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Abstract: We consider the constrained ordered weighted averaging (OWA) aggregation problem 

with a single constraint and lower bounded variables. For the three-dimensional constrained OWA 

aggregation problem with lower bounded variables, we present four types of solution depending 

on the number of zero elements. According to the computerized experiment we perform, the lower 

bounds can affect the solution types, thereby affecting the optimal solution of the three-dimensional 

constrained OWA aggregation problem with lower bounded variables. 
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1. Introduction 

An ordered weighted averaging (OWA) operator, proposed by Yager [1], is a general class of 

parametric aggregation operators that appears in many applications such as control, decision 

making, expert systems, fuzzy system, neural networks, regression analysis and risk analysis [2–6]. 

A citation-based survey of the literature in all types of optimization problems associated to OWA 

operators can be found in [7]. In 1996, Yager [8] investigated the constrained OWA aggregation 

problem [8–15] which is concerned with an optimization problem with an OWA operator. In 

particular, for the constrained OWA aggregation problem with a single constraint on the sum of all 

variables, Yager [8] presented the optimal solutions for the three-dimensional case. Furthermore, 

Carlsson, Fullér and Majlender [9] proposed a simple algorithm for obtaining the optimal solutions 

for any dimensions. Recently, Coroianu and Fullér [10] presented the optimal solution for the 

constrained OWA aggregation problem with a single constraint and any coefficients. However, in 

most practical problems the variables are usually bounded. This paper considers the three-

dimensional constrained OWA aggregation problem with lower bounded variables. 

The organization of this paper is as follows. Section 2 briefly reviews the constrained OWA 

aggregation problem. Section 3 discusses the constrained OWA aggregation problem with the same 

lower bounds. Section 4 presents the solution behaviors of three-dimensional constrained OWA 

aggregation problems with lower bounded variables. Section 5 outlines the design of the experiment 

and evaluates the optimal solution behaviors of the three-dimensional constrained OWA aggregation 

problems with the lower bounded variables. Finally, some concluding remarks are presented. 
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2. Constrained Ordered Weighted Averaging (OWA) Aggregation Problem 

An OWA operator of dimension n is a mapping 𝐹: ℛ𝑛 → ℛ that associates a weighting vector 

W = (𝑤1, 𝑤2, … , 𝑤𝑛) satisfying: 

𝑤1 + 𝑤2 + ⋯ + 𝑤𝑛 = 1, 0 ≤ 𝑤𝑖 ≤ 1, 𝑖 = 1,2, … , 𝑛  

and such that: 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) = ∑ 𝑤𝑖𝑦𝑖
𝑛
𝑖=1 , (1) 

with 𝑦𝑖  being the ith largest of {𝑥1, 𝑥2, … , 𝑥𝑛}. 

Consider the following constrained OWA aggregation problem: 

Max 𝑊𝑇𝑌 

s. t.  𝑨𝑿 ≤  𝒃  

𝑋 ≥ 𝟎 

(2) 

where the column vectors X, Y, W and b, and the 𝑚 × 𝑛 matrix A are: 

X= [

𝑥1

𝑥2

⋮
𝑥𝑛

], Y= [

𝑦1

𝑦2

⋮
𝑦𝑛

], W= [

𝑤1

𝑤2

⋮
𝑤𝑛

], 𝒃 = [

𝑏1

𝑏2

⋮
𝑏𝑚

], 𝑨 = [

𝑎11 𝑎12

𝑎21 𝑎22
⋯

𝑎1𝑛

𝑎2𝑛

⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

]. 

 

By introducing the (𝑛 − 1) × 𝑛 matrix: 

𝑮 = [

−1 1 0 0
0 −1 1 0

⋯
0 0
0 0

⋮ ⋱ ⋮
0 0 0 0 ⋯ −1 1

] 

 

and the column binary vectors 𝑍𝑖 ∈ {0,1}𝑛, 𝑖 = 1,2, … , 𝑛, Yager [8] transformed the above non-linear 

programing problem to the following mixed integer linear programming (MIP) problem: 

Max 𝑊𝑇𝑌 

s.t. 𝑨𝑿 ≤  𝒃 

𝐆𝐘 ≤ 0 

𝑦𝑖ℐ − 𝑋 − 𝑀𝑍𝑖 ≤ 0, 𝑖 = 1,2, … , 𝑛 − 1 

𝑦𝑛ℐ − 𝑋 ≤ 0  

ℐ𝑇𝑍𝑖 ≤ 𝑛 − 𝑖, 𝑖 = 1,2, … , 𝑛 − 1 

𝑍𝑖 ∈ {0,1}𝑛, 𝑖 = 1,2, … , 𝑛 − 1 

𝑋 ≥ 𝟎  

(3) 

where M is a huge positive number and 𝓘 is the column vector with all elements equal 1. 

For the MIP (3), the number of constraints is: 

𝑚 + 𝑛 − 1 + 𝑛2 + 𝑛 − 1 = 𝑚 + 𝑛2 + 2𝑛 − 2, 

and the number of variables is:  

𝑛 + 𝑛 + (𝑛 − 1)𝑛 = 𝑛2 + 𝑛. 

In the literature, the constrained OWA aggregation problem with a single constraint on the sum 

of all variables is as follows: 
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Max 𝑊𝑇𝑌 

s.t. ℐ𝑇 𝑿 ≤ 1 

𝐆𝐘 ≤ 0  

𝑦𝑖ℐ − 𝑋 − 𝑀𝑍𝑖 ≤ 0, 𝑖 = 1,2, … , 𝑛 − 1 

𝑦𝑛ℐ − 𝑋 ≤ 0  

ℐ𝑇𝑍𝑖 ≤ 𝑛 − 𝑖, 𝑖 = 1,2, … , 𝑛 − 1 

𝑍𝑖 ∈ {0,1}𝑛, 𝑖 = 1,2, … , 𝑛 − 1 

𝑋 ≥ 𝟎. 

(4) 

If: 

𝑿∗ = [

𝑥1
∗

𝑥2
∗

⋮
𝑥𝑛

∗

] 

is an optimal solution of (4), then,  

[

𝑥𝜎1
∗

𝑥𝜎2
∗

⋮
𝑥𝜎𝑛

∗

] 

is also the optimal solution, for some σ ∈ 𝑆𝑛 , where 𝑆𝑛  is the set of all permutations of the set 

{1,2, … , 𝑛}. To reduce the multiple solutions of the MIP (4), we introduce the following constraints: 

𝑍𝑖+1 ≤ 𝑍𝑖, 𝑖 = 1, 2, … , 𝑛 − 2. 

by inspecting the jth element of the constraint 𝑦𝑖ℐ − 𝑋 − 𝑀𝑍𝑖 ≤ 0, 

𝑦𝑖 − 𝑥𝑗 − 𝑀𝑍𝑖𝑗 ≤ 0, 

if 𝑍𝑖𝑗 = 0, then: 

𝑦𝑖 ≤ 𝑥𝑗. 

From the optimal solution: 

ℐ𝑇𝑍𝑖 = 𝑛 − 𝑖 and ℐ𝑇𝑍𝑖+1 = 𝑛 − 𝑖 − 1, 

it follows that: 

𝑍𝑖+1,𝑗 = 0 

so, 

𝑦𝑖+1 ≤ 𝑥𝑗. 

If 𝑍𝑖𝑗 = 1, then no restriction is imposed on 𝑦𝑖 , it implies that: 

𝑦𝑖+1 ≤ 𝑥𝑗 or 𝑦𝑖+1 > 𝑥𝑗 

so 𝑍𝑖+1,𝑗 = 0 or 1. 

