without using additional parameters, for each
configuration, we use the same amount of parameters and meanwhile increase the tensorised size.
We also inspect how the depth can affect the runtime, which is quantified as the averaged milliseconds
cost by a single sample’s forward and backward passes over a single RNN time step. Then, we evaluate
tLSTM’s ability by comparing it against the state-of-the-art methods. Finally, we analyze the inner
working of tLSTM by visualising its memory cells.

The training objective is to minimise the training loss w.r.t. the parameter θ (vectorised), i.e.,

min
θ

1
N

N

∑
n=1

Tn

∑
t=1

l
(

f (xd
n,1:t; θ), yd

n,t

)
, (30)

where N is the number of training sequences, Tn is the length of the n-th training sequence, and l(·, ·)
is the loss between the prediction and the target. We define l(·, ·) as the Mean Squared Error (MSE) for
regression problems (our video prediction tasks), and as the cross entropy for classification problems
(our other tasks). In all tasks, the training objective is minimised by Adam [57] with a learning rate of
0.001. Forget gate biases are set to 4 for image classification tasks and 1 [58] for others. All models are
implemented by Torch7 [59] and accelerated by cuDNN on Tesla K80 GPUs (NVIDIA, Santa Clara,
CA, USA).

We only apply CN to the output of the tLSTM hidden state as we have tried different combinations
and found this is the most robust way that can always improve the performance for all tasks. With CN,
the output of hidden state becomes:

Ht = φ (CN (Ct; Γ, B))�O. (31)

4.1. Text Generation

The dataset of Hutter Prize Wikipedia [60] is a text file comprising 100 million characters with
a vocabulary size of 205, including alphabets, special symbols, and XML markups. This dataset is
modelled at character-level, and the goal is generating the next character given all previous ones, e.g.,:

Input : [[Joachim Vadian]], Swiss humanis,

Target : [Joachim Vadian]], Swiss humanist.

We evaluate all configurations for the depth L= 1, 2, 3, 4 and use 10 M parameters, so that the
channel size M for sLSTM and 1-tLSTM–F is 1120, for other 1-tLSTMs is 901, and for 2-tLSTMs is 522.
Bits-per-character (BPC) are used for performance measuring. As in [33], we split the dataset into
90 M/5 M/5 M for training/validation/test. In each iteration, the model is fed with a mini-batch of
100 subsequences of length 50. During the forward pass, the hidden values at the last time step are
preserved to initialise the next iteration. We terminate training after 50 epochs.

Figure 4 shows the results. With a larger M, sLSTM and 1-tLSTM–F perform better than other
models when L ≤ 2. When L increases, sLSTM and 1-tLSTM–M boost their performances but get
stuck when L ≥ 3, whereas, with the memConv, the performances of tLSTMs improve, finally
surpassing sLSTM and 1-tLSTM–M. With L = 4, the performance of 1-tLSTM–F is exceeded by
that of 1-tLSTM, which is exceeded by that of 2-tLSTM in turn. Whilst LN benefits 2-tLSTM only when
L≤2, CN consistently benefits 2-tLSTM with different L.

Note that, in each tLSTM configuration, the runtime is nearly constant and largely unaffected by
L, while in sLSTM, the runtime is almost proportional to L.
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To compare with the state-of-the-art methods, we evaluate a larger 2-tLSTM+CN on the test set,
where L=6 and M=1200. The results are presented in Table 1. With 50.1 M parameters, our model
achieves a BPC of 1.264, and is therefore competitive to the best results [47,50] with similar amount
of parameters.

Figure 4. Performance and runtime on Wikipedia.

Table 1. Test BPCs for Wikipedia text generation.

Method #Parameters BPC

MI-LSTM [26] ≈17 M 1.44
mLSTM [29] ≈20 M 1.42

HyperLSTM+LN [37] 26.5 M 1.34
HM-LSTM+LN [61] ≈35 M 1.32

Large RHN [47] ≈46 M 1.27
Large FS-LSTM-4 [50] ≈47 M 1.245

2 × Large FS-LSTM-4 [50] ≈94 M 1.198

2-tLSTM+CN (L=6, M=1200) 50.1 M 1.264

4.2. Text Calculation

(i) Addition: The goal of this task is adding two integers of 15-digit. The model firstly reads both
integers, after which it predicts their sum, both in a sequential manner (i.e., one digit per time
step). Following [46], we use the symbol ‘-’ to delimit integers and pad the input and target
sequences, e.g.,

Input : -694104857461284-930283746529103-----------------

Target : --------------------------------1624388603990387-

(ii) Copy: The copy task is to reproduce 20 random symbols presented as a sequence, where 65
different symbols are used. As in the addition task, the symbol ‘-’ is also used as a delimiter, e.g.,

Input : -7h@P}n$R&+0^(#4?w>5C---------------------

Target : ---------------------7h@P}n$R&+0^(#4?w>5C-

For the addition and copy tasks, we set M to 400 and 100, respectively, and evaluate each
configuration for L = 1, 4, 7, 10. The prediction accuracy of symbols are used to measure the
performance. Like in [46], for both tasks we randomly generate 5 M training samples and 100 test
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samples, and set the mini-batch size to 15. Training proceeds for at most one epoch (To simulate the
online learning process, we use all training samples only once) and will be terminated if 100% test
accuracy is achieved.

