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Abstract: A graph operator is a mapping F : Γ → Γ′, where Γ and Γ′ are families of
graphs. The different kinds of graph operators are an important topic in Discrete Mathematics
and its applications. The symmetry of this operations allows us to prove inequalities
relating the hyperbolicity constants of a graph G and its graph operators: line graph, Λ(G);
subdivision graph, S(G); total graph, T(G); and the operators R(G) and Q(G). In particular, we
get relationships such as δ(G) ≤ δ(R(G)) ≤ δ(G) + 1/2, δ(Λ(G)) ≤ δ(Q(G)) ≤ δ(Λ(G)) + 1/2,
δ(S(G)) ≤ 2δ(R(G)) ≤ δ(S(G)) + 1 and δ(R(G)) − 1/2 ≤ δ(Λ(G)) ≤ 5δ(R(G)) + 5/2 for every
graph which is not a tree. Moreover, we also derive some inequalities for the Gromov product and
the Gromov product restricted to vertices.
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1. Introduction

In [1], J. Krausz introduced the concept of graph operators. These operators have applications
in studies of graph dynamics (see [2,3]) and topological indices (see [4–6]). Many large graphs
can be obtained by applying graph operators on smaller ones, thus some of their properties are
strongly related. Motivated by the above works, we study here the hyperbolicity constant of several
graph operators.

Along this paper, we denote by G = (V(G), E(G)) a connected simple graph with edges of length
1 (unless edge lengths are explicitly given) and V 6= ∅. Given an edge e = uv ∈ E(G) with endpoints
u and v, we write V(e) = {u, v}. Next, we recall the definition of some of the main graph operators.

The line graph, Λ(G), is the graph constructed from G with vertices the set of edges of G, and and
two 19 vertices are adjacent if and only if their corresponding edges are incident in G.

The subdivision graph, S(G), is the graph constructed from G substituting each of its edges by a
path of length 2.

The graph Q(G) is the graph constructed from S(G) byadding edges between adjacent vertices
in Λ(G).

The graph R(G) is constructed from S(G) by adding edges between adjacent vertices in G.
The total graph, T(G),is constructed from S(G) by adding edges between adjacent vertices in G

or Λ(G).
We define:

EE(G) := {{e1, e2} : e1, e2 ∈ E(G), e1 6= e2, |V(e1) ∩V(e2)| = 1},
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and
EV(G) := {{e, u} : e ∈ E(G), u ∈ V(e)}.

So, we have the following:
Λ(G) := (E(G), EE(G)).
S(G) := (V(G) ∪ E(G), EV(G)).
T(G) := (V(G) ∪ E(G), E(G) ∪ EE(G) ∪ EV(G)).
R(G) := (V(G) ∪ E(G), E(G) ∪ EV(G)).
Q(G) := (V(G) ∪ E(G), EE(G) ∪ EV(G).
The Gromov hyperbolic spaces have multiple applications both theoretical and practical

(see [7–10]). A space is geodesic if any two points in it can be joined by a curve whose length is
the distance between them. In this paper we will consider a graph G as a geodesic metric space and
any geodesic joining x and y will be denote by [xy].

Let X be a geodesic metric space and x, y, z ∈ X. A geodesic triangle with vertices x, y, z, denoted
by T = {x, y, z}, is the union of three geodesics [xy], [yz] and [zx]. We write also T = {[xy], [yz], [zx]}.
If the δ-neighborhood of the union of any two sides of T contains the other side, we say that T is δ-thin.
We define δ(T) := inf{δ ≥ 0 : T is δ-thin}. The space X is δ-hyperbolic if all geodesic triangles T in
X are δ-thin. Let us denote the sharp hyperbolicity constant of X, by δ(X), i.e., δ(X) := sup{δ(T) :
T is a geodesic triangle in X}. X is Gromov hyperbolic if X is δ-hyperbolic for some δ ≥ 0; then X is
Gromov hyperbolic if and only if δ(X) < ∞.

In this paper we prove inequalities relating the hyperbolicity constants of a graph G and its graph
operators Λ(G), S(G), T(G), R(G) and Q(G), using their symmetries.

2. Definitions and Background

There are several equivalent definitions for Gromov hyperbolicity (see, e.g., [11–13]), in particular,
the definition that we use in this work has an important geometric meaning and serves as a basis for
multiple applications (see [14–19]).

