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Abstract: In this work, a three-point boundary value problem of fractional q-difference equations is
discussed. By using fixed point theorems on mixed monotone operators, some sufficient conditions
that guarantee the existence and uniqueness of positive solutions are given. In addition, an iterative
scheme can be made to approximate the unique solution. Finally, some interesting examples are
provided to illustrate the main results.
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1. Introduction

We will deal with a fractional q-difference equation subject to three-point boundary conditions{
Dα

q x(t) + f (t, x(t), x(t)) + g(t, x(t)) = 0, 0 < t < 1, 2 < α < 3,
x(0) = Dqx(0) = 0, Dqx(1) = βDqx(η),

(1)

where 0 < βηα−2 < 1, 0 < q < 1, Dα
q is the Riemann–Liouville fractional q-derivative of order α.

Due to fast development in fractional calculus, many researchers studied q-difference calculus or
quantum calculus. For this topic, the earlier results can be seen in Al-Salam [1] and Agarwal [2],
and some recent results related to q-difference calculus in [3–15] and some references therein.
Nowadays, fractional q-difference calculus has been given in wide applications of different science
areas, which include basic hyper-geometric functions, mechanics, the theory of relativity, combinatorics
and discrete mathematics. So many mathematical models have been abstracted out(see [16–18]) and
problem (1) is one of the models. Therefore, fractional q-difference calculus has been of great interest
and many good results can be found in [5–8] and references therein. Recently, the fruits about
fractional q-difference equation boundary value problems emerge continuously. For different problems
of fractional q-difference equations, the existence and the uniqueness of solutions have been always
considered in literature. To solve these boundary value problems, some techniques have been applied,
such as the monotone iterative technique, the lower-upper solution method, the Schauder fixed point
theorem and the Krasnoselskii fixed point theorem. For details, one can see [13–15,19–25].

In [15], Liang and Zhang considered the existence and uniqueness of positive nondecreasing
solutions for a fractional q-difference equation involving three-point boundary conditions{

Dα
q x(t) + f (t, x(t)) = 0, 2 < α < 3, 0 < t < 1,

x(0) = Dqx(0) = 0, Dqx(1) = βDqx(η),
(2)
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where 0 < βηα−2 < 1. They gave some sufficient conditions for Label (2), and their tool is a fixed point
theorem in partially ordered sets.

In [19], Sriphanomwan et al. investigated the problem of fractional q-difference equations Dα
q (Dβ

q (1 + p(t)))x(t) = f (t, x(t), Dµ
θ x(t), Ψv

ωx(t)),

x(0) = x(η), Iγ
r x(T) =

∫ T
0

(T−rs)(γ−1)

Γr(γ)
x(s)drs = g(x),

(3)

where t ∈ IT
χ := {χkT : k ∈ N ∪ {0, T}}, 0 < α, β, µ ≤ 1, 1 < α + β ≤ 2, v, γ > 0, η ∈ IT

χ − {0, T},
and p, q, r, θ, ω are simple fractions. The existence and uniqueness of solutions for Label (3) was
obtained. The used methods are the Banach contraction mapping principle and Krasnosel’skii fixed
point theorem.

By using Schauder fixed point theorem and the Banach fixed point theorem, Yang [25] discussed
a fractional q-difference equation with three-point boundary conditions:{

Dα
q x(t) + f (t, x(t)) = 0, 0 ≤ t ≤ 1, 1 < α ≤ 2,

x(0) = 0, x(1) = βx(ξ),
(4)

where 0 < βξα−1 < 1, 0 < ξ < 1. The author gave the existence and uniqueness of positive solutions
for Label (4).

In a very recent paper [24], the authors considered a special fractional q-difference equation with
a three-point problem {

Dα
q u(t) + f (t, u(t)) = b, 0 < t < 1, 2 < α < 3,

u(0) = Dqu(0) = 0, Dqu(1) = βDqu(η),
(5)

where 0 < βηα−2 < 1, 0 < q < 1, b ≥ 0 is a constant. The existence and uniqueness of solutions for
Label (5) by using fixed point theorems for ψ-(h, r)-concave operators.

Motivated by [15,26], we consider the existence and uniqueness of positive solutions for Label (1).
Different from the methods mentioned above, our tools are two fixed point theorems for mixed
monotone operators. To the authors’ knowledge, Label (1) is a new form of fractional q-difference
equations. We can give the existence and uniqueness of solutions for Label (1). Furthermore, we can
make an iteration to approximate the unique solution.