Therefore, the more efficient MIP is as follows:  
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Max 𝑊𝑇𝑌 

s.t. ℐ𝑇 𝑿 ≤ 1 

𝐆𝐘 ≤ 0 

𝑦𝑖ℐ − 𝑋 − 𝑀𝑍𝑖 ≤ 0, 𝑖 = 1,2, … , 𝑛 − 1 

𝑦𝑛ℐ − 𝑋 ≤ 0  

ℐ𝑇𝑍𝑖 ≤ 𝑛 − 𝑖, 𝑖 = 1,2, … , 𝑛 − 1 

𝑍𝑖+1 ≤ 𝑍𝑖, 𝑖 = 1,2, … , 𝑛 − 2 

𝑍𝑖 ∈ {0,1}𝑛, 𝑖 = 1,2, … , 𝑛 − 1 

𝑋 ≥ 𝟎.  

(5) 

3. Constrained OWA Aggregation Problem with the Same Lower Bounds 

In most practical problems the variables are usually bounded. A typical variable 𝑥𝑖 is bounded 

from below by 𝑙𝑖 and from above by 𝑢𝑖, where 𝑙𝑖 < 𝑢𝑖 and 𝑖 = 1, 2, … , 𝑛. If we let 𝑢𝑖 = ∞, we get 

the following constrained OWA aggregation problem with lower bounded variables: 

Max 𝑊𝑇𝑌 

s.t. ℐ𝑇 𝑿 ≤1 

GY ≤ 0 

𝑦𝑖ℐ − 𝑋 − 𝑀𝑍𝑖 ≤ 0, 𝑖 = 1,2, … , 𝑛 − 1 

𝑦𝑛ℐ − 𝑋 ≤ 0  

ℐ𝑇𝑍𝑖 ≤ 𝑛 − 𝑖, 𝑖 = 1,2, … , 𝑛 − 1 

𝑍𝑖+1 ≤ 𝑍𝑖, 𝑖 = 1,2, … , 𝑛 − 2 

𝑍𝑖 ∈ {0,1}𝑛, 𝑖 = 1,2, … , 𝑛 − 1 

𝑋 ≥ 𝑳  

(6) 

where the column vector:  

𝑳 = [

𝑙1

𝑙2

⋮
𝑙𝑛

]. 

By using the change of variable: 

𝑋′ = 𝑋 − 𝑳 

the lower bound vector can be transformed into the zero vector. The constrained OWA aggregation 

problem with lower bounded variables is:  

Max 𝑊𝑇𝑌 

s.t. ℐ𝑇𝑿′ ≤ 1 − ℐ𝑇𝑳 

𝐆𝐘 ≤ 0 

𝑦𝑖ℐ − 𝑋′ − 𝑀𝑍𝑖 ≤ 𝑳, 𝑖 = 1,2, … , 𝑛 − 1 

𝑦𝑛ℐ − 𝑋 ≤ 0  

ℐ𝑇𝑍𝑖 ≤ 𝑛 − 𝑖, 𝑖 = 1,2, … , 𝑛 − 1 

𝑍𝑖+1 ≤ 𝑍𝑖, 𝑖 = 1,2, … , 𝑛 − 2 

𝑍𝑖 ∈ {0,1}𝑛, 𝑖 = 1,2, … , 𝑛 − 1 

𝑋′ ≥ 𝟎. 

(7) 
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If 1 − ℐ𝑇𝑳 < 0, the constrained OWA aggregation problem has no feasible solution. If 1 − ℐ𝑇𝑳 =

0, the unique optimal solution is 𝑋′∗ = 𝟎, so: 

𝑋∗ = 𝑳. 

It remains to discuss the case that 1 − ℐ𝑇𝑳 > 0 . More precisely, the three dimensional 

constrained OWA aggregation problem with lower bounded variables is as follows: 

Max 𝐹 = 𝑤1𝑦1 + 𝑤2𝑦2 + 𝑤3𝑦3 

s.t. 𝑥1
′ + 𝑥2

′ + 𝑥3
′ ≤ 1 − 𝑙1 − 𝑙2 − 𝑙3 

𝑦2 − 𝑦1 ≤ 0  

𝑦3 − 𝑦2 ≤ 0  

𝑦3 − 𝑥1
′ ≤ 𝑙1  

𝑦3 − 𝑥2
′ ≤ 𝑙2  

𝑦3 − 𝑥3
′ ≤ 𝑙3  

𝑦2 − 𝑥1
′ − M𝑍21 ≤ 𝑙1  

𝑦2 − 𝑥2
′ − M𝑍22 ≤ 𝑙2  

𝑦2 − 𝑥3
′ − M𝑍23 ≤ 𝑙3  

𝑍21 + 𝑍22 + 𝑍23 ≤ 1  

𝑦1 − 𝑥1
′ − M𝑍11 ≤ 𝑙1  

𝑦1 − 𝑥2
′ − M𝑍12 ≤ 𝑙2  

𝑦1 − 𝑥3
′ − M𝑍13 ≤ 𝑙3  

𝑍11 + 𝑍12 + 𝑍13 ≤ 2  

𝑍21 ≤ 𝑍11  

𝑍22 ≤ 𝑍12  

𝑍23 ≤ 𝑍13  

𝑥1
′ , 𝑥2

′ , 𝑥3
′ ≥ 0, 𝑍21, 𝑍22, 𝑍23, 𝑍11, 𝑍12, 𝑍13 ∈ {0,1}. 

(8) 

For the special case that the same lower bounds 𝑙𝑖 = 𝑙, 𝑖 = 1, 2, … , 𝑛, by the observing that the 

ith largest (𝑥𝜎𝑖) of {𝑥1, 𝑥2, … , 𝑥𝑛} is the same variable of the ith largest (𝑥𝜎𝑖
′ ) of {𝑥′1 , 𝑥′2, … , 𝑥′𝑛}, 

let: 

𝑥𝑖
′′ =

𝑥𝑖
′

1 − 𝑛𝑙
 

it follows that the optimal solution is the same as that of the constrained OWA aggregation problem 

[8]. We establish the main results described as follows: 

Theorem 1. Consider the three-dimensional constrained OWA aggregation problem (8). 

(a) If 𝑤1 = 𝑚𝑎𝑥
𝑖=1,2,3

 𝑤𝑖 , then the optimal solutions are 𝑋′′∗ = [
1
0
0

], [
0
1
0

] or [
0
0
1

], 𝑋∗ = [
1 − 2𝑙

𝑙
𝑙

],  [
𝑙

1 − 2𝑙
𝑙

] or 

 [
𝑙
𝑙

1 − 2𝑙
], 𝑌∗ = [

1 − 2𝑙
𝑙
𝑙

] and 𝐹 = 𝑤1 + 𝑙 − 3𝑤1𝑙. 
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(b) If 𝑤2 = 𝑚𝑎𝑥
𝑖=1,2,3

 𝑤𝑖 , then the optimal solutions are 𝑋′′∗ = [
1/2
1/2

0

] , [
1/2

0
1/2

]  or [

0
1/2
1/2

] , 𝑋∗ =

[
(1 − 𝑙)/2

(1 − 𝑙)/2
𝑙

], [
(1 − 𝑙)/2

𝑙
(1 − 𝑙)/2

] or  [

𝑙
(1 − 𝑙)/2

(1 − 𝑙)/2
], 𝑌∗ = [

(1 − 𝑙)/2

(1 − 𝑙)/2
𝑙

] and 𝐹 = (1 − 𝑤3 − 𝑙 + 3𝑤3𝑙)/2 for 𝑤1 +

𝑤2 ≥ 2𝑤3, and 𝑋′′∗ = [

1/3
1/3
1/3

], 𝑋∗ = [

1/3
1/3
1/3

], 𝑌∗ = [

1/3
1/3
1/3

], and 𝐹 = 1/3 for 𝑤1 + 𝑤2 ≤ 2𝑤3.  