Given a graph G, the Gromov product of q1, q2 ∈ G with base point q0 ∈ G is defined as

(q1, q2)q0 :=
1
2
(
d(q1, q0) + d(q2, q0)− d(q1, q2)

)
.

For every Gromov hyperbolic graph G, we have

(q1, q3)q0 ≥ min
{
(q1, q2)q0 , (q2, q3)q0

}
− δ (1)

for every q0, q1, q2, q3 ∈ G and some constant δ ≥ 0 ([12,13]).
We denote by δ∗(G) the sharp constant for the inequality (1), i.e.,

δ∗(G) := sup
{

min
{
(q1, q2)q0 , (q2, q3)q0

}
− (q1, q2)q0 : q0, q1, q2, q3 ∈ G

}
.

Indeed, our definition of Gromov hyperbolicity is equivalent to (1); furthermore, we have
δ∗(G) ≤ 4δ(G) and δ(G) ≤ 3δ∗(G) ([12,13]). In [20] (Proposition II.20) we found the following
improvement of the previous inequality: δ∗(G) ≤ 2δ(G).

We denote by δ∗v (G) the constant of hyperbolicity of the Gromov product restricted to the vertices
of G, i.e.,

δ∗v (G) := sup
{

min
{
(q1, q2)q0 , (q2, q3)q0

}
− (q1, q3)q0 : q0, q1, q2, q3 ∈ V(G)

}
.

3. Main Results

The following result is immediate from the definition of S(G).
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Proposition 1. Let G be a graph. Then

δ(S(G)) = 2δ(G), δ∗(S(G)) = 2δ∗(G).

We remark that the equality is not true for δ∗v (G) (e.g., S(C5) = C10 but 2δ∗v (C5) = 1 6= 2 =

δ∗v (S(G))), but inequalities may apply. The next result appears in [21].

Theorem 1. Let B = (V0 ∪V1, E) be a bipartite graph. We have δB(Vi) ≤ δ∗v (B) ≤ δB(Vi) + 2, where

δB(Vi) = sup{min
{
(x, y)w, (y, z)w

}
− (x, z)w : x, y, z, w ∈ Vi}

for every i ∈ {1, 2}.

Corollary 1. Let G be a graph. Then

2δ∗v (G) ≤ δ∗v (S(G)) ≤ 2δ∗v (G) + 2.

Proof. Note that S(G) can be considered as a bipartite graph, where V(S(G)) = V(G) ∪ V(Λ(G)).
Theorem 1 gives δS(G)(V(G)) ≤ δ∗v (S(G)) ≤ δS(G)(V(G)) + 2. Since δS(G)(V(G)) = 2δ∗v (G),
the desired inequalities hold.

Proposition 2. Let G be a graph. Then

δ∗v (G) ≤ δ∗(G) ≤ δ∗v (G) + 3.

Proof. The inequality δ∗v (G) ≤ δ∗(G) is direct. Let us prove the other inequality.
For every q0, q1, q2 ∈ G there are q′0, q′1, q′2 ∈ V(G) such that d(qi, q′i) ≤ 1/2 for i = 0, 1, 2. Then

∣∣(q1, q2)q0 − (q′1, q′2)q′0

∣∣ = 1
2

∣∣d(q0, q1) + d(q0, q2)− d(q1, q2)− d(q′0, q′1)− d(q′0, q′2) + d(q′1, q′2)
∣∣

≤ 1
2

∣∣d(q0, q1)− d(q′0, q′1)
∣∣+ 1

2

∣∣d(q0, q2)− d(q′0, q′2)
∣∣+ 1

2

∣∣d(q1, q2)− d(q′1, q′2)
∣∣

≤ 3
2

.

Given q0, q1, q2, q3 ∈ G, let q′0, q′1, q′2, q′3 ∈ V(G), with d(qi, q′i) ≤ 1/2 for i = 0, 1, 2, 3. We have

(q1, q3)q0 ≥ (q′1, q′3)q′0
− 3

2
≥ min

{
(q′1, q′2)q′0

, (q′2, q′3)q′0

}
− δ∗v (G)− 3

2

≥ min
{
(q1, q2)q0 −

3
2

, (q2, q3)q0 −
3
2

}
− δ∗v (G)− 3

2
= min{(q1, q2)q0 , (q2, q3)q0} − δ∗v (G)− 3,

and we conclude δ∗(G) ≤ δ∗v (G) + 3.