Results are shown in Figure 5. In both tasks, the performances of sLSTM and 1-tLSTM–M degrades
with larger L. On the contrary, with L increasing, the performance of 1-tLSTM–F continues improving,
and can be further boosted by using feedback, tensors of higher dimensionality, and CN, whilst LN
improves the performance only when L=1. Note that correct solutions can be found (when achieving
100% test accuracies) in both tasks because of their repetitive nature. From the experiments, we find
that in the task of addition, 2-tLSTM+CN of L=7 performs the best and solves the task using only 298 K
training examples, whilst in the task of copy, 2-tLSTM+CN of L=10 outperforms other configurations
and copies perfectly using only 54 K training examples. Moreover, different from sLSTM, all tLSTMs’
runtime can be largely independent of L.

On both tasks, the best performing configurations are further compared to the state-of-the-art
methods. Table 2 reports the results. Our model solves the tasks of both addition and copy significantly
faster (with fewer training examples) than others, being the new state-of-the-art.

Figure 5. Performance and runtime on text calculation tasks including addition (left) and copy (right).

Table 2. Test accuracies for addition/copy.

Method
Addition Copy

#Samples Accuracy #Samples Accuracy

sLSTM [45] 5 M 51% 900 K >50%
Grid LSTM [46] 550 K >99% 150 K >99%

2-tLSTM+CN (L=7) 298 K >99% 115 K >99%
2-tLSTM+CN (L=10) 317 K >99% 54 K >99%

4.3. Image Classification

The dataset of MNIST [31] comprising 70,000 handwritten digit images sized 28×28, which is
divided into 50,000/10,000/10,000 for training/validation/test. For this dataset, there are two tasks:

(i) Sequential MNIST: In this task, the model first sequentially reads the pixels in a scanline order,
and then outputs the class of the digit contained in the image [62]. It is a time series task of
784 time steps, where we generate the output from the last time step, thereby requiring to capture
very long term temporal dependencies.
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(ii) Sequential Permuted MNIST: To make the problem even harder, we generate a permuted MNIST
(pMNIST) [63] by permuting the original image pixels with a fixed random order so that the
long-term dependency can also exist in neighbouring pixels.

In both tasks, we evaluate all configurations with M = 100 and L = 1, 3, 5. We employ the
classification accuracy to measure the model performance. We set the mini-batch size to 50, and use
early stopping for training. The training loss is calculated at the last time step.

Figure 6 shows the results. Increasing the depth no longer benefits sLSTM and 1-tLSTM–M
when L= 5, while the performance of 1-tLSTM can be boosted by a larger depth and tensorisation.
However, the performance of 1-tLSTM seems not to be affected by removing the feedback connections.
In addition, CN always improves 2-tLSTM and outperforms LN when L ≥ 3. With validation
accuracies of 99.1% on MNIST and 95.6% on pMNIST, 2-tLSTM+CN with L = 5 outperforms all
other configurations in both tasks. In tLSTMs, the runtime is little affected by L, and when L = 5,
all tLSTMs runs faster than sLSTM.

As presented in Table 3, the best performing configurations are compared against the
state-of-the-art methods. On sequential MNIST, 2-tLSTM+CN with L=3 achieves 99.2% test accuracy,
which is the same as the state-of-the-art one produced by the Dilated GRU [56]. On sequential pMNIST,
2-tLSTM+CN with L=5 achieves 95.7% test accuracy, approaching the state-of-the-art one of 96.7%
which is obtained from the Dilated CNN [54] in [56].

Figure 6. Performance and runtime on sequential MNIST (left) and sequential pMNIST (right).

Table 3. Test accuracies (%) for sequential MNIST/pMNIST image classification.