2. Preliminaries

Here, we list some concepts and lemmas of fractional q-calculus. One can see [1–8], for example.
For 0 < q < 1 and f defined on [a, b], let

(Iq f )(t) =
∫ t

0
f (s)dqs = (1− q)

∞

∑
n=0

f (tqn)tqn, t ∈ [0, b].

Then, ∫ b

a
f (t)dqt =

∫ c

a
f (t)dqt +

∫ b

c
f (t)dqt, ∀c ∈ [a, b].

Definition 1. (See [3]). α ≥ 0 and f is defined on [0, 1]. The Riemann–Liouville fractional q-integral is
(I0

q f )(t) = f (t) and

(Iα
q f )(t) =

1
Γq(α)

∫ t

0
(t− qs)(α−1) f (s)dqs, α > 0.

Clearly, (Iα
q f )(t) = (Iq f )(t) when α = 1.
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Lemma 1. (See [22]). If f , g are continuous on [0, s] and f (t) ≤ g(t) for t ∈ [0, s], then

(i)
∫ s

0 f (t)dqt ≤
∫ s

0 g(t)dqt. In addition, if α > 1, then Iα
q f (s) ≤ Iα

q g(s), t ∈ [0, s],
(ii)

∣∣∫ s
0 f (t)dqt

∣∣ ≤ ∫ s
0 | f (t)|dqt, t ∈ [0, s].

Definition 2. (See [3]). The Riemann–Liouville fractional q-derivative of order α ≥ 0 is

(Dα
q f )(t) = (Dn

q In−α
q f )(t), α > 0, t ∈ [0, 1],

where n denotes the smallest integer greater than or equal to α.
When α = 1, (Dα

q f )(t) = Dq f (t). Furthermore,

(Iα
q Dp

q f )(t) = (Dp
q Iα

q f )(t)−
p−1

∑
n=0

tα−p+n

Γq(α− p + n + 1)
(Dn

q f )(0), p ∈ N.

Lemma 2. If f (t) is continuous with f (t) ≥ 0 for t ∈ [0, 1], and there is t0 ∈ (0, 1) such that f (t0) 6= 0.
Then, ∫ 1

0
f (t)dqt > 0, t ∈ [0, 1],

where ∫ 1

0
f (t)dqt = (1− q)

∞

∑
n=0

qn f (qn), q ∈ (0, 1).

Proof. Because f (t) ≥ 0 and f (t0) 6= 0, there is n0 ∈ N such that t0 = qn0 , then

f (qn0)qn0 > 0, 0 < q < 1,

and thus

(1− q)
∞

∑
n=0

qn f (qn) ≥ (1− q) f (qn0)qn0 = (1− q) f (t0)t0 > 0.

Hence, we have
∫ 1

0 f (t)dqt > 0.

Here, we list other facts that are important in the sequel. See [26–30] for instance.
(X, ‖ · ‖) is a real Banach space, its partial order induced by a cone K of X, i.e., x ≤ y if and only

if y− x ∈ K. If there is N > 0 such that ‖x‖ ≤ N‖y‖ for θ ≤ x ≤ y, x, y ∈ X, then K is called normal,
where θ denotes the zero element of X. The notation x–y denotes that there exist µ, ν > 0 such that
µx ≤ y ≤ νx, ∀ x, y ∈ X. For fixed h > θ, define a set Kh = {x ∈ E | x ∼ h}. Then, Kh ⊂ K.

Definition 3. (See [27]). Suppose T : K → K is a given operator. If

T(tx) ≥ tTx, ∀t ∈ (0, 1), x ∈ K, (6)

then T is said to be sub-homogeneous.

Definition 4. (See [27]). Let 0 ≤ γ < 1. An operator T : K → K satisfies

T(tx) ≥ tγTx, ∀t ∈ (0, 1), x ∈ K. (7)

Then, T is said to be γ-concave.
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Lemma 3. (See [27]). Let h > θ, 0 < γ < 1, T1 : K× K → K be a mixed monotone operator and

T1(tx, t−1y) ≥ tγT1(x, y), ∀t ∈ (0, 1), x, y ∈ K. (8)

T2 : K → K is an increasing sub-homogeneous operator. Moreover,

(i) there exists h0 ∈ Kh such that T1(h0, h0), T2h0 ∈ Kh;
(ii) there exists σ > 0 such that T1(x, y) ≥ σT2x, x, y ∈ K.

Then:

(a) T1 : Kh × Kh → Kh and T2 : Kh → Kh;
(b) there are u0, v0 ∈ Kh and τ ∈ (0, 1) satisfying

τv0 ≤ u0 < v0, u0 ≤ T1(u0, v0) + T2u0 ≤ T1(v0, u0) + T2v0 ≤ v0;

(c) T1(x, x) + T2x = x exists a unique solution x∗ in Kh;
(d) for x0, y0 ∈ Kh, set

xn = T1(xn−1, yn−1) + T2xn−1, yn = T1(yn−1, xn−1) + T2yn−1, n = 1, 2, . . . ,

then xn → x∗, yn → x∗ as n→ ∞.