(c) If 𝑤3 = 𝑚𝑎𝑥
𝑖=1,2,3

 𝑤𝑖 , then the optimal solutions are 𝑋′′∗ = [
1
0
0

], [
0
1
0

] or [
0
0
1

], 𝑋∗ = [
1 − 2𝑙

𝑙
𝑙

], [
𝑙

1 − 2𝑙
𝑙

] or 

 [
𝑙
𝑙

1 − 2𝑙
], 𝑌∗ = [

1 − 2𝑙
𝑙
𝑙

] and 𝐹 = 𝑤1 + 𝑙 − 3𝑤1𝑙 for 𝑤2 + 𝑤3 ≤ 2𝑤1, and 𝑋′′∗ = [

1/3
1/3
1/3

], 𝑋∗ = [

1/3
1/3
1/3

], 

𝑌∗ = [

1/3
1/3
1/3

] and 𝐹 = 1/3 for 𝑤2 + 𝑤3 ≥ 2𝑤1. 

Proof. For the three-dimensional constrained OWA aggregation problem, three cases are considered. 

Firstly, if: 

𝑤1 = max
𝑖=1,2,3

 𝑤𝑖 

the optimal solutions are: 

𝑋′′∗ = [
1
0
0

], [
0
1
0

] or [
0
0
1

] 

So 

𝑋∗ = [
1 − 2𝑙

𝑙
𝑙

], [
𝑙

1 − 2𝑙
𝑙

] or  [
𝑙
𝑙

1 − 2𝑙
], 𝑌∗ = [

1 − 2𝑙
𝑙
𝑙

], 

and the most favorable value is: 

𝐹 = 𝑤1 + 𝑙 − 3𝑤1𝑙. 

Secondly, if:  

𝑤2 = max
𝑖=1,2,3

 𝑤𝑖  

two subcases are considered. If: 

𝑤1 + 𝑤2 ≥ 2𝑤3, 

then the optimal solutions are: 

𝑋′′∗ = [
1/2
1/2

0

], [
1/2

0
1/2

] or [

0
1/2
1/2

] 

so: 



Symmetry 2018, 10, 339 7 of 15 

 

𝑋∗ = [
(1 − 𝑙)/2

(1 − 𝑙)/2
𝑙

], [
(1 − 𝑙)/2

𝑙
(1 − 𝑙)/2

] or  [

𝑙
(1 − 𝑙)/2

(1 − 𝑙)/2
], 𝑌∗ = [

(1 − 𝑙)/2

(1 − 𝑙)/2
𝑙

], 

and the largest objective function value is: 

𝐹 = (1 − 𝑤3 − 𝑙 + 3𝑤3𝑙)/2. 

If: 

𝑤1 + 𝑤2 ≤ 2𝑤3, 

then the optimal solutions are: 

𝑋′′∗ = [

1/3
1/3
1/3

] 

so: 

𝑋∗ = [

1/3
1/3
1/3

], 𝑌∗ = [

1/3
1/3
1/3

] and 𝐹 = 1/3. 

Finally, if: 

𝑤3 = max
𝑖=1,2,3

 𝑤𝑖  

two subcases are considered. If: 

𝑤2 + 𝑤3 ≤ 2𝑤1, 

then the optimal solutions are: 

𝑋′′∗ = [
1
0
0

], [
0
1
0

] or [
0
0
1

] 

so: 

𝑋∗ = [
1 − 2𝑙

𝑙
𝑙

], [
𝑙

1 − 2𝑙
𝑙

] or  [
𝑙
𝑙

1 − 2𝑙
], 𝑌∗ = [

1 − 2𝑙
𝑙
𝑙

], 

and:  

𝐹 = 𝑤1 + 𝑙 − 3𝑤1𝑙. 

If: 

𝑤2 + 𝑤3 ≥ 2𝑤1, 

then the optimal solutions are: 

𝑋′′∗ = [

1/3
1/3
1/3

] 

so: 
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𝑋∗ = [

1/3
1/3
1/3

] ,  𝑌∗ = [

1/3
1/3
1/3

]  and 𝐹 = 1/3. □   

4. Constrained OWA Aggregation Problem with Lower Bounded Variables 

For simplicity, we consider the three-dimensional constrained OWA aggregation problem with 

lower bounded variables. From the optimal solution of the first constraint of the model (8): 

𝑥1
′ + 𝑥2

′ + 𝑥3
′ = 1 − 𝑙1 − 𝑙2 − 𝑙3 (9) 

there are four types (I, II, III and IV) of (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) depending on the number of zero elements. The 

number of zero elements is two for type I, one for types II and III, and zero for type III. The solutions 

of 𝑿’ = (𝑥1
′ , 𝑥2

′ , 𝑥3
′ )  and 𝒀 = (𝑦1, 𝑦2 , 𝑦3)  for the three-dimensional constrained OWA aggregation 

problem with lower bounded variables (8) are described as follows: 

Theorem 2. Consider the three-dimensional constrained OWA aggregation problem with lower bounded 

variables (8). For type I solution, there are three forms (1 − 𝑙1 − 𝑙2 − 𝑙3, 0,0), (0,1 − 𝑙1 − 𝑙2 − 𝑙3, 0), (0,0,1 −

𝑙1 − 𝑙2 − 𝑙3)  for X’ and six forms (1 − 𝑙2 − 𝑙3, 𝑙2, 𝑙3) , (1 − 𝑙2 − 𝑙3, 𝑙3, 𝑙2) , (1 − 𝑙1 − 𝑙3, 𝑙1, 𝑙3),  (1 − 𝑙1 −

𝑙3, 𝑙3, 𝑙1),  (1 − 𝑙1 − 𝑙2, 𝑙1, 𝑙2),  (1 − 𝑙1 − 𝑙2, 𝑙2, 𝑙1)  for Y. For type II, there are three forms 

(
1−2𝑙1−𝑙3

2
,

1−2𝑙2−𝑙3

2
, 0),  (

1−2𝑙1−𝑙2

2
, 0,

1−𝑙2−2𝑙3

2
),  (0,

1−𝑙1−2𝑙2

2
,

1−𝑙1−2𝑙3

2
)  for X’ and six forms (

1−𝑙3

2
,

1−𝑙3

2
, 𝑙3) , 

(𝑙3,
1−𝑙3

2
,

1−𝑙3

2
), (

1−𝑙2

2
,

1−𝑙2

2
, 𝑙2), (𝑙2,

1−𝑙2

2
,

1−𝑙2

2
), (

1−𝑙1

2
,

1−𝑙1

2
, 𝑙1), (𝑙1,

1−𝑙1

2
,

1−𝑙1

2
) for Y. For type III, there are six 

forms (𝑙3 − 𝑙1, 1 − 𝑙2 − 2𝑙3, 0), (1 − 𝑙1 − 2𝑙3, 𝑙3 − 𝑙2, 0), (𝑙2 − 𝑙1, 0,1 − 2𝑙2 − 𝑙3), (1 − 𝑙1 − 2𝑙2, 0, 𝑙2 − 𝑙3), 

(0, 𝑙1 − 𝑙2, 1 − 2𝑙1 − 𝑙3),  (0,1 − 2𝑙1 − 𝑙2, 𝑙1 − 𝑙3)  for X’ and six forms (𝑙3, 𝑙3, 1 − 2𝑙3),   (1 − 2𝑙3, 𝑙3, 𝑙3) , 

(𝑙2, 𝑙2, 1 − 2𝑙2), (1 − 2𝑙2, 𝑙2, 𝑙2), (𝑙1, 𝑙1, 1 − 2𝑙1),  (1 − 2𝑙1, 𝑙1, 𝑙1) for Y. For type IV, there are only one form 

(1/3 − 𝑙1, 1/3 − 𝑙2, 1/3 − 𝑙3) for X’ and one form (1/3,1/3,1/3) for Y. 

