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Abstract: Autoregressive moving average (ARMA) models are important in many fields and
applications, although they are most widely applied in time series analysis. Expanding the ARMA
models to the case of various complex data is arguably one of the more challenging problems in
time series analysis and mathematical statistics. In this study, we extended the ARMA model to the
case of linguistic data that can be modeled by some symmetric fuzzy sets, and where the relations
between the linguistic data of the time series can be considered as the ordinary stochastic correlation
rather than fuzzy logical relations. Therefore, the concepts of set-valued or interval-valued random
variables can be employed, and the notions of Aumann expectation, Fréchet variance, and covariance,
as well as standardized process, were used to construct the ARMA model. We firstly determined that
the estimators from the least square estimation of the ARMA (1,1) model under some L2 distance
between two sets are weakly consistent. Moreover, the justified linguistic data-valued ARMA model
was applied to forecast the linguistic monthly Hang Seng Index (HSI) as an empirical analysis.
The obtained results from the empirical analysis indicate that the accuracy of the prediction produced
from the proposed model is better than that produced from the classical one-order, two-order,
three-order autoregressive (AR(1), AR(2), AR(3)) models, as well as the (1,1)-order autoregressive
moving average (ARMA(1,1)) model.

Keywords: stochastic process; fuzzy sets; autoregressive model; forecasting

1. Introduction

A time series is a set of observations, each one being recorded at a specified time. Time series
analysis has been an important branch of both the stochastic process and mathematical statistics.
Various time series can be found in the fields of engineering, science, sociology, and economics.
The theory and methods of time series analysis have been extensively developed and achieved great
success in the modeling and prediction of time series [1].

There are several famous time series models, such as autoregressive (AR), autoregressive moving
average (ARMA), autoregressive integrated moving average (ARIMA), and autoregressive conditional
heteroskedasticity (ARCH), which have been proposed for the purpose of future prediction [1]. There is
extensive literature on the prediction of the future for some system using these models. For example,
Metghalchi et al. proposed testing moving average technical trading rules for the NASDAQ (National
Association of Securities Dealers Automated Quatations) composite index. They showed that moving
average rules indeed have predictive power and could discern a recurring-price pattern for profitable
trading [2]. Li et al. presented an intelligent prediction approach for degradation prognostics of
rotating machinery based on an asymmetric penalty sparse decomposition algorithm combined with
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an autoregressive moving average-recursive least square algorithm (ARMA-RLS) and wavelet neural
network [3].

Note that all of the data concerned with the models mentioned above are represented by real
numbers or vectors. However, in this big-data era, various complex data have arisen in many fields
of sciences and technologies. Among them, the interval-valued data, or more general, the set-valued
data, have received great attention in recent years, since they are, in some sense, the extension of
incomplete, missing, or censored data. Examples include the interval representing the salary range for
a person, the interval representing the range of blood pressure for a person, the range of the weather
temperature for a special day in some city, and some data represented by a complex medical image,
symmetric color picture, etc. In the system decision-making area, we also face human perception
mixed data, such as linguistic data, whose values are not numeric but are words or sentences of some
language, some of which can be represented by nearly symmetric fuzzy numbers. We refer to such
data as fuzzy data.

Accordingly, in recent years, the stochastic processes with set-valued members have received
attention in the literature. Li et al. [4] considered fuzzy set-valued Gaussian processes and Brownian
motions, in which the classical Gaussian stochastic process was extended to a case where the process
elements are allowed to take values of fuzzy sets, and a new fuzzy Brownian motion was firstly
introduced. Bongiorno [5] presented a note on the former Brownian motion, where it was pointed out
that the former fuzzy set-valued Brownian motion can be handled by an n-dimensional vector-valued
Wiener process, since the expectation of the fuzzy set-valued element is a constant. Furthermore,
Wang et al. [6] firstly proposed an interval-valued stationary time series modeling approach, in which
an interval-valued p-order autoregressive (AR(p)) model was proposed. Note that, here, they did not
considered the stochastic process or time series with linguistic data. These works raise the possibility
that some extension of time series modeling [1] to linguistic data (perception mixed data) could be
realized under the consideration of ordinary stochastic correlation between the elements of the time
series process.