Lemma 4. (See [27]). Let h > θ, 0 < γ < 1, T1 : K× K → K be a mixed monotone operator and

T1(tx, t−1y) ≥ tT1(x, y), ∀t ∈ (0, 1), x, y ∈ K. (9)

T2 : K → K is an increasing γ-concave operator. Moreover,

(i) there exists h0 ∈ Kh such that T1(h0, h0), T2h0 ∈ Kh;
(ii) there exists σ > 0 such that T1(x, y) ≤ σT2x, x, y ∈ K.

Then:

(a) T1 : Kh × Kh → Kh and T2 : Kh → Kh;
(b) there are u0, v0 ∈ Kh and τ ∈ (0, 1) satisfying

τv0 ≤ u0 < v0, u0 ≤ T1(u0, v0) + T2u0 ≤ T1(v0, u0) + T2v0 ≤ v0;

(c) T1(x, x) + T2x = x exists a unique solution x∗ in Kh;
(d) for x0, y0 ∈ Kh, set

xn = T1(xn−1, yn−1) + T2xn−1, yn = T1(yn−1, xn−1) + T2yn−1, n = 1, 2, . . . ,

then xn → x∗, yn → x∗ as n→ ∞.

Remark 1. From Lemmas 3 and 4, we have two special cases:

(i) Let T2 = θ in Lemma 3, we get the corresponding conclusion (see Corollary 2.2 in [27]);
(ii) Let T1 = θ in Lemma 4, we have the corresponding conclusion (see Theorem 2.7 in [31]).

3. Main Results

By using Lemmas 3 and 4, we will establish our main results for Label (1). Consider a Banach
space X = C[0, 1], the norm is ‖u‖ = sup{|u(t)| : t ∈ [0, 1]}. Set K = {x ∈ C[0, 1]|x(t) ≥ 0, t ∈ [0, 1]},
a normal cone.
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Lemma 5. (See [15]). Let g ∈ C[0, 1], βηα−2 6= 1 and 0 < η < 1, then the unique solution of following
three-point problem {

Dα
q x(t) + g(t) = 0, 0 < t < 1, 2 < α < 3,

x(0) = Dqx(0) = 0, Dqx(1) = βDqx(η)
(10)

is

x(t) =
∫ 1

0
G(t, qs)g(s)dqs +

βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)g(s)dqs, (11)

where

G(t, s) =
1

Γq(α)

{
(1− s)(α−2)tα−1 − (t− s)(α−1), 0 ≤ s ≤ t ≤ 1,
(1− s)(α−2)tα−1, 0 ≤ t ≤ s ≤ 1,

(12)

H(t, s) = tDqG(s, t)

=
[α− 1]q
Γq(α)

{
(1− s)(α−2)tα−2 − (t− s)(α−2), 0 ≤ s ≤ t ≤ 1,
(1− s)(α−2)tα−2, 0 ≤ t ≤ s ≤ 1.

Lemma 6. (See [15]). For G(t, qs) in (11), we obtain

(1) G(t, qs) is continuous and G(t, qs) ≥ 0, t, s ∈ [0, 1]× [0, 1];
(2) G(t, qs) is strictly increasing in t ∈ [0, 1].

Remark 2. For G(t, qs) in (11), we can easily get

G(t, qs) ≤ 1
Γq(α)

(1− qs)(α−2)tα−1, t, s ∈ [0, 1]× [0, 1].

By (2) in Lemma 6, we have tDqG(qs, t) ≥ 0, that is, H(t, qs) ≥ 0. Obviously,

H(t, qs) ≤
[α− 1]q
Γq(α)

(1− qs)(α−2)tα−2 ≤
[α− 1]q
Γq(α)

, t, s ∈ [0, 1]× [0, 1].

Next, four assumptions are listed:

(H1) f : [0, 1]× [0,+∞)× [0,+∞)→ [0,+∞) and g : [0, 1]× [0,+∞)→ [0,+∞) are continuous;
(H2) f (t, u, v) is increasing relative to u for fixed t ∈ [0, 1] and v ∈ [0,+∞), decreasing relative to v for fixed

t ∈ [0, 1] and u ∈ [0,+∞); g(t, u) is increasing relative to u for fixed t ∈ [0, 1];
(H3) for λ ∈ (0, 1), t ∈ [0, 1], u ≥ 0, g(t, λu) ≥ λg(t, u) is satisfied, and there is γ ∈ (0, 1) such that

f (t, λu, λ−1v) ≥ λγ f (t, u, v) for u, v ≥ 0. In addition, g(t, 0) 6≡ 0;
(H4) there exists σ > 0 such that f (t, u, v) ≥ σg(t, u), ∀t ∈ [0, 1], u, v ∈ [0,+∞).