Let H be a subgraph of G, H is isometric if dH(x, y) = dG(x, y) for every x, y ∈ H. We will need
the following well-known result.

Lemma 1. Let H be an isometric subgraph of G. Then

δ(H) ≤ δ(G),

δ∗(H) ≤ δ∗(G),

δ∗v (H) ≤ δ∗v (G).
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Since G is an isometric subgraph of T(G) and R(G), and Λ(G) is an isometric subgraph of T(G)

and Q(G), we have the following consequence of Lemma 1.

Corollary 2. For any graph G, we have

δ(G) ≤ δ(T(G)), δ∗(G) ≤ δ∗(T(G)), δ∗v (G) ≤ δ∗v (T(G)),

δ(G) ≤ δ(R(G)), δ∗(G) ≤ δ∗(R(G)), δ∗v (G) ≤ δ∗v (R(G)),

δ(Λ(G)) ≤ δ(T(G)), δ∗(Λ(G)) ≤ δ∗(T(G)), δ∗v (Λ(G)) ≤ δ∗v (T(G)),

δ(Λ(G)) ≤ δ(Q(G)), δ∗(Λ(G)) ≤ δ∗(Q(G)), δ∗v (Λ(G)) ≤ δ∗v (Q(G)).

The hyperbolicity of the line graph has been studied previously (see [21–23]). We have the
following results.

Theorem 2. [22] (Corollary 3.12) Let G be a graph. Then

δ(G) ≤ δ(Λ(G)) ≤ 5δ(G) + 5/2.

Furthermore, the first inequality is sharp: the equality is attained by every cycle graph.

Theorem 3. [21] (Theorem 6) Let G be a graph. Then

δ∗v (G)− 1 ≤ δ∗v (Λ(G)) ≤ δ∗v (G) + 1.

Theorem 4. Let G be a graph. Then

δ∗(G)− 4 ≤ δ∗(Λ(G)) ≤ δ∗(G) + 4.

Proof. Proposition 2 and Theorem 3 give δ∗(G) ≤ δ∗v (G) + 3 ≤ δ∗v (Λ(G)) + 4 ≤ δ∗(Λ(G)) + 4,
and δ∗(Λ(G)) ≤ δ∗v (Λ(G)) + 3 ≤ δ∗v (G) + 4 ≤ δ∗(G) + 4.

From Proposition 1, and Theorems 2 and 4 we have:

Corollary 3. Let G be a graph. Then

δ(S(G)) ≤ 2δ(Λ(G)) ≤ 5δ(S(G)) + 5,

δ∗(S(G))− 8 ≤ 2δ∗(Λ(G)) ≤ δ∗(S(G)) + 8.

Corollary 2 and Theorems 2, 3 and 4 have the following consequence.

Corollary 4. Let G be a graph. Then

δ(G) ≤ δ(Q(G)),

δ∗v (G) ≤ δ∗v (Q(G)) + 1,

δ∗(G) ≤ δ∗(Q(G)) + 4.

Theorem 4 improves the inequality δ∗(Λ(G)) ≤ δ∗(G) + 6 in [23].
Given a graph G with multiple edges, we define the graph B(G), obtained from G, substituting

each multiple edge for one of its simple edges of shorter length (see [23]).

Remark 1. By argument in the proof of [24](Theorem 8) we have: If in each multiple edge there is at most
one edge with length greater than j := inf{d(u, v) : u, v are joined by a multiple edge of G}, then δ(G) ≤
max

{
δ(B(G)) + J−j

2 , J+j
4

}
, where, J := sup{L(e) : e is an edge contained in a multiple edge of G}.
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Corollary 5. Let G be a graph. Then

max
{

δ(G),
3
4

}
≤ δ(R(G)) ≤ max

{
δ(G) +

1
2

,
3
4

}
.

Proof. Note that R(G) can be obtained by adding an edge of length 2 to each pair of adjacent vertices
in G, so the graph becomes a graph with multiple edges, with j = 1 and J = 2. Then [24] (Theorem 8)
and Remark 1 give the result.

From [25] (Theorem 11), we have the following result.