Proof. For type I, the possible values of (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) are: 

(1 − 𝑙1 − 𝑙2 − 𝑙3, 0,0), (0,1 − 𝑙1 − 𝑙2 − 𝑙3, 0) and (0,0,1 − 𝑙1 − 𝑙2 − 𝑙3). 

For the case of (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) = (1 − 𝑙1 − 𝑙2 − 𝑙3, 0,0), we have: 

(𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) = (1 − 𝑙2 − 𝑙3, 𝑙2, 𝑙3) 

(𝑦1, 𝑦2, 𝑦3) = (1 − 𝑙2 − 𝑙3, 𝑙2, 𝑙3) or (1 − 𝑙2 − 𝑙3, 𝑙3, 𝑙2). 

For the case of (𝑦1, 𝑦2 , 𝑦3) = (1 − 𝑙2 − 𝑙3, 𝑙2, 𝑙3), if:  

𝑙1 + 𝑙2 + 𝑙3 ≤ 1, 𝑙2 ≥ 𝑙3 and 2𝑙2 + 𝑙3 ≤ 1, 

then: 

(𝑥1, 𝑥2, 𝑥3) = (1 − 𝑙2 − 𝑙3, 𝑙2, 𝑙3) and (𝑦1, 𝑦2, 𝑦3) = (1 − 𝑙2 − 𝑙3, 𝑙2, 𝑙3) 

is solution of MIP (8) and the objective value is: 

𝐹 = 𝑤1 + 𝑙2(−𝑤1 + 𝑤2) + 𝑙3(−𝑤1 + 𝑤3). 

Since 𝑤1 + 𝑤2 + 𝑤3 = 1, we can express the objective value F in only two weights. Then the other 

three formats of F are: 

𝐹 = 𝑤1 + 𝑙2(−𝑤1 + 𝑤2) + 𝑙3(1 − 2𝑤1 − 𝑤2), 
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𝐹 = 𝑤1 + 𝑙2(1 − 2𝑤1 − 𝑤3) + 𝑙3(−𝑤1 + 𝑤3) 

and: 

𝐹 = 1 − 𝑤2 − 𝑤3 + 𝑙2(−1 + 2𝑤1 + 𝑤3) + 𝑙3(−1 + 𝑤2 + 2𝑤3). 

Among these four formats, the explicit format adopted is 𝐹 = 𝑤1 + 𝑙2(−𝑤1 + 𝑤2) + 𝑙3(−𝑤1 +

𝑤3) which is the most compact one. 

If: 

𝑙1 + 𝑙2 + 𝑙3 ≤ 1, 𝑙2 ≤ 𝑙3 and 𝑙2 + 2𝑙3 ≤ 1, 

then: 

(𝑥1, 𝑥2, 𝑥3) = (1 − 𝑙2 − 𝑙3, 𝑙2, 𝑙3) and (𝑦1, 𝑦2, 𝑦3) = (1 − 𝑙2 − 𝑙3, 𝑙3, 𝑙2) 

is the solution of MIP (8) and the objective value is: 

𝐹 = 𝑤1 + 𝑙2(−𝑤1 + 𝑤3) + 𝑙3(−𝑤1 + 𝑤2). 

In Table 1, we display the possible solutions (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) , (𝑥1, 𝑥2, 𝑥3) , (𝑦1, 𝑦2, 𝑦3) , 𝐹  and the 

conditions for the different choices of the type I. 

We now consider that the number of zero elements is one. The possible values of (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) are: 

(𝑥1
′ , 𝑥2

′ , 0), (𝑥1
′ , 0, 𝑥3

′ ) and (0, 𝑥2
′ , 𝑥3

′ ). 

For the case of (𝑥1
′ , 𝑥2

′ , 0), we have: 

(𝑥1, 𝑥2, 𝑥3) = (𝑥1
′ + 𝑙1, 𝑥2

′ + 𝑙2, 𝑙3). 

At optimal, the possible choices of (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) are: 

𝑥1
′ + 𝑙1 = 𝑥2

′ + 𝑙2, 𝑥1
′ + 𝑙1 = 𝑙3 or 𝑥2

′ + 𝑙2 = 𝑙3. 

We choose 𝑥1
′ + 𝑙1 = 𝑥2

′ + 𝑙2 for type II, and 𝑥1
′ + 𝑙1 = 𝑙3 or 𝑥2

′ + 𝑙2 = 𝑙3 for type III. For 𝑥1
′ +

𝑙1 = 𝑥2
′ + 𝑙2, from (9), it follows that: 

(𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) = (

1−2𝑙1−𝑙3

2
,

1−2𝑙2−𝑙3

2
, 0). 

so: 

(𝑥1, 𝑥2, 𝑥3) = (
1−𝑙3

2
,

1−𝑙3

2
, 𝑙3) and (𝑦1 , 𝑦2, 𝑦3) = (

1−𝑙3

2
,

1−𝑙3

2
, 𝑙3) or (𝑙3,

1−𝑙3

2
,

1−𝑙3

2
). 

More precisely, if: 

𝑙3 ≤ 1/3, 2𝑙2 + 𝑙3 ≤ 1 and 2𝑙1 + 𝑙3 ≤ 1, 

then: 

(𝑥1, 𝑥2, 𝑥3) = (
1−𝑙3

2
,

1−𝑙3

2
, 𝑙3) and  (𝑦1 , 𝑦2, 𝑦3) = (

1−𝑙3

2
,

1−𝑙3

2
, 𝑙3)  

is the solution of MIP (8) and the objective value is:  

𝐹 =
1−𝑤3−𝑙3+3𝑙3𝑤3

2
. 

If:  

𝑙3 ≥ 1/3, 2𝑙2 + 𝑙3 ≤ 1 and 2𝑙1 + 𝑙3 ≤ 1, 

then:  
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(𝑥1, 𝑥2, 𝑥3) = (
1−𝑙3

2
,

1−𝑙3

2
, 𝑙3) and (𝑦1 , 𝑦2, 𝑦3) = (𝑙3,

1−𝑙3

2
,

1−𝑙3

2
)  

is the solution of MIP (8) and the objective value is:  

𝐹 =
1−𝑤1−𝑙3+3𝑙3𝑤1

2
. 

For other cases of (𝑥1
′ , 0, 𝑥3

′ ), (0, 𝑥2
′ , 𝑥3

′ ), the solutions and conditions are displayed in Table 2. 

For type III, we have two possible 𝑥1
′ + 𝑙1 = 𝑙3  or 𝑥2

′ + 𝑙2 = 𝑙3 . For 𝑥1
′ + 𝑙1 = 𝑙3 , from (9), it 

follows that if: 

𝑙3 ≥ 𝑙1, 𝑙3 ≥ 1/3 and 𝑙2 + 2𝑙3 ≤ 1, 

then:  

(𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) = (𝑙3 − 𝑙1, 1 − 𝑙2 − 2𝑙3, 0) , (𝑥1, 𝑥2, 𝑥3) = (𝑙3, 1 − 2𝑙3, 𝑙3) , (𝑦1, 𝑦2 , 𝑦3) = (𝑙3, 𝑙3, 1 − 2𝑙3) 

and  

𝐹 = 𝑤3 + 𝑙3 − 3𝑙3𝑤3. 