Theorem 1. Let (H1)− (H4) be satisfied, then

(a) there are u0, v0 ∈ Kh and τ ∈ (0, 1) satisfying τv0 ≤ u0 < v0 and

u0(t) ≤
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)[ f (s, u0(s), v0(s)) + g(s, u0(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, u0(s), v0(s)) + g(s, u0(s))]dqs, t ∈ [0, 1],

v0(t) ≥
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)[ f (s, v0(s), u0(s)) + g(s, v0(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, v0(s), u0(s)) + g(s, v0(s))]dqs, t ∈ [0, 1],
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where h(t) = tα−1 and G(t, qs), H(t, qs) are defined as in Lemma 5;

(b) BVP (1) has a unique positive solution u∗ ∈ Kh;
(c) for x0, y0 ∈ Kh, set

xn+1(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)[ f (s, xn(s), yn(s)) + g(s, xn(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, xn(s), yn(s)) + g(s, xn(s))]dqs, n = 1, 2, . . . ,

yn+1(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)[ f (s, yn(s), xn(s)) + g(s, yn(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, yn(s), xn(s)) + g(s, yn(s))]dqs, n = 1, 2, . . . ,

then ‖xn − u∗‖ → 0, ‖yn − u∗‖ → 0 as n→ ∞.

Proof. By Lemma 5, the solution u of BVP (1) can be written by

u(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)[ f (s, u(s), u(s)) + g(s, u(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, u(s), u(s)) + g(s, u(s))]dqs.

Now, we give two operators T1 : K× K → X and T2 : K → X by

T1(u, v)(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs) f (s, u(s), v(s))dqs

+
∫ 1

0
G(t, qs) f (s, u(s), v(s))dqs,

(T2u)(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)g(s, u(s))dqs

+
∫ 1

0
G(t, qs)g(s, u(s))dqs.

Obviously, u is a solution of Label (1) if and only if u = T1(u, u) + T2u. By (H1), one has
T1 : K × K → K and T2 : K → K. We will prove that T1, T2 satisfy all the assumptions of Lemma 3.
The proof consists of three steps.

Step 1. The aim of this step is to prove that T1 is a mixed monotone operator.
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For ui, vi ∈ K, i = 1, 2 with u1 ≥ u2, v1 ≤ v2, then u1(t) ≥ u2(t), v1(t) ≤ v2(t) for t ∈ [0, 1].
From (H2) and Lemma 6,

T1(u1, v1)(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs) f (s, u1(s), v1(s))dqs

+
∫ 1

0
G(t, qs) f (s, u1(s), v1(s))dqs

≥ βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs) f (s, u2(s), v2(s))dqs

+
∫ 1

0
G(t, qs) f (s, u2(s), v2(s))dqs

= T1(u2, v2)(t).

Thus, T1(u1, v1) ≥ T1(u2, v2), that is, T1 is mixed monotone.

Step 2. Our aim of this step is to show that T1 satisfies the condition (8) and the operator T2 is
sub-homogeneous.

From (H2) and Lemma 6, T2 is increasing. Furthermore, for λ ∈ (0, 1) and u, v ∈ P, by (H3),

T1(λu, λ−1v)(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs) f (s, λu(s), λ−1v(s))dqs

+
∫ 1

0
G(t, qs) f (s, λu(s), λ−1v(s))dqs

≥ λγβtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs) f (s, u(s), v(s))dqs

+λγ
∫ 1

0
G(t, qs) f (s, u2(s), v2(s))dqs

= λγT1(u, v)(t),

and thus T1(λu, λ−1v) ≥ λγT1(u, v) for λ ∈ (0, 1), u, v ∈ K. Hence, the operator T1 satisfies (8).
In addition, for any λ ∈ (0, 1), u ∈ K, by (H3),

T2(λu)(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)g(s, λu(s))dqs +

∫ 1

0
G(t, qs)g(s, λu(s))dqs

≥ λβtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)g(s, u(s))dqs + λ

∫ 1

0
G(t, qs)g(s, u(s))dqs

= λT2u(t),

that is, T2(λu) ≥ λT2u, u ∈ P. Thus, the operator T2 is sub-homogeneous.