Lemma 2. Given the following graphs with edges of length 1, we have

• If Pn is a path graph, then δ(Pn) = 0 for all n ≥ 1.
• If Cn is a cycle graph, then δ(Cn) = n/4 for all n ≥ 3.
• If Kn is a complete graph, then δ(K1) = δ(K2) = 0, δ(K3) = 3/4 and δ(Kn) = 1 for all n ≥ 4.

If G is not a tree, we define its girth g(G) by

g(G) := inf{L(C) : C is a cycle in G}.

From [26] (Theorem 17), we have:

Theorem 5. If G is not a tree, then

δ(G) ≥ g(G)

4
.

Corollary 6. If G is not a tree, then

δ(G) ≥ 3
4

.

Corollary 7. If G is not a tree, then

δ(G) ≤ δ(R(G)) ≤ δ(G) +
1
2

.

Proof. Since G is not a tree, Corollary 6 gives δ(G) ≥ 3/4, and so

max
{

δ(G),
3
4

}
= δ(G), max

{
δ(G) +

1
2

,
3
4

}
= δ(G) +

1
2

,

and Corollary 5 gives the inequalities.

Theorem 2 and Corollary 7 have the following consequence.

Corollary 8. If G is not a tree, then

δ(R(G))− 1
2
≤ δ(Λ(G)) ≤ 5δ(R(G)) +

5
2

.

From Proposition 1 and Corollary 7 we have the following result.

Corollary 9. If G is not a tree, then

δ(S(G)) ≤ 2δ(R(G)) ≤ δ(S(G)) + 1.
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Theorem 6. Let G be a graph. Then

δ∗(Λ(G)) ≤ δ∗(Q(G)) ≤ δ∗v (Λ(G)) + 6 ≤ δ∗(Λ(G)) + 6,

δ∗v (Λ(G)) ≤ δ∗v (Q(G)) ≤ δ∗v (Λ(G)) + 6,

δ∗(Λ(G)) ≤ δ∗(T(G)) ≤ δ∗v (Λ(G)) + 9 ≤ δ∗(Λ(G)) + 9,

δ∗v (Λ(G)) ≤ δ∗v (T(G)) ≤ δ∗v (Λ(G)) + 6,

δ∗(G) ≤ δ∗(R(G)) ≤ δ∗v (G) + 6 ≤ δ∗(G) + 6,

δ∗v (G) ≤ δ∗v (R(G)) ≤ δ∗v (G) + 6,

δ∗(G) ≤ δ∗(T(G)) ≤ δ∗v (G) + 9 ≤ δ∗(G) + 9,

δ∗v (G) ≤ δ∗v (T(G)) ≤ δ∗v (G) + 6.

Proof. The lower bounds follow from Corollary 2. We consider the map P : Q(G) → Λ(G) such
that P(q) = q if q ∈ Λ(G), P(q) = vq if q 6∈ Λ(G), where vq ∈ V(Λ(G)) and dQ(G)(q, vq) ≤ 1.
If q0, q1, q2, q3 ∈ Q(G), then∣∣dQ(G)(qi, qj)− dΛ(G)(P(qi), P(qj))

∣∣ = ∣∣dQ(G)(qi, qj)− dQ(G)(P(qi), P(qj))
∣∣ ≤ 2,

since Λ(G) is an isometric subgraph of Q(G) and∣∣(qi, qj)q0 − (P(qi), P(qj))P(q0)

∣∣
=

1
2

∣∣dQ(G)(q0, qi) + dQ(G)(q0, qj)− dQ(G)(qi, qj)

−dΛ(G)(P(q0), P(qi))− dΛ(G)(P(q0), P(qj)) + dΛ(G)(P(qi), P(qj))
∣∣ ≤ 3,

for i, j ∈ {1, 2, 3}. Thus,

(q1, q3)q0 ≥ (P(q1), P(q3))P(q0)
− 3

≥ min{(P(q1), P(q2))P(q0)
, (P(q2), P(q3))P(q0)

} − δ∗v (Λ(G))− 3

≥ min{(q1, q2)q0 − 3, (q2, q3)q0 − 3} − δ∗v (Λ(G))− 3

= min{(q1, q2)q0 , (q2, q3)q0} − δ∗v (Λ(G))− 6.