Method MNIST pMNIST

iRNN [62] 97.0 82.0
LSTM [63] 98.2 88.0
uRNN [63] 95.1 91.4

Full-capacity uRNN [64] 96.9 94.1
sTANH [65] 98.1 94.0

BN-LSTM [66] 99.0 95.4
Dilated GRU [56] 99.2 94.6

Dilated CNN [54] in [56] 98.3 96.7

2-tLSTM+CN (L=3) 99.2 94.9
2-tLSTM+CN (L=5) 99.0 95.7
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4.4. Video Prediction

The task of video prediction aims at predicting the future frames of a video given the historical
frames. It has a variety of applications such as environment simulation, dataset augmentation,
and many computer vision tasks. The main challenge is that the model must capture both the spatial
and the temporal relationships among data well. We apply our model to two datasets:

(i) KTH [67]: The dataset consists of 600 real videos with 25 subjects performing six actions (walking,
running, jogging, hand-clapping, hand-waving, and boxing). It has been split into a training set
(subjects 1–16) and a test set (subjects 17–25), resulting in 383 and 216 sequences, respectively.
We resize all frames to 128×128.

(ii) UCF101 [68]: The dataset consists of 13,320 real videos of resolution 320×240 with 101 human
actions that could be split into five types (sports, playing musical instruments, human-human
interaction, body-motion only, and human-object interaction). It is currently the most challenging
dataset of actions. Following [69], we train our models on Sports-1M [70] dataset and test them
on UCF-101.

On both tasks, we evaluate all configurations with L = 1, 3, 5. To process the structured inputs
(i.e., video frames), we modify the original sLSTM [45] by replacing each LSTM layer with a
Convolutional LSTM [39], where the convolution kernel size is set to [5, 5]. We also set the last
two dimensions (relevant to image structure) of the convolution kernel size K to 5 for tLSTMs. M is set
to 100 for KTH and 200 for UCF101. The model performance is measured by three common metrics
including MSE, Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM) [71],
where SSIM ranges in [−1, 1] (larger is better). We set the mini-batch size to 16 and employ early
stopping for training. All models are trained by observing 10 frames and predicting the next 10 frames.

Figure 7 shows the quantitative results. When L increases, sLSTM and 1-tLSTM–M improve their
performances but get stuck at L=5, while with the memConv, the performances of tLSTMs improve
and finally exceed both sLSTM and 1-tLSTM–M. The effects of feedback and tensorisation become
significant when L is large. Similar to the finding in [38] that LN is not suitable for normalising the
convolution layer for images, the performance of 2-tLSTM+LN is even worse than 2-tLSTM. However,
CN improves 2-tLSTM with different L. Unlike sLSTM where the runtime increases linearly w.r.t. L,
tLSTM can keep its runtime largely unchanged when increasing L.

The best performing configuration is compared with the state-of-the-art methods (their source
codes are publicly available) on both datasets (see Table 4). 2-tLSTM+CN with L=5 outperforms all
existing models on KTH w.r.t. all metrics, and on UCF101 w.r.t. MSE and SSIM. Sampled qualitative
results produced by 2-tLSTM+CN are shown in Figure 8.

Figure 7. Performance and runtime on KTH (left) and UCF101 (right).
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Table 4. Test performances for KTH/UCF101 video prediction.

Method
KTH UCF101

MSE↓ PSNR↑ SSIM↑ MSE↓ PSNR↑ SSIM↑
Composite LSTM [72] 0.01021 20.893 0.77958 0.16342 9.877 0.50363

Beyond MSE [69] 0.00193 28.465 0.88234 0.00987 22.133 0.81254
PredNet [73] 0.00384 27.954 0.90052 0.01672 18.945 0.80827
MCnet [12] 0.00190 30.179 0.91228 0.00979 22.861 0.84392

2-tLSTM+CN (L=5) 0.00148 31.053 0.93316 0.00925 22.785 0.85941

Figure 8. Sampled qualitative results produced by 2-tLSTM+CN on KTH (sequences 1 to 3) and UCF101
(sequences 4 to 6). For each sequence, the first row shows the last five input frames (left) and the next
10 target frames (right), and the second row shows the next 10 predictions. All frames are shown with
an aspect ratio of 4:3.

4.5. Analysis

It can been seen from the experiments that one can boost the performance of tLSTMs by enlarging
the tensorised size or increasing the model depth, whereas almost no extra parameters and runtime
are required. The memConv is indispensable to maintain the performance improvement when the
network gets wider and deeper. In addition, for tasks with sequential output, feedback connections
are useful. In addition, tensorisation or CN can further strengthen the tLSTM.

To inspect the inner working of our tLSTM, the value of memory cells are visualised to show
the information routing. On each task, we run the best performing tLSTM with a random sample
(here we do not consider video prediction tasks where memory cells of the 2-tLSTM are 5D tensors,
which are hard to visualise). At each time step, we record the memory cell’s channel mean (computed
by averaging along the channel dimension, for the 2-tLSTM, it has a size of P×P), and visualise its
diagonal values from location pin =[1, 1] (close to the input) to pout =[P, P] (close to the output).
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As shown in Figure 9, the visualisation result reveals different behaviors of tLSTM when handling
different tasks:

• Text Generation: If the next character is largely determined by the current input, the input content
can be preserved with less modification when it arrives at the output location, and vice versa.