We are aware that interval-valued or linguistic-valued data benefit from having a higher volume
of information compared to real number-valued data. For instance, finance and economics are far
from being free from imprecision or uncertainty. In the process of reducing some economy-related
quantities and magnitudes to numbers and mathematical concepts, we have to deal with a wealth of
vague terms (confidence, fear, instability, risk, etc.) which are meaningful for us. For example, a set
of stocks with small volatility or countries with high unemployment rates are not crisp descriptions,
since the words “small” and “high” are vague in meaning, reflecting a judgment of the observers for
the observed objects based on their own perception. Also, the investor’s expected values of the future
returns for investments are often given in a linguistic form such as “very optimum”, “around the
values of last year’s return”, “may at least cover the cost”, etc. One typical feature of the linguistic
data is that the data are characterized with fuzziness, therefore, it is often recommended to employ
the fuzzy sets to model the linguistic data. Using a fuzzy set to model linguistic data is meaningful:
the fuzzy set is not only easier to apply than words in mathematical modeling, but it also embraces
more information with respect to the empirical judgment, as well as the emotional reaction of the
human, than that of real numbers.

It has been demonstrated that the extension of time series models to the case of linguistic data
(fuzzy data) was developed along two lines—parametric methods and nonparametric methods—in
the literature.

When the parametric method is applied, the form of the original time series models is not changed;
instead of the original real number-valued data, the linguistic data and their arithmetic operations
are used. Such work can be found in Wang [7], in which the authors primarily proposed a special
conceptualized p-order autoregressive model AR(p) (where p is a positive integer and p ≥ 1) with
n-dimensional fuzzy data [8] in the way of the set-valued stochastic process, wherein the semi-linear
structure of the space of all fuzzy sets, the expectation, variance, and covariance of fuzzy random
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variables ([9]) are considered for the construction of the model. However, there was no work on
the model’s estimation. Wang [10] further noted that former autoregressive models contain some
deficiencies, so the model was complemented with an ARMA model and its primary application in
financial market forecasting was proposed. Jung et al. [11] also considered a unified approach to
asymptotic behavior for parameter estimation for an AR(1) model of a fuzzy number-valued time
series, where a brief outline on the modeling of time series with fuzzy number inputs and fuzzy
number outputs was given. An illustrative example of the AR(1) model with fuzzy numbers is that
of the Dow Jones Industrial Average (DJI) index time series [11]. A significant advantage of the
parametric methods is that the original natural relationships between the elements of the time series
are maintained and investigated during the modeling.

When the nonparametric method is applied, we not only change the form of the original time
series models, but also replace the original data with linguistic data (fuzzy data). There are a number
of studies on this topic, which is called a fuzzy time series. For instance, in [12,13], the fuzzy time
series were firstly proposed as a series with elements taking the values of linguistic or vaguely
described data, and the elements can be linked with each other using fuzzy logical relationships that
need to be given subjectively by a human. Various improvements and developments on the above
fuzzy logical relationship-based fuzzy time series were given by [14–17], and others, where more
effective forecasting models, such as two-factor high-order fuzzy time series forecasting, deterministic
vector long-term forecasting, etc., were proposed. The fuzzy logical relationship-based fuzzy time
series modeling methods are largely based on intellectual computing, such as the fuzzy relational
equations and approximate reasoning. It should be pointed out that such soft computing methods
may optimally capture the fuzzy information involved in the elements of the time series, however,
the natural stochastic relationships between the elements of the time series are completely ignored,
which may lead not only to a biased prediction for the future when we apply the fuzzy time series
models for forecasting, but also to a disdain for investigating the mathematical statistical properties of
the time series.

Our main interests are in the parametric methods for modeling the time series with linguistic
data mentioned above, where the obtained previous results are reviewed. We are aware that there are
several fundamental problems, such as parameter estimation (model estimation), asymptotic properties
of the estimators, etc., which remain to be investigated further. For instance, parameter estimation has
been carried out only for the AR(1) and ARMA(1,1) models with fuzzy data [10,11], and the asymptotic
properties (consistency properties) of the estimators have been obtained only for the AR(1) model with
fuzzy data [11]. In this study, based on previous works [7,10,11], we firstly investigated the asymptotic
properties of the estimators for a (1,1)-order autoregressive moving average model ARMA(1,1) based
on linguistic data (fuzzy data), then used the justified ARMA(1,1) model to forecast the future of the
HSI with a simulation analysis.