Therefore,
δ∗(Λ(G)) + 6 ≥ δ∗v (Λ(G)) + 6 ≥ δ∗(Q(G)) ≥ δ∗v (Q(G)).

These inequalities allow us to obtain the result for upper bounds of δ∗(Q(G)) and δ∗v (Q(G)). The
other upper bounds can be obtained similarly.

From Theorems 3 and 6 and Corollary 4 we have:

Corollary 10. For all graph G, we have

δ∗v (G)− 1 ≤ δ∗v (Q(G)) ≤ δ∗v (G) + 7,

δ∗(G)− 4 ≤ δ∗(Q(G)) ≤ δ∗v (G) + 7 ≤ δ∗(G) + 7.

From Corollaries 2, 4 and 10, Theorem 6 and the inequalities δ(G) ≤ 3δ∗(G) and δ∗(G) ≤ 2δ(G),
we have:
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Corollary 11. Let G be a graph. Then

δ(Λ(G)) ≤ δ(Q(G)) ≤ 6δ(Λ(G)) + 18,

δ(Λ(G)) ≤ δ(T(G)) ≤ 6δ(Λ(G)) + 27,

δ(G) ≤ δ(T(G)) ≤ 6δ(G) + 27,

δ(G) ≤ δ(Q(G)) ≤ 6δ(G) + 21.

Proof. Corollaries 2 and 4 give the lower bounds. On the other hand, Theorem 6 gives δ(Q(G)) ≤
3δ∗(Q(G)) ≤ 3δ∗(Λ(G)) + 18 ≤ 6δ(Λ(G)) + 18, δ(T(G)) ≤ 3δ∗(T(G)) ≤ 3(δ∗(Λ(G)) + 9) ≤
6δ(Λ(G)) + 27; we obtain the third upper bound in a similar way. Corollary 10 gives 3δ∗(Q(G)) ≤
3(δ∗(G) + 7) ≤ 6δ(G) + 21, obtaining the last upper bound.

Let G be a graph, a family of subgraphs {Gs}s of G is a T-decomposition if ∪sGs = G and Gs ∩ Gr is
either a cut-vertex or the empty set for each s 6= r (see [25]).

The following result was proved in [24] (Theorem 3).

Lemma 3. Given a graph G and {Gs}s any T-decomposition of G, then

δ(G) = sup
s

δ(Gs).

The following results improve the inequality δ(Q(G)) ≤ 6δ(Λ(G)) + 18 in Corollary 11.

Theorem 7. Let G be a path graph, then

0 = δ(Λ(G)) ≤ δ(Q(G)) ≤ 3/4.

Proof. Since G is a path graph, Λ(G) is also a path graph, and so 0 = δ(Λ(G)) ≤ δ(Q(G)).
Consider the T-decomposition {Gn} of Q(G). Since each connected component Gn is either a

cycle C3 or a path of length 1, we have δ(Q(G)) = supn{δ(Gn)} ≤ 3/4, by Lemmas 2 and 3.

The union of the set of the midpoints of the edges of a graph G and the set of vertices, V(G),
will be denote by N(G). Let T1 be the set of geodesic triangles T in G such that every vertex of T
belong to N(G) and δ1(G) := inf{λ : every triangle in T1 is λ-thin}.

Lemma 4. [27] (Theorems 2.5 and 2.7) For every graph G, we have δ1(G) = δ(G). Furthermore, if G is
hyperbolic, then there exists T ∈ T1 with δ(T) = δ(G).

The previous lemma allows to reduce the study of the hyperbolicity constant of a graph G to study
only the geodetic triangles of G, whose vertices are vertices of G (i.e., belong to V(G)) or midpoints of
the edges of G.

Theorem 8. If G is not a path graph, then

δ(Λ(G)) ≤ δ(Q(G)) ≤ δ(Λ(G)) + 1/2.

Proof. By Corollary 2 we have the first inequality. We will prove the second one. If δ(Q(G)) = ∞,
then Theorem 6 gives δ(Λ(G)) = ∞, and the second inequality holds. Assume now that δ(Q(G)) < ∞
(and so, δ(Λ(G)) < ∞ by Theorem 6). If G is not a path, then Λ(G) is not a tree and Corollary 6 gives
δ(Λ(G)) ≥ 3/4.