If: 

𝑙3 ≥ 𝑙1, 𝑙3 ≤ 1/3 and 𝑙2 + 2𝑙3 ≤ 1 

then: 

(𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) = (𝑙3 − 𝑙1, 1 − 𝑙2 − 2𝑙3, 0) , (𝑥1, 𝑥2, 𝑥3) = (𝑙3, 1 − 2𝑙3, 𝑙3) , (𝑦1, 𝑦2 , 𝑦3) = (1 − 2𝑙3, 𝑙3, 𝑙3) 

and  

𝐹 = 𝑤1 + 𝑙3 − 3𝑙3𝑤1. 

For different choices of type III, detailed results are presented in Table 3. 

For type IV, from (9), it follows that:  

(𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) = (1/3 − 𝑙1, 1/3 − 𝑙2, 1/3 − 𝑙3). 

So, if: 

𝑙1 ≤ 1/3, 𝑙2 ≤ 1/3 and 𝑙3 ≤ 1/3 

then the solution of MIP (8) is: 

(𝑥1, 𝑥2, 𝑥3) = (1/3,1/3,1/3) and (𝑦1, 𝑦2, 𝑦3) = (1/3,1/3,1/3) and 𝐹 = 1/3.□ 

Table 1. The values of (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ), (𝑥1, 𝑥2, 𝑥3), (𝑦1, 𝑦2, 𝑦3), 𝐹 and the conditions for type I. 

Type (𝒙𝟏
′ , 𝒙𝟐

′ , 𝒙𝟑
′ ) (𝒙𝟏, 𝒙𝟐, 𝒙𝟑) (𝒚𝟏, 𝒚𝟐, 𝒚𝟑) 𝑭 Conditions 

I1 
(1 − 𝑙1 − 𝑙2

− 𝑙3, 0,0) 
(1 − 𝑙2

− 𝑙3, 𝑙2, 𝑙3) 
(1 − 𝑙2

− 𝑙3, 𝑙2, 𝑙3) 
𝑤1 + 𝑙2(−𝑤1 + 𝑤2) + 𝑙3(−𝑤1

+ 𝑤3) 

𝑙1 + 𝑙2 + 𝑙3 ≤ 1, 

𝑙2 ≥ 𝑙3, 2𝑙2 + 𝑙3 ≤
1 

I2 
(1 − 𝑙1 − 𝑙2

− 𝑙3, 0,0) 
(1 − 𝑙2

− 𝑙3, 𝑙2, 𝑙3) 
(1 − 𝑙2

− 𝑙3, 𝑙3, 𝑙2) 
𝑤1 + 𝑙2(−𝑤1 + 𝑤3) + 𝑙3(−𝑤1

+ 𝑤2) 

𝑙1 + 𝑙2 + 𝑙3 ≤ 1, 

𝑙2 ≤ 𝑙3, 𝑙2 + 2𝑙3 ≤
1 

I3 
(0,1 − 𝑙1 − 𝑙2

− 𝑙3, 0) 
(𝑙1, 1 − 𝑙1

− 𝑙3, 𝑙3) 
(1 − 𝑙1

− 𝑙3, 𝑙1, 𝑙3) 
𝑤1 + 𝑙1(−𝑤1 + 𝑤2) + 𝑙3(−𝑤1

+ 𝑤3) 

𝑙1 + 𝑙2 + 𝑙3 ≤ 1, 

𝑙1 ≥ 𝑙3, 2𝑙1 + 𝑙3 ≤
1 

I4 
(0,1 − 𝑙1 − 𝑙2

− 𝑙3, 0) 
(𝑙1, 1 − 𝑙1

− 𝑙3, 𝑙3) 
(1 − 𝑙1

− 𝑙3, 𝑙3, 𝑙1) 
𝑤1 + 𝑙1(−𝑤1 + 𝑤3) + 𝑙3(−𝑤1

+ 𝑤2) 

𝑙1 + 𝑙2 + 𝑙3 ≤ 1, 

𝑙1 ≤ 𝑙3, 𝑙1 + 2𝑙3 ≤
1 

I5 
(0,0,1 − 𝑙1 − 𝑙2

− 𝑙3) 
(𝑙1, 𝑙2, 1 − 𝑙1

− 𝑙2) 
(1 − 𝑙1

− 𝑙2, 𝑙1, 𝑙2) 
𝑤1 + 𝑙1(−𝑤1 + 𝑤2) + 𝑙2(−𝑤1

+ 𝑤3) 

𝑙1 + 𝑙2 + 𝑙3 ≤ 1, 

𝑙1 ≥ 𝑙2, 2𝑙1 + 𝑙2 ≤
1 

I6 
(0,0,1 − 𝑙1 − 𝑙2

− 𝑙3) 
(𝑙1, 𝑙2, 1 − 𝑙1

− 𝑙2) 
(1 − 𝑙1

− 𝑙2, 𝑙2, 𝑙1) 
𝑤1 + 𝑙1(−𝑤1 + 𝑤3) + 𝑙2(−𝑤1

+ 𝑤2) 

𝑙1 + 𝑙2 + 𝑙3 ≤ 1, 

𝑙1 ≤ 𝑙2, 𝑙1 + 2𝑙2 ≤
1 
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Table 2. The values of (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ), (𝑥1, 𝑥2, 𝑥3), (𝑦1, 𝑦2, 𝑦3), 𝐹 and the conditions for type II. 

Type (𝒙𝟏
′ , 𝒙𝟐

′ , 𝒙𝟑
′ ) (𝒙𝟏, 𝒙𝟐, 𝒙𝟑) (𝒚𝟏, 𝒚𝟐, 𝒚𝟑) 𝑭 Conditions 

II1 (
1 − 2𝑙1 − 𝑙3

2
,
1 − 2𝑙2 − 𝑙3

2
, 0) (

1 − 𝑙3

2
,
1 − 𝑙3

2
, 𝑙3) (

1 − 𝑙3

2
,
1 − 𝑙3

2
, 𝑙3) 

1 − 𝑤3 − 𝑙3 + 3𝑙3𝑤3

2
 

𝑙3 ≤ 1/3, 2𝑙2 +
𝑙3 ≤ 1, 2𝑙1 + 𝑙3 ≤

1 

II2 (
1 − 2𝑙1 − 𝑙3

2
,
1 − 2𝑙2 − 𝑙3

2
, 0) (

1 − 𝑙3

2
,
1 − 𝑙3

2
, 𝑙3) (𝑙3,

1 − 𝑙3

2
,
1 − 𝑙3

2
) 

1 − 𝑤1 − 𝑙3 + 3𝑙3𝑤1

2
 

𝑙3 ≥ 1/3, 2𝑙2 +
𝑙3 ≤ 1, 2𝑙1 + 𝑙3 ≤

1 

II3 (
1 − 2𝑙1 − 𝑙2

2
, 0,

1 − 𝑙2 − 2𝑙3

2
) (

1 − 𝑙2

2
, 𝑙2,

1 − 𝑙2

2
) (

1 − 𝑙2

2
,
1 − 𝑙2

2
, 𝑙2) 

1 − 𝑤3 − 𝑙2 + 3𝑙2𝑤3

2
 

𝑙2 ≤ 1/3, 2𝑙1 +
𝑙2 ≤ 1, 𝑙2 + 2𝑙3 ≤

1 

II4 (
1 − 2𝑙1 − 𝑙2

2
, 0,

1 − 𝑙2 − 2𝑙3

2
) (

1 − 𝑙2

2
, 𝑙2,

1 − 𝑙2

2
) (𝑙2,

1 − 𝑙2

2
,
1 − 𝑙2

2
) 