This article proceeds as follows. In Section 1, the related previous work and some existing
problems are discussed. Section 2 introduces the basic concepts of fuzzy sets, arithmetic operations for
fuzzy sets, correlation, and independence, as well as expectation and Fréchet variance, and covariance
under the L2 metric δ2 (proposed by Näther [9]) for fuzzy random variables. In Section 3, the asymptotic
properties for a special ARMA model for fuzzy data-valued time series with standardized terms is
described, and some extension of the classical results on causality for the ARMA models is presented.
In Section 4, an empirical analysis of the proposed models in the linguistic monthly HSI time series
modeling and prediction is detailed. In Section 5, we present a conclusion for this article.

2. Preliminaries

2.1. Fuzzy Set on Rn

The development of the concept of fuzzy sets was motivated by the need to efficiently process
ambiguous information, human natural language, as well as human decision problems. A fuzzy set
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ũ of Rn is equivalent to its membership function ũ : Rn → [0, 1], where the number ũ(x) represents
the degree of membership at which x belongs to ũ. By F(Rn), we denote the collection of all normal,
convex, and compact fuzzy sets on Rn, i.e., for ũ ∈ F(Rn),

(1) There exists x0 ∈ Rn such that ũ(x0) = 1;
(2) The α-cut of ũ, ũα := {x ∈ Rn : ũ(x) ≥ α}, α ∈ (0, 1], is a convex and compact set of Rn;
(3) ũ0 := cl{x ∈ Rn : ũ(x) > 0}, the support of ũ, is compact.

If n = 1, then the fuzzy set of R is said to be a fuzzy number.
Zadeh’s extension principle [18,19] allows us to apply addition and scalar multiplication on F(Rn):

(ũ + ṽ)(x) = sup
s+t=x

min(ũ(s), ṽ(t)), x ∈ Rn. (1)

(aũ)(x) =

{
ũ( x

a ), a 6= 0
0, a = 0

a ∈ R, (2)

and for any a, b ∈ R, the following holds:

(ab)ũ = a(bũ), a(ũ + ṽ) = (aũ) + (aṽ). (3)

However, it holds only for ab ≥ 0, a, b ∈ R

(a + b)ũ = (aũ) + (bũ). (4)

It indicates that (F(Rn),+, ·) is not a linear space. With Minkowski’s set operation, it holds that

(ũ + ṽ)α = ũα + ṽα, α ∈ (0, 1]. (5)

(aũ)α = aũα, α ∈ (0, 1]. (6)

A support function of ũ ∈ F(Rn) is defined as

Sũα(x) =

{
supt∈ũα

{x · t}, α ∈ (0, 1],
0, α = 0.

x ∈ Sn−1 = {x :‖ x ‖= 1}, (7)

where · denotes the inner product in the Euclidean space Rn. It holds that for ũ, ṽ ∈ F(Rn) and a ∈ R,

S(ũ+ṽ)α
= Sũα + Sṽα . (8)

S(aũ)α
(x) = aSũα(x), a > 0; S(aũ)α

(x) = −aSũα(−x), a < 0. (9)

It holds that

S((aũ)+(bṽ))α
(x) =

{
(aSũα + bSṽα)(x), a, b > 0
−(aSũα + bSṽα)(−x), a, b < 0.

(10)

where α ∈ [0, 1]. Thus, the semi-linear map S : F(Rn) → L2(Sn−1 × [0, 1]), ũ 7→ Sũα(x) makes us
view the fuzzy set ũ as a support function equivalently, i.e., the map S embeds F(Rn) into a cone of
functional Hilbert space [20].