For each v ∈ V(G), let us define Vv := {u ∈ V(Q(G)) : uv ∈ E(Q(G))} = {u ∈ V(Λ(G)) :
uv ∈ E(Q(G))}. Denote by Gv and G∗v the subgraphs of Q(G) induced by the sets Vv ∪ {v}
and Vv, respectively. Note that both Gv and G∗v are complete graphs for every v ∈ V(G), and if
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G∗ is a complete graph with r vertices, then Gv is a complete graph with r + 1 vertices. Also,
Q(G) = Λ(G) ∪ (∪v∈V(G)Gv).

By Lemma 4 there exists a geodesic triangle T ∈ T1 in Q(G) with δ(T) = δ(Q(G)). Denote by
γ1, γ2, γ3 the sides of T. Without loss of generality we can assume that there exists p ∈ γ1 with
dQ(G)(p, γ2 ∪ γ3) = δ(T) = δ(Q(G)). Thus, T is a cycle and each vertex of T is either the midpoint of
some edge of Q(G) or a vertex of Q(G).

If Gv contains to T for some v ∈ V(G), then δ(Q(G)) = δ(T) ≤ δ(Gv) ≤ 1 < 3/4 + 1/2 ≤
δ(Λ(G)) + 1/2 by Lemma 2, since Gv is an isometric subgraph of Q(G).

If Λ(G) contains to T, then δ(Q(G)) = δ(T) ≤ δ(Λ(G)) by Lemma 1, since Λ(G) is isometric.
Suppose that T is not contained either in Λ(G) nor Gv with v ∈ V(G).
Note that if T ∩ (Gv \ G∗v ) 6= ∅ for some v ∈ V(G), then there exists at least one vertex of T in

Gv \ Λ(G). In order to form a triangle T∗ ⊂ Λ(G) from T, we define γ∗i := γi ∩ Λ(G). Note that,
for i ∈ {1, 2, 3}, γ∗i is a geodesic, since Λ(G) is a isometric subgraph of Q(G).

We denote by xi,j the common vertex of γi and γj and by ui and uj the other vertices of γi and
γj respectively.

We consider the following cases:
Case A. We assume that exactly one vertex of T belongs to Q(G) \ Λ(G). Thus, there exists

v ∈ V(G) such that T ∩ (Gv \ G∗v ) 6= ∅. By Lemma 4, we have two possibilities: the vertex of T is a
vertex of G or a midpoint of an edge in Gv \ G∗v .

We can suppose that xi,j ∈ T \Λ(G). Let v be a vertex of V(G) such that xi,j ∈ Gv \Λ(G). Let xi
(respectively, xj) be the closest point of γ∗i (respectively, γ∗j ) to xi,j. Thus, xixj ∈ E(Λ(G)). Let v∗ be
the midpoint of the edge xixj. Let T1 be the connected component of T \Λ(G) joining xi and xj. Note
that L(T1) = 2. We analyze the two possibilities:

Case A1. Assume that xi,j ∈ V(Q(G)). Let us define σi := γ∗i ∪ [xiv∗] and σj := γ∗j ∪ [xjv∗].
We are going to prove that σi and σj are geodesics in Λ(G). In fact, we prove now that if γ∗j = [zjxj],
then dQ(G)(zj, xj) ≤ dQ(G)(zj, xi). Seeking for a contradiction assume that dQ(G)(zj, xj) > dQ(G)(zj, xi).
Thus,

dQ(G)(zj, xi) + dQ(G)(xi, xi,j) = dQ(G)(zj, xi) + 1 ≤ dQ(G)(zj, xj) + dQ(G)(xj, xi,j)

therefore γj is not a geodesic obtaining the desired contradiction and we conclude dQ(G)(zj, xj) ≤
dQ(G)(zj, xi). Hence, σi is a geodesic in Λ(G).

Case A2. There is an edge e ∈ E(Q(G)) \ E(Λ(G)) such that xi,j is the midpoint of e, thus without
loss of generality we can assume that e = xiv, and we define σi := γ∗i and σj := γ∗j ∪ xjxi. Thus, σi is a
geodesic in Λ(G).

Note that γ∗j ∪ xjv ∪ [vxi,j] and σj ∪ [xixi,j] = γ∗j ∪ xjxi ∪ [xixi,j] have the same endpoints and
length; therefore, σj is also a geodesic in Λ(G).