1 − 𝑤1 − 𝑙2 + 3𝑙2𝑤1

2
 

𝑙2 ≥ 1/3, 2𝑙1 +
𝑙2 ≤ 1, 𝑙2 + 2𝑙3 ≤

1 

II5 (0,
1 − 𝑙1 − 2𝑙2

2
,
1 − 𝑙1 − 2𝑙3

2
) (𝑙1,

1 − 𝑙1

2
,
1 − 𝑙1

2
) (

1 − 𝑙1

2
,
1 − 𝑙1

2
, 𝑙1) 

1 − 𝑤3 − 𝑙1 + 3𝑙1𝑤3

2
 

𝑙1 ≤ 1/3, 𝑙1 +
2𝑙2 ≤ 1, 𝑙1 +

2𝑙3 ≤ 1 

II6 (0,
1 − 𝑙1 − 2𝑙2

2
,
1 − 𝑙1 − 2𝑙3

2
) (𝑙1,

1 − 𝑙1

2
,
1 − 𝑙1

2
) (𝑙1,

1 − 𝑙1

2
,
1 − 𝑙1

2
) 

1 − 𝑤1 − 𝑙1 + 3𝑙1𝑤1

2
 

𝑙1 ≥ 1/3, 𝑙1 +
2𝑙2 ≤ 1, 𝑙1 +

2𝑙3 ≤ 1 

Table 3. The values of (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ), (𝑥1, 𝑥2, 𝑥3), (𝑦1, 𝑦2, 𝑦3), 𝐹 and the conditions for type III. 

Type (𝒙𝟏
′ , 𝒙𝟐

′ , 𝒙𝟑
′ ) (𝒙𝟏, 𝒙𝟐, 𝒙𝟑) (𝒚𝟏, 𝒚𝟐, 𝒚𝟑) 𝑭 Conditions 

III1 (𝑙3 − 𝑙1, 1 − 𝑙2 − 2𝑙3, 0) (𝑙3, 1 − 2𝑙3, 𝑙3) (𝑙3, 𝑙3, 1 − 2𝑙3) 𝑤3 + 𝑙3 − 3𝑙3𝑤3 𝑙3 ≥ 𝑙1, 𝑙3 ≥ 1/3, 𝑙2 + 2𝑙3 ≤ 1  

III2 (𝑙3 − 𝑙1, 1 − 𝑙2 − 2𝑙3, 0) (𝑙3, 1 − 2𝑙3, 𝑙3)  (1 − 2𝑙3, 𝑙3, 𝑙3) 𝑤1 + 𝑙3 − 3𝑙3𝑤1 𝑙3 ≥ 𝑙1, 𝑙3 ≤ 1/3, 𝑙2 + 2𝑙3 ≤ 1  

III3 (1 − 𝑙1 − 2𝑙3, 𝑙3 − 𝑙2, 0) (1 − 2𝑙3, 𝑙3, 𝑙3) (𝑙3, 𝑙3, 1 − 2𝑙3) 𝑤3 + 𝑙3 − 3𝑙3𝑤3 𝑙3 ≥ 𝑙2, 𝑙3 ≥ 1/3, 𝑙1 + 2𝑙3 ≤ 1  

III4 (1 − 𝑙1 − 2𝑙3, 𝑙3 − 𝑙2, 0) (1 − 2𝑙3, 𝑙3, 𝑙3)  (1 − 2𝑙3, 𝑙3, 𝑙3) 𝑤1 + 𝑙3 − 3𝑙3𝑤1 𝑙3 ≥ 𝑙2, 𝑙3 ≤ 1/3, 𝑙1 + 2𝑙3 ≤ 1  

III5 (𝑙2 − 𝑙1, 0,1 − 2𝑙2 − 𝑙3) (𝑙2, 𝑙2, 1 − 2𝑙2) (𝑙2, 𝑙2, 1 − 2𝑙2) 𝑤3 + 𝑙2 − 3𝑙2𝑤3 𝑙2 ≥ 𝑙1, 𝑙2 ≥ 1/3, 2𝑙2 + 𝑙3 ≤ 1  

III6 (𝑙2 − 𝑙1, 0,1 − 2𝑙2 − 𝑙3) (𝑙2, 𝑙2, 1 − 2𝑙2) (1 − 2𝑙2, 𝑙2, 𝑙2) 𝑤1 + 𝑙2 − 3𝑙2𝑤1 𝑙2 ≥ 𝑙1, 𝑙2 ≤ 1/3, 2𝑙2 + 𝑙3 ≤ 1  

III7 (1 − 𝑙1 − 2𝑙2, 0, 𝑙2 − 𝑙3) (1 − 2𝑙2, 𝑙2, 𝑙2) (𝑙2, 𝑙2, 1 − 2𝑙2) 𝑤3 + 𝑙2 − 3𝑙2𝑤3 𝑙2 ≥ 𝑙3, 𝑙2 ≥ 1/3, 𝑙1 + 2𝑙2 ≤ 1  

III8 (1 − 𝑙1 − 2𝑙2, 0, 𝑙2 − 𝑙3) (1 − 2𝑙2, 𝑙2, 𝑙2)  (1 − 2𝑙2, 𝑙2, 𝑙2) 𝑤1 + 𝑙2 − 3𝑙2𝑤1 𝑙2 ≥ 𝑙3, 𝑙2 ≤ 1/3, 𝑙1 + 2𝑙2 ≤ 1  

III9 (0, 𝑙1 − 𝑙2, 1 − 2𝑙1 − 𝑙3) (𝑙1, 𝑙1, 1 − 2𝑙1) (𝑙1, 𝑙1, 1 − 2𝑙1) 𝑤3 + 𝑙1 − 3𝑙1𝑤3 𝑙2 ≤ 𝑙1, 𝑙1 ≥ 1/3, 2𝑙1 + 𝑙3 ≤ 1  

III10 (0, 𝑙1 − 𝑙2, 1 − 2𝑙1 − 𝑙3) (𝑙1, 𝑙1, 1 − 2𝑙1)  (1 − 2𝑙1, 𝑙1, 𝑙1) 𝑤1 + 𝑙1 − 3𝑙1𝑤1 𝑙2 ≤ 𝑙1, 𝑙1 ≤ 1/3, 2𝑙1 + 𝑙3 ≤ 1  

III11 (0,1 − 2𝑙1 − 𝑙2, 𝑙1 − 𝑙3) (𝑙1, 1 − 2𝑙1, 𝑙1) (𝑙1, 𝑙1, 1 − 2𝑙1) 𝑤3 + 𝑙1 − 3𝑙1𝑤3 𝑙3 ≤ 𝑙1, 𝑙1 ≥ 1/3, 2𝑙1 + 𝑙2 ≤ 1  

III12 (0,1 − 2𝑙1 − 𝑙2, 𝑙1 − 𝑙3) (𝑙1, 1 − 2𝑙1, 𝑙1)  (1 − 2𝑙1, 𝑙1, 𝑙1) 𝑤1 + 𝑙1 − 3𝑙1𝑤1 𝑙3 ≤ 𝑙1, 𝑙1 ≤ 1/3, 2𝑙1 + 𝑙2 ≤ 1  

For the three-dimensional constrained OWA aggregation problem with lower bounded 

variables (8), there are three forms for X’ and six forms for Y for Type I solution. For type II, there are 

three forms for X’ and six forms for Y. For type III, there are six forms for X’ and six forms for Y. Type 

IV is that the number of zero elements of solution is zero, there are only one form for X’ and one form 

for Y. 

We illustrate some concrete examples with various (𝑙1, 𝑙2, 𝑙3) and (𝑤1, 𝑤2, 𝑤3). 