Step 3. The purpose of this step is to prove that T1(h, h), T2h ∈ Kh. Furthermore, we also prove
that there exists σ > 0 such that T1(x, y) ≥ σT2x, ∀x, y ∈ K.

Firstly, in view of (H1), (H2) and Lemma 6, for t ∈ [0, 1],

T1(h, h)(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs) f (s, h(s), h(s))dqs +

∫ 1

0
G(t, qs) f (s, h(s), h(s))dqs

=
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs) f (s, sα−1, sα−1)dqs +

∫ 1

0
G(t, qs) f (s, sα−1, sα−1)dqs

≤ βh(t)
(1− βηα−2)Γq(α)

∫ 1

0
(1− qs)(α−2) f (s, 1, 0)dqs +

h(t)
Γq(α)

∫ 1

0
(1− qs)(α−2) f (s, 1, 0)dqs.
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By the same arguments, for t ∈ [0, 1],

T1(h, h)(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs) f (s, sα−1, sα−1)dqs +

∫ 1

0
G(t, qs) f (s, sα−1, sα−1)dqs

≥ h(t)
Γq(α)

∫ 1

0
[(1− qs)(α−2) − (1− qs)(α−1)] f (s, 0, 1)dqs.

From (H2), (H4), ∫ 1

0
f (s, 1, 0)dqs ≥

∫ 1

0
f (s, 0, 1)dqs ≥ σ

∫ 1

0
g(s, 0)dqs > 0.

Set

l1 =

(
1

Γq(α)
+

β

(1− βηα−2)Γq(α)

) ∫ 1

0
(1− qs)(α−2) f (s, 1, 0)dqs,

l2 =
1

Γq(α)

∫ 1

0

[
(1− qs)(α−2) − (1− qs)(α−1)

]
f (s, 0, 1)dqs.

Then, l2h(t) ≤ T1(h, h)(t) ≤ l1h(t), t ∈ [0, 1]. It follows that T1(h, h) ∈ Kh. Similarly,

T2h(t) ≥ h(t)
Γq(α)

∫ 1

0

[
(1− qs)(α−2) − (1− qs)(α−1)

]
g(s, 0)dqs,

and

T2h(t) ≤
(

1
Γq(α)

+
β

(1− βηα−2)Γq(α)

)
h(t)

∫ 1

0
(1− qs)(α−2)g(s, 1)dqs.

Since g(t, 0) 6≡ 0, we also get T2h ∈ Kh. Thus, the condition (i) of Lemma 3 holds. Next, we will
indicate that (ii) of Lemma 3 is still satisfied. For t ∈ [0, 1], u, v ∈ K, from (H4),

T1(u, v)(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs) f (s, u(s), v(s))dqs +

∫ 1

0
G(t, qs) f (s, u(s), v(s))dqs

≥ σβtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)g(s, u(s))dqs + σ

∫ 1

0
G(t, qs)g(s, u(s))dqs

= σT2u(t).

Then, T1(u, v) ≥ σT2u for u, v ∈ K. Therefore, by Lemma 3, we have: u0, v0 ∈ Kh and τ ∈
(0, 1) satisfying τv0 ≤ u0 < v0, u0 ≤ T1(u0, v0) + T2u0 ≤ T1(v0, u0) + T2v0 ≤ v0; the equation
T1(u, u) + T2u = u has a unique solution u∗ in Kh; for x0, y0 ∈ Kh, set

xn = T1(xn−1, yn−1) + T2xn−1, yn = T1(yn−1, xn−1) + T2yn−1, n = 1, 2, . . . ,

one obtains xn → u∗, yn → u∗ as n→ ∞. Namely,

u0(t) ≤
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)[ f (s, u0(s), v0(s)) + g(s, u0(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, u0(s), v0(s)) + g(s, u0(s))]dqs, t ∈ [0, 1],

v0(t) ≥
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)[ f (s, v0(s), u0(s)) + g(s, v0(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, v0(s), u0(s)) + g(s, v0(s))]dqs, t ∈ [0, 1];



Symmetry 2018, 10, 358 9 of 15

Label (1) has a unique positive solution u∗ ∈ Kh; for x0, y0 ∈ Kh, the sequences

xn+1(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)[ f (s, xn(s), yn(s)) + g(s, xn(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, xn(s), yn(s)) + g(s, xn(s))]dqs, n = 1, 2, . . . ,

yn+1(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)[ f (s, yn(s), xn(s)) + g(s, yn(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, yn(s), xn(s)) + g(s, yn(s))]dqs, n = 1, 2, . . .

satisfy ‖xn − u∗‖ → 0, ‖yn − u∗‖ → 0 as n→ ∞.