• Addition: Two integers are gradually compressed into the memory and then interact with each
other, generating their summation.

• Copy: The model acts as a shift register, continuing to move the input symbols to their output
locations.

• Seq. MNIST: The model seems more sensitive to pixel value changes (which represent contours,
or the digit topology); it gradually accumulates evidence to generate the final output.

• Seq. pMNIST: The model seems more sensitive to high value pixels (which come from the digit);
our conjecture is that the permutation has destroyed the digit topology, and thereby made each
high value pixel potentially important.

In these tasks, there are also some common phenomena:

• At each time step, different locations of the tensor possess markedly different values, which implies
that a tensor of a larger size could encode more content, requiring less effort for compressing.

• The value becomes more and more distinct from the input to output and is shifted along the
time axis, which reveals that the model indeed simultaneously performs the deep and temporal
computations, with the memory cell carrying the long-term dependency.

Figure 9. Visualisation of tLSTM memory cells’ diagonal channel means on different tasks. (a) Text
Generation (L = 6); (b) Addition (L = 7); (c) Copy (L = 10); (d) Sequential MNIST (L = 3);
(e) Sequential pMNIST (L = 5). For each colour matrix, the p-th row corresponds to location [p, p],
the t-th column corresponds to time step t where t=1, 2, . . . , T+L−1 and L−1 denotes the delayed time
steps, and all values have been normalised to [0, 1] for visualisation. Note that we have horizontally
squeezed the complete sequences in (d,e) where T=784.

5. Conclusions

In this paper, we have aimed to deal with multimedia modelling tasks. We have introduced the
tLSTM, where tensors are employed to share parameters and temporal computations are utilised to
perform deep computations. The main advantage of our tLSTM over other popular methods is that its
capacity can be increased with almost no extra parameters and runtime. Another important advantage
of the tLSTM is that it can handle a variety of challenging multimedia modelling tasks well as shown
in our experiments.

For future work, we would like to: (i) investigate more about the effect of higher-dimensional
tensors, e.g., try 3- and 4-tLSTMs, (ii) try increasing the transition depth for tLSTM hidden states
(similar to [47]); and (iii) apply tLSTMs to more multimedia modelling tasks such as machine
translation, image generation, and video segmentation.
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Appendix A. Mathematical Definition for Cross-Layer Convolutions

Appendix A.1. Hidden State Convolution

The hidden state convolution in (10) is defined as:

At,p,mo =
K

∑
k=1

(
Mi

∑
mi=1

Hcat
t−1,p− K−1

2 +k,mi ·Wh
k,mi ,mo

)
+ bh

mo , (A1)

where mo∈{1, 2, · · · , Mo} and we apply zero padding to maintain the tensorised size.

Appendix A.2. Memory Cell Convolution

The memory cell convolution in (21) is defined as:

Cconv
t−1,p,m =

K

∑
k=1

Ct−1,p− K−1
2 +k,m ·W

c
t,k,1,1(p). (A2)

To prevent the stored information from being flushed away, Ct−1 is padded with the replication
of its boundary values instead of zeros or input projections.

Appendix B. Derivation for the Constraint of L, P, and K

Here we derive the constraint of L, P, and K that is defined in (13). The kernel center location is
sealed in case the kernel size K is not odd. Then, the kernel radius Kr can be calculated by:

Kr =
K− K%2

2
. (A3)

As shown in Figure A1, to guarantee that the receptive field of yt covers x1:t while not covering
xt+1:T , the following constraint should be satisfied:

tan∠AOD 6 tan∠BOD < tan∠COD, (A4)

which means:

P
L
6

Kr

1
<

P
L− 1

. (A5)

Plugging (A3) into (A5), we get:

L =
⌈ 2P

K− K%2

⌉
. (A6)
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Figure A1. Illustration of calculating the constraint of L, P, and K. Each column is a concatenated
hidden state tensor with tensorised size P+1 = 4 and channel size M. The volume of the output
receptive field (blue region) is determined by the kernel radius Kr. The output yt for current time step t
is delayed by L−1=2 time steps.

Appendix C. MemConv Mitigates the Gradient Vanishing/Explosion

In [34], it has been proved that the lambda gate, which is very similar to our memConv
kernel, can mitigate the gradient vanishing/explosion (please refer to Theorems 17 and 18 in [34]).
The differences between our approach and their lambda gate are: (i) we normalise the kernel values
though a softmax function, while they normalise the gate values by dividing them with their sum,
and (ii) we share the kernel for all channels, while they do not. However, as neither modifications
affects the conditions of validity for Theorems 17 and18 in [34], our memConv can also mitigate the
gradient vanishing/explosion.
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