Example 1. For the case of 𝑤1 > 𝑚𝑎𝑥
𝑖=2,3

 𝑤𝑖 , we perform an exhaustive search for 𝑙𝑖 ∈ {−1, −0.9, −0.8, … ,1} 

and 𝑤𝑖 ∈ {0, 0.1, 0.2, … ,1} , 𝑖 = 1,2,3 . The first type I is (𝑙1, 𝑙2, 𝑙3) = (−1, −1, −1)  and (𝑤1, 𝑤2, 𝑤3) =

(0.9,0,0.1) . The optimal solution is (𝑦1, 𝑦2, 𝑦3) = (3, −1, −1),  (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) = (4, 0, 0) , (𝑥1, 𝑥2, 𝑥3) =

(3, −1, −1) and 𝐹 = 2.6. 

Example 2. Consider the case of w2 > max
i=1,3

 wi . Applying an exhaustive search for li ∈

{−1, −0.9, −0.8, … ,1}  and wi ∈ {0, 0.1, 0.2, … , 1} , i = 1,2,3 , the value of (l1, l2, l3) = (−1, −1,1)  and 

(w1, w2, w3) = (0,0.9,0.1)  is the first one satisfies type I. The optimal solution is (y1, y2, y3) =

(1,1, −1), (x1
′ , x2

′ , x3
′ ) = (0, 2, 0), (x1, x2, x3) = (−1,1,1) and F = 0.8. For (l1, l2, l3) = (−1, −1, −1) and 

(w1, w2, w3) = (0, 0.9,0.1) , the type II solution is (y1, y2, y3) = (1,1, −1),  (x1
′ , x2

′ , x3
′ ) = (0, 2, 2) , 

(x1, x2, x3) = (−1,1,1)  and F = 0.8 . For (l1, l2, l3) = (−1, −1,0.4)  and (w1, w2, w3) = (0,0.6,0.4) , the 

type III solution is (y1, y2, y3) = (0.4,0.4,0.2), (x1
′ , x2

′ , x3
′ ) = (1.2,1.4, 0), (x1, x2, x3) = (0.2,0.4,0.4) and 
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F = 0.32 . For (l1, l2, l3) = (−1, −1, −1)  and (w1, w2, w3) = (0, 0.6,0.4) , the type IV solution is 

(y1, y2, y3) = (
1

3
,

1

3
,

1

3
), (x1

′ , x2
′ , x3

′ ) = (4/3, 4/3, 4/3), (x1, x2, x3) = (
1

3
,

1

3
,

1

3
) and F = 1/3. 

Example 3. Consider the case of 𝑤3 > 𝑚𝑎𝑥
𝑖=2,3

 𝑤𝑖 . For 𝑙𝑖 ∈ {−1, −0.9, −0.8, … ,1} and 𝑤𝑖 ∈ {0, 0.1, 0.2, … ,1}, 

𝑖 = 1, 2, 3, the value of (𝑙1, 𝑙2, 𝑙3) = (−1, −1, −1) and (𝑤1 , 𝑤2, 𝑤3) = (0.4,0,0.6) is the first one satisfies type 

I. The optimal solution is (𝑦1 , 𝑦2, 𝑦3) = (3, −1, −1), (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) = (4, 0, 0), (𝑥1, 𝑥2, 𝑥3) = (3, −1, −1) and 

𝐹 = 0.6. For (𝑙1, 𝑙2, 𝑙3) = (−1, −1,0.4) and (𝑤1, 𝑤2, 𝑤3) = (0, 0.1, 0.9), the type II solution is (𝑦1, 𝑦2, 𝑦3) =

(0.4,0.3,0.3),  (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) = (1.3, 1.3, 0) , (𝑥1, 𝑥2, 𝑥3) = (0.3,0.3,0.4)  and 𝐹 = 0.3 . For (𝑙1, 𝑙2, 𝑙3) =

(−1, −0.9, −0.8)  and (𝑤1, 𝑤2, 𝑤3) = (0.4, 0,0.6) , the type III solution is (𝑦1, 𝑦2 , 𝑦3) = (2.8, −0.9, −0.9), 

(𝑥1
′ , 𝑥2

′ , 𝑥3
′ ) = (0.1, 0,3.6) , (𝑥1, 𝑥2, 𝑥3) = (−0.9, −0.9, −2.8)  and 𝐹 = 0.58 . For (𝑙1, 𝑙2, 𝑙3) = (−1, −1, −1) 

and (𝑤1, 𝑤2, 𝑤3) = (0, 0.1,0.9), the type IV solution is (𝑦1 , 𝑦2, 𝑦3) = (
1

3
,

1

3
,

1

3
), (𝑥1

′ , 𝑥2
′ , 𝑥3

′ ) = (4/3, 4/3, 4/

3), (𝑥1, 𝑥2, 𝑥3) = (
1

3
,

1

3
,

1

3
) and 𝐹 = 1/3. 

Minimizing the objective function of the constrained OWA aggregation problem with bounded 

variables is also important. One interesting model is the constrained OWA aggregation problem with 

upper bounded variables described as follows: 

Min 𝑊𝑇𝑌 

s.t. ℐ𝑇X≤1 

GY≤0 

𝑦𝑖ℐ − 𝑋 − 𝑀𝑍𝑖 ≤ 0, 𝑖 = 1,2, … , 𝑛 − 1 

𝑦𝑛ℐ − 𝑋 ≤ 0  

ℐ𝑇𝑍𝑖 ≤ 𝑛 − 𝑖, 𝑖 = 1,2, … , 𝑛 − 1 

𝑍𝑖+1 ≤ 𝑍𝑖, 𝑖 = 1,2, … , 𝑛 − 2 

𝑍𝑖 ∈ {0,1}𝑛, 𝑖 = 1,2, … , 𝑛 − 1 

𝑋 ≤ 𝑼  

(10) 

where the column vector:  

𝑼 = [

𝑢1

𝑢2

⋮
𝑢𝑛

]. 

By using the change of variable: 

𝑋′ = 𝑈 − 𝑿 𝑦𝑖 = −𝑦𝑛+1−𝑖
′  and Y′ = [

𝑦𝑛
′

𝑦𝑛−1
′

⋮
𝑦1

′

], 

minimizing the objective function of the constrained OWA aggregation problem with upper bounded 

variables is:  

Max 𝑊𝑇𝑌′ 

s.t. ℐ𝑇 ≥ ℐ𝑇𝑼 − 1 

GY′ ≤0 

𝑦1
′ ℐ − 𝑋′ ≥ −𝑼  

𝑦𝑖
′ℐ − 𝑋′ + 𝑀𝑍𝑖 ≥ −𝑼, 𝑖 = 2,3, … , 𝑛 

ℐ𝑇𝑍𝑖 ≤ 𝑛 − 𝑖, 𝑖 = 1,2, … , 𝑛 − 1 

𝑍𝑖+1 ≤ 𝑍𝑖, 𝑖 = 1,2, … , 𝑛 − 2 

(11) 
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𝑍𝑖 ∈ {0,1}𝑛, 𝑖 = 1,2, … , 𝑛 − 1 

𝑋′ ≥ 𝟎  

If ℐ𝑇𝑼 − 1 < 0, the constrained OWA aggregation problem has unbounded solution. If ℐ𝑇𝑼 −

1 = 0, the unique optimal solution is 𝑋′∗ = 𝟎, so: 

𝑋∗ = 𝑼. 

For the case of 1 − ℐ𝑇𝑳 > 0, the similar results as Theorem 2 can be derived. 

5. Numerical Results 

To evaluate the optimal solution behaviors of the three-dimensional constrained OWA 

aggregation problem with lower bounded variables, we present some numerical experiments. 