Theorem 2. Let (H1), (H2) and the following conditions be satisfied:

(H5) for t ∈ [0, 1], λ ∈ (0, 1), u ≥ 0, there is γ ∈ (0, 1) such that g(t, λu) ≥ λγg(t, u) and f (t, λu, λ−1v) ≥
λ f (t, u, v) for t ∈ [0, 1], λ ∈ (0, 1), u, v ≥ 0;

(H6) f (t, 0, 1) 6≡ 0 for t ∈ [0, 1], and there is σ > 0 satisfying f (t, u, v) ≤ σg(t, u), ∀t ∈ [0, 1], u, v ≥ 0.

Then:

(a) there is u0, v0 ∈ Ph and τ ∈ (0, 1) such that τv0 ≤ u0 < v0 and

u0(t) ≤
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)[ f (s, u0(s), v0(s)) + g(s, u0(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, u0(s), v0(s)) + g(s, u0(s))]dqs, t ∈ [0, 1],

v0(t) ≥
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)[ f (s, v0(s), u0(s)) + g(s, v0(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, v0(s), u0(s)) + g(s, v0(s))]dqs, t ∈ [0, 1],

where h(t) = tα−1 and G(t, qs), H(t, qs) are defined as in Lemma 5;

(b) BVP (1) has a unique positive solution u∗ ∈ Kh;
(c) for any x0, y0 ∈ Kh, set

xn+1(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)[ f (s, xn(s), yn(s)) + g(s, xn(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, xn(s), yn(s)) + g(s, xn(s))]dqs, n = 1, 2, . . . ,

yn+1(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)[ f (s, yn(s), xn(s)) + g(s, yn(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, yn(s), xn(s)) + g(s, yn(s))]dqs, n = 1, 2, . . . ,

and we get ‖xn − u∗‖ → 0, ‖yn − u∗‖ → 0 as n→ ∞.
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Proof. We also consider two operators T1, T2. Given in the proof of Theorem 1, it has been shown that
T1 : K× K → K is mixed monotone and T2 : K → K is increasing. By (H5),

T1(λu, λ−1v) ≥ λT1(u, v), T2(λu) ≥ λγT2u, λ ∈ (0, 1), u, v ∈ K.

From (H2), (H6),

g(s, 0) ≥ 1
σ

f (s, 0, 1), f (s, 1, 0) ≥ f (s, 0, 1), s ∈ [0, 1].

Since f (t, 0, 1) 6≡ 0, we obtain

∫ 1

0
f (s, 1, 0)dqs ≥

∫ 1

0
f (s, 0, 1)dqs > 0,

∫ 1

0
g(s, 1)dqs ≥

∫ 1

0
g(s, 0)dqs ≥ 1

σ

∫ 1

0
f (s, 0, 1)dqs > 0,

so (
1

Γq(α)
+ β

(1−βηα−2)Γq(α)

) ∫ 1
0 (1− qs)(α−2) f (s, 1, 0)dqs

≥ 1
Γq(α)

∫ 1
0

[
(1− qs)(α−2) − (1− qs)(α−1)

]
f (s, 0, 1)dqs > 0,

and (
1

Γq(α)
+ β

(1−βηα−2)Γq(α)

) ∫ 1
0 (1− qs)(α−2)g(s, 1)dqs

≥ 1
Γq(α)

∫ 1
0

[
(1− qs)(α−2) − (1− qs)(α−1)

]
g(s, 0)dqs > 0.

It can easily prove that T1(h, h), T2h ∈ Kh. Furthermore, by (H6),

T1(u, v)(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs) f (s, u(s), v(s))dqs +

∫ 1

0
G(t, qs) f (s, u(s), v(s))dqs

≤ σβtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)g(s, u(s))dqs + σ

∫ 1

0
G(t, qs)g(s, u(s))dqs

= σT2u(t).

Hence, T1(u, v) ≤ T2u, for u, v ∈ K. By Lemma 4, we can claim: there are u0, v0 ∈ Ph and
τ ∈ (0, 1) satisfying τv0 ≤ u0 < v0, u0 ≤ T1(u0, v0) + T2u0 ≤ T1(v0, u0) + T2v0 ≤ v0; the equation
T1(u, u) + T2u = u has a unique solution u∗ in Kh; for x0, y0 ∈ Kh, set

xn = T1(xn−1, yn−1) + T2xn−1, yn = T1(yn−1, xn−1) + T2yn−1, n = 1, 2, . . . ,

one has xn → u∗, yn → u∗ as n→ ∞. Namely,

u0(t) ≤
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)[ f (s, u0(s), v0(s)) + g(s, u0(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, u0(s), v0(s)) + g(s, u0(s))]dqs, t ∈ [0, 1],

v0(t) ≥
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)[ f (s, v0(s), u0(s)) + g(s, v0(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, v0(s), u0(s)) + g(s, v0(s))]dqs, t ∈ [0, 1];