Case B. Assume that there are two vertices of T in some connected component of T \Λ(G). Thus,
there exists v ∈ V(G) such that T ∩ (Gv \ G∗v ) 6= ∅. By Lemma 4, we have two possibilities again: both
vertices of T are midpoints of edges or one vertex of T is a vertex of G and the other is a midpoint of
an edge.

We can assume that ui, uj ∈ Gv \G∗v for some v. We denote by x′i (respectively, x′j) the closest point
in γ∗i (respectively, γ∗j ) to ui (respectively, uj); then x′i x

′
j ∈ E(Λ(G)). Let v′ be the midpoint of the edge

x′i x
′
j. Let T2 be the connected component of T \Λ(G) joining x′i and x′j. Note that L(T2) = 2.

We analyze the two possibilities again:
Case B1. The vertices ui, uj of T are the midpoints of x′iv and x′jv. Thus, σi := γ∗i , σj := γ∗j and

σk := x′i x
′
j are geodesics in Λ(G).

Case B2. Otherwise, we can assume without loss of generality that uj = v and ui is the midpoint
of xiv. We have dQ(G)(ui, xj) = dQ(G)(ui, xi) + 1 and so, σi := γ∗i and σj := γ∗j ∪ x′jx

′
i are geodesics in

Λ(G). In this case we define σk := {x′i}.
Note that the most general possible case is the following: there are at most three vertices

v1, v2, v3 ∈ V(G) such that T ∩ (Gvi \ Gv∗i
) 6= ∅, for i = 1, 2, 3. Repeating the previous process at
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most three times we obtain a geodesic triangle T∗ in Λ(G) with sides γ′1, γ′2 and γ′3 containing γ∗1 , γ∗2
and γ∗3 , respectively.

If p ∈ Λ(G), then one can check that δ(Q(G)) = dQ(G)(p, γ2 ∪ γ3) ≤ dQ(G)(p, γ′2 ∪ γ′3) + 1/2 ≤
δ(Λ(G)) + 1/2. If p 6∈ Λ(G), then δ(Q(G)) = dQ(G)(p, γ2 ∪ γ3) ≤ 5/4; since δ(Λ(G)) ≥ 3/4, we have
δ(Λ(G)) + 1/2 ≥ 5/4 ≥ δ(Q(G)). This finishes the proof.

Proposition 1, Theorems 2 and 8, and Corollary 3 have the following consequence.

Corollary 12. Let G be a graph. If G is not a path graph, then

δ(S(G)) ≤ 2δ(Q(G)) ≤ 5δ(S(G)) + 6.

4. Conclusions

In this paper, we obtained several inequalities and closed formulas relating the hyperbolicity
constants of a graph G and its graph operators Λ(G), S(G), T(G), R(G) and Q(G), by the use of
their symmetries. As a first step, as the basis of our research, we found relations among the Gromov
hyperbolicity constant (satisfying the Rips condition), the Gromov product and the Gromov product
restricted to vertices. In the same direction, we derived inequalities between Gromov products and
graph operators; as examples we mention: δ∗v (G) ≤ δ∗(G) ≤ δ∗v (G) + 3, δ∗v (G) ≤ δ∗v (Q(G)) + 1 and
δ∗(G) ≤ δ∗(R(G)) ≤ δ∗v (G) + 6 ≤ δ∗(G) + 6.

Then, we studied relations between the Gromov hyperbolicity constant of a graph and the
application of given operators to that graph. In this context, we obtained inequalities such as:
δ(G) ≤ δ(R(G)) ≤ δ(G)+ 1/2, δ(Λ(G)) ≤ δ(Q(G)) ≤ δ(Λ(G))+ 1/2, δ(S(G)) ≤ 2δ(R(G)) ≤ δ(S(G)) + 1
and δ(R(G))− 1/2 ≤ δ(Λ(G)) ≤ 5δ(R(G)) + 5/2, where G not a tree.

We believe that our work may motivate the investigation of related open problems such as: (i)
the computation of the hyperbolicity constant on geometric graphs; (ii) the analysis of hyperbolicity
on the graph operators reported here (i.e., Λ(G), S(G), T(G), R(G) and Q(G)) when applied to
geometric graphs; (iii) the study of the hyperbolicity constants of additional graph operators; and (iv)
the identification of the properties of graph operations that break or preserve hyperbolicity.
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