In Table 4, we display the number of solution type I, II, III and IV for different choices of the 

weights and the lower bounds. To this end, we consider four types of solution forms I, II, III and IV 

and six types of weights: 

𝑤1 = max
𝑖=1,2,3

 𝑤𝑖 , 𝑤2 = max
𝑖=1,2,3

 𝑤𝑖 , 𝑤3 = max
𝑖=1,2,3

 𝑤𝑖 , 𝑤1 > max
𝑖=2,3

 𝑤𝑖 , 𝑤2 > max
𝑖=1,3

 𝑤𝑖 , 𝑤3 > max
𝑖=2,3

 𝑤𝑖 . 

Each cell is associated to a pair (W, S) and gives the number of different instances of 

(𝑙1, 𝑙2, 𝑙3, 𝑤1, 𝑤2, 𝑤3) satisfying weight (W) and solution (S) conditions. We restrict our attention to:  

𝑊 ∈ {𝑤1 = max
𝑖=1,2,3

 𝑤𝑖 , 𝑤2 = max
𝑖=1,2,3

 𝑤𝑖 , 𝑤3 = max
𝑖=1,2,3

 𝑤𝑖 , 𝑤1 > max
𝑖=2,3

 𝑤𝑖 , 𝑤2 > max
𝑖=1,3

 𝑤𝑖 , 𝑤3 > max
𝑖=2,3

 𝑤𝑖}, 𝑆 ∈

{I, II, III, IV }, 𝑙𝑖 ∈ {−1, −0.9, −0.8, … ,1} and 𝑤𝑖 ∈ {0,0.1,0.2, … ,1}, 𝑖 = 1, 2, 3. 

For each cell, the instances (𝑙1, 𝑙2, 𝑙3, 𝑤1, 𝑤2, 𝑤3)  of the test problem are 179,760 for 𝑤1 =

max
𝑖=1,2,3

 𝑤𝑖 , 𝑤2 = max
𝑖=1,2,3

 𝑤𝑖 , 𝑤3 = max
𝑖=1,2,3

 𝑤𝑖  and 119,840 for 𝑤1 > max
𝑖=2,3

 𝑤𝑖 , 𝑤2 > max
𝑖=1,3

 𝑤𝑖 , 𝑤3 > max
𝑖=2,3

 𝑤𝑖 . 

The total instances of the test problem are 898,800. An examination of the table reveals that the type 

IV is not optimal solution for 𝑤1 = max
𝑖=1,2,3

 𝑤𝑖 . In particular, for 𝑤1 > max
𝑖=2,3

 𝑤𝑖 , the optimal solution type 

is always type I solution. If the lower bounds (𝑙1, 𝑙2, 𝑙3) = (0,0,0), then the optimal solution is types 

II, III and IV for 𝑤2 = max
𝑖=1,2,3

 𝑤𝑖  and 𝑤2 > max
𝑖=1,3

 𝑤𝑖 , and types I and IV for 𝑤3 = max
𝑖=1,2,3

 𝑤𝑖  and 𝑤3 >

max
𝑖=2,3

 𝑤𝑖. However, from Table 4, the possible optimal solutions are all the types I, II, III and IV for 

𝑤2 = max
𝑖=1,2,3

 𝑤𝑖 , 𝑤3 = max
𝑖=1,2,3

 𝑤𝑖 , 𝑤2 > max
𝑖=1,3

 𝑤𝑖  and 𝑤3 > max
𝑖=2,3

 𝑤𝑖. Among a set of four optimal solution 

types, the largest number of instances of the test problem is the solution type II. Therefore, the optimal 

solution type is I for 𝑤1 = max
𝑖=1,2,3

 𝑤𝑖  and 𝑤1 > max
𝑖=2,3

 𝑤𝑖 , and types I, II, III and IV for 𝑤2 = max
𝑖=1,2,3

 𝑤𝑖 , 

𝑤3 = max
𝑖=1,2,3

 𝑤𝑖 , 𝑤2 > max
𝑖=1,3

 𝑤𝑖  and 𝑤3 > max
𝑖=2,3

 𝑤𝑖 . 

Table 4. The number of different instances satisfying weight (W) and solution type (S). 

W I II III IV 

𝑤1 ≥ 𝑤2, 𝑤1 ≥ 𝑤3 168,101 6826 4833 0 

𝑤2 ≥ 𝑤1, 𝑤2 ≥ 𝑤3 47,133 114,240 7411 10,976 

𝑤3 ≥ 𝑤1, 𝑤3 ≥ 𝑤2 51,302 56,618 16,960 54,880 

𝑤1 > 𝑤2, 𝑤1 > 𝑤3, 𝑤2 ≠ 𝑤3  119,840 0 0 0 

𝑤2 > 𝑤1, 𝑤2 > 𝑤3, 𝑤1 ≠ 𝑤3 28,856 80,164 5332 5488 

𝑤3 > 𝑤1, 𝑤3 > 𝑤2, 𝑤1 ≠ 𝑤2 30,720 40,656 10,048 38,416 

For the three-dimensional constrained OWA aggregation problem with lower bounded 

variables, from the numerical experiments the solution type I is the same as that of the constrained 

OWA aggregation problem without lower bounded variables for 𝑤1 > max
𝑖=2,3

 𝑤𝑖. However, for 𝑤2 >
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max
𝑖=1,3

 𝑤𝑖  and 𝑤3 > max
𝑖=2,3

 𝑤𝑖 , there are all solution types. For the constrained OWA aggregation 

problem without lower bounded variables, the solution are types II, III, IV and types I, IV, for 𝑤2 >

max
𝑖=1,3

 𝑤𝑖  and 𝑤3 > max
𝑖=2,3

 𝑤𝑖 , respectively. The four solution types may be too simple for the three-

dimensional constrained OWA aggregation problem with lower bounded variables. From this result, 

we anticipate more complication in the higher dimensions of the constrained OWA aggregation 

problem with lower bounded variables. 

6. Conclusions 

For the constrained OWA aggregation problem with one constraint on the sum of all variables, 

this paper introduces some constraints to reduce the multiple solution problem. For the three-

dimensional constrained OWA aggregation problem with the same lower bounds, by using the 

change of variables, the optimal solution is the same as that of the constrained OWA aggregation 

problem without lower bounded variables. For the three-dimensional constrained OWA aggregation 

problem with lower bounded variables, this paper presents four types (I, II, III and IV) of solutions 

depending on the number of zero elements. When the number of zero elements of solution is two 

(type I), there are three closed-form expressions of X’ and six closed-form expressions of Y. When the 

number of zero elements of the solution is one (types II and III), there are three closed-form 

expressions of X’ and six closed-form expressions of Y for type II, and six closed-form expressions of 

X’ and six closed-form expressions of Y for type III. When the number of zero elements of the solution 

is zero (type IV), there is only one closed-form expression of X’ and one closed-form expression of Y. 

According to the computerized experiment we perform for the three-dimensional constrained OWA 

aggregation problem with lower bounded variables, the optimal solution type is I for 𝑤1 = max
𝑖=1,2,3

 𝑤𝑖  

and 𝑤1 > max
𝑖=2,3

 𝑤𝑖 , and types I, II, III and IV for 𝑤2 = max
𝑖=1,2,3

 𝑤𝑖 , 𝑤3 = max
𝑖=1,2,3

 𝑤𝑖 , 𝑤2 > max
𝑖=1,3

 𝑤𝑖  and 

𝑤3 > max
𝑖=2,3

 𝑤𝑖 . 

Worthy of future research is that the analysis is extended to the lower and upper bounded 

variables for the constrained OWA aggregation problem, especially for the three-dimensional 

constrained OWA aggregation problem with upper bounded variables. Thus, the analysis of the 

constrained OWA aggregation problem with bounded variables is a subject of considerable ongoing 

research. 
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