Symmetry 2018, 10, 358 11 of 15

Label (1) has a unique positive solution u∗ ∈ Kh; for x0, y0 ∈ Ph, the sequences

xn+1(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)[ f (s, xn(s), yn(s)) + g(s, xn(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, xn(s), yn(s)) + g(s, xn(s))]dqs, n = 1, 2, . . . ,

yn+1(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)[ f (s, yn(s), xn(s)) + g(s, yn(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, yn(s), xn(s)) + g(s, yn(s))]dqs, n = 1, 2, . . .

satisfy ‖xn − u∗‖ → 0, ‖yn − u∗‖ → 0 as n→ ∞.

In the sequel, we consider special cases of Label (1) with g ≡ 0 or f ≡ 0. Similar to the proofs of
Theorems 1 and 2 and according to Remark 1, we can draw the following conclusions:

Corollary 1. Assume f satisfies (H1)− (H4) and f (t, 0, 1) 6≡ 0, for t ∈ [0, 1]. Then: (a) there are u0, v0 ∈ Kh
and τ ∈ (0, 1) such that τv0 ≤ u0 < v0 and

u0(t) ≤
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs) f (s, u0(s), v0(s))dqs

+
∫ 1

0
G(t, qs) f (s, u0(s), v0(s))dqs, t ∈ [0, 1],

v0(t) ≥
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs) f (s, v0(s), u0(s))dqs

+
∫ 1

0
G(t, qs) f (s, v0(s), u0(s))dqs, t ∈ [0, 1],

where h(t) = tα−1 and G(t, qs), H(t, qs) are given as in Lemma 5; (b) the following BVP{
Dα

q x(t) + f (t, x(t), x(t)) = 0, 0 < t < 1, 2 < α < 3,
x(0) = Dqx(0) = 0, Dqx(1) = βDqx(η),

(13)

has a unique positive solution u∗ ∈ Kh; (c) for x0, y0 ∈ Kh, set

xn+1(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs) f (s, xn(s), yn(s))dqs

+
∫ 1

0
G(t, qs) f (s, xn(s), yn(s))dqs, n = 1, 2, . . . ,

yn+1(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs) f (s, yn(s), xn(s))dqs

+
∫ 1

0
G(t, qs) f (s, yn(s), xn(s))dqs, n = 1, 2, . . . ,

and we get ‖xn − u∗‖ → 0, ‖yn − u∗‖ → 0 as n→ ∞.
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Corollary 2. Assume g satisfies (H1), (H2) and (H5), (H6), g(t, 0) 6≡ 0, for t ∈ [0, 1]. Then:
(a) there are u0, v0 ∈ Kh and τ ∈ (0, 1) such that τv0 ≤ u0 < v0 and

u0(t) ≤
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)g(s, u0(s))dqs

+
∫ 1

0
G(t, qs)g(s, u0(s)), t ∈ [0, 1],

v0(t) ≥
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)g(s, v0(s))dqs

+
∫ 1

0
G(t, qs)g(s, v0(s))dqs, t ∈ [0, 1],

where h(t) = tα−1 and G(t, qs), H(t, qs) are given as in Lemma 5; (b) the following problem{
Dα

q x(t) + g(t, x(t)) = 0, 0 < t < 1, 2 < α < 3,
x(0) = Dqx(0) = 0, Dqx(1) = βDqx(η),

(14)

has a unique positive solution u∗ ∈ Kh; (c) for x0, y0 ∈ Kh, set

xn+1(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)g(s, xn(s))dqs

+
∫ 1

0
G(t, qs)g(s, xn(s))dqs, n = 1, 2, . . . ,

yn+1(t) =
βtα−1

[α− 1]q(1− βηα−2)

∫ 1

0
H(η, qs)g(s, yn(s))dqs

+
∫ 1

0
G(t, qs)g(s, yn(s))dqs, n = 1, 2, . . . ,

and we obtain ‖xn − u∗‖ → 0, ‖yn − u∗‖ → 0 as n→ ∞.

Remark 3. In literature, we have not found such results as Theorems 1 and 2, and Corollaries 1 and 2 on
fractional q-difference equation boundary value problems. The used methods in literature were not fixed point
theorems for mixed monotone operators. Thus, our method is different from previous ones. We should point out
that we can not only give the existence and uniqueness of solutions but also make an iteration to approximate the
unique solution.

4. Examples

Example 1. We consider a problem:{
D

5
2
q u(t) + u

1
5 (t) + [u(t) + 4]−

1
3 + u(t)

2+u(t) t3 + 3a = 0, t ∈ (0, 1),

u(0) = Dqu(0) = 0, Dqu(1) = 1
2 Dqu( 1

2 ),
(15)

where q = 1
2 , α = 5

2 , β = η = 1
2 , a > 0. Take 0 < b < a and let

f (t, u, v) = u
1
5 + [v + 4]−

1
3 + b, g(t, u) =

u
2 + u

t3 + 3a− b, γ =
1
3

.

Then, f : [0, 1]× [0,+∞)× [0,+∞) → [0,+∞) and g : [0, 1]× [0,+∞) → [0,+∞) are continuous,
g(t, 0) = 3a− b > 0. Furthermore, f (t, u, v) is increasing relative to u for fixed t ∈ [0, 1] and v ∈ [0,+∞),
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decreasing relative to v for fixed t ∈ [0, 1] and u ∈ [0,+∞), g(t, u) is increasing relative to u for fixed t ∈ [0, 1].
On the other hand, for λ ∈ (0, 1), t ∈ [0, 1], u, v ≥ 0,

g(t, λu) =
λu(t)

2 + λu(t)
t3 + 3a− b ≥ λu(t)

2 + u(t)
t3 + λ(3a− b) = λg(t, u),

and

f (t, λu, λ−1v) = λ
1
5 u

1
5 + λ

1
3 [v + 4λ]−

1
3 + b ≥ λ

1
3

{
u

1
5 + [v + 4]−

1
3 + b

}
= λγ f (t, u, v).

Then, (H1)–(H3) holds. Moreover, taking σ ∈ (0, b
3a−b ], one has

f (t, u, v) = u
1
5 + [v + 4]−

1
3 + b ≥ b =

b
3a− b

· (3a− b) ≥ σ

[
u

2 + u
t3 + 3a− b

]
= σg(t, u),

then (H4) holds. By means of Theorem 1, problem (15) has a unique positive solution u∗ ∈ Kh, where
h(t) = t

3
2 , t ∈ [0, 1].

Example 2. In Example 4.1, we replace the nonlinear term u
1
5 (t) + [u(t) + 4]−

1
3 + u(t)

2+u(t) t3 + 3a by

sin2 t + u
1
3 (t) +

1
2 + u(t)

+
u(t)

1 + u(t)
+ 3.

By Theorem 2, we can also show that problem (4.1) has a unique positive solution u∗ ∈ Kh, where
h(t) = t

3
2 , t ∈ [0, 1]. In fact, let

f (t, u, v) = sin2 t +
1

2 + v
+

u
1 + u

, g(t, u) = u
1
3 + 3, γ =

1
3

.

It is easy to check that (H1), (H2) hold. We only show (H5), (H6) are satisfied. For λ ∈ (0, 1), t ∈
[0, 1], u, v ≥ 0,

g(t, λu) = λ
1
3 u

1
3 + 3 ≥ λ

1
3 [u

1
3 + 3] = λγg(t, u),

and
f (t, λu, λ−1v) = sin2 t +

1
2 + λ−1v

+
λu

1 + λu
≥ sin2 t +

λ

2 + v
+

λu
1 + u

≥ λ f (t, u, v).

Furthermore, f (t, 0, 1) = sin2 t + 1
3 6≡ 0 and

f (t, u, v) ≤ 3 ≤ u
1
3 + 3 = g(t, u).

Take σ ∈ [1, ∞) and then (H5), (H6) hold.

Remark 4. From Theorems 1 and 2 and Examples 1 and 2, we see that many boundary value problems can be
studied by our methods under mixed monotone conditions. We can find that there are many functions that satisfy
our conditions. In some works, the nonlinear terms required were super-linearity, sub-linearity or boundness,
which guarantee existence of solutions, but the uniqueness has not been obtained.

5. Conclusions

In this article, we investigate a fractional q-difference equation with three-point boundary
conditions (1). We obtain the existence and uniqueness of positive solutions in a special Kh,
where h(t) = tα−1. The used methods here are some theorems for operator equation T1(x, x) + T2x = x,
where T1 is a mixed monotone operator and T2 is an increasing operator. Our methods are new to
fractional q-difference equation boundary value problems. Thus, we can claim that we give an
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alternative answer to fractional problems and our results are very limited in the literature. Finally,
two interesting examples are presented to illustrate the main results. We should note that, to get the
uniqueness, we must need the conditions of mixed monotonicity and monotonicity for nonlinear terms.
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