Remark 1. For modeling the fuzzy set-valued time series, the distance between two fuzzy sets needs to be
clarified. It is well known that the distance between two real numbers or vectors is an important notion that
measures the differences of the two numbers or vectors. Because the fuzzy set is a set, the distance between two
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fuzzy sets can be a distance between two sets [18]. There are many definitions of distances proposed for fuzzy
sets, such as dH , dp, d∞, ρp, ρ, etc., defined on F(Rn) [9,11,18], i.e.,

dH(A, B) = max{sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖}, (11)

where A, B are nonempty subsets of Rn,

‖a− b‖ =
√

n

∑
i=1

(ai − bi)2, (a1, . . . , an), (b1, . . . , bn) ∈ Rn. (12)

For ũ, ṽ ∈ F(Rn),

dp(ũ, ṽ) =

( ∫ 1

0
(dH(ũα, ṽα))

pdα

)1/p

, 1 ≤ p < ∞. (13)

d∞(ũ, ṽ) = sup
α∈(0,1]

{dH(ũα, ṽα)}, (14)

ρp(ũ, ṽ) = [
∫ 1

0
(
∫
Sn−1
|Sũα(x)− Sṽα(x)|pµ(dx))dα]1/p, 1 ≤ p < ∞. (15)

ρ2(ũ, ṽ) =
∫

Z
(Sũα(x)− Sṽα(x))(Sũβ

(y)− Sṽβ
(y))dK(x, α, y, β), (16)

where Z = Sn−1 × [0, 1]× Sn−1 × [0, 1] and K is a symmetric positive definite kernel.
Some of sets are much too complicated in regard to the computation of distances [18]. In a practical

application, for example, in system decision making, the human’s linguistic judgment or perception of the
concerned items can be represented by a fuzzy number, and the distances for such fuzzy numbers should be
chosen while considering the ease of computation. In the modeling of time series with fuzzy data, using different
metrics, we may obtain different results from the models applied to the problems of interest.

In this work, we used a special distance between ũ, ṽ ∈ F(Rn), defined by the L2 metric δ2, which is a
standard distance with ease of computation, and is widespread in applications using fuzzy data modeling.

δ2(ũ, ṽ) :=
(

n
∫ 1

0

∫
Sn−1
|Sũα(x)− Sṽα(x)|2µ(dx)dα

)1/2
, (17)

and let

〈ũ, ṽ〉 := n
∫ 1

0

∫
Sn−1

Sũα(x)Sṽα(x)µ(dx)dα. (18)

where µ is a normalized Lebesgue measure.
(F(Rn, δ2) is a complete and separable metric space [9,18].

The Hukuhara difference −h between two fuzzy sets [21] is defined as follows. Let ũ, ṽ ∈ F(Rn).
If there exists a s̃ ∈ F(Rn) with ũ = ṽ + s̃, then s̃ is said to be the Hukuhara difference between ũ, ṽ,
and it is denoted by s̃ := ũ−h ṽ. The Hukuhara difference possesses good properties for the operation
of the difference between sets. For ũ, ṽ ∈ F(Rn), it holds that

(1) ũ−h ũ = {0};
(2) (ũ + ṽ)−h ṽ = ũ;
(3) ũ = ṽ if and only if ũ−h ṽ = ṽ−h ũ = {0};
(4) Sũα−h ṽα = Sũα − Sṽα .

For more properties of the Hukuhara difference, the readers are refereed to Stifanini [22].
Note that ũ− ṽ for ũ, ṽ ∈ F(Rn) is a fuzzy arithmetic and is based on Zadeh’s extension principle,

which is different from the Hukuhara difference.
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2.2. Fuzzy Random Variables (FRVs)

The concept of FRVs was inspired by the attempt to model the randomness and fuzziness that
exist in real-life phenomena simultaneously. Typically, there are two kinds of FRVs: the FRVs of
Kwakernaak—Kruse and Meyer [23,24] and of Puri-Ralescu [8]. The former is devoted to modeling
the human vague perception of a random variable (the original) [24], and the latter is for modeling
the completely fuzzy random phenomena of real life [9,23]. Both FRVs are mathematically equivalent
to each other when they are valued in F(R), and there are no appropriate distributional models for
FRVs [9,23].

Remark 2. Ref. [8] Let (Ω,A, P) be a complete probability space. The mapping X̃ : Ω → F(Rn) is said
to be a fuzzy random variable (FRV) if X̃ is A − B measurable, i.e., for any measurable subset B ⊂ Rn,
{ω|X̃α(ω) ∩ B 6= ∅} ∈ A, where B is a σ-algebra on Rn induced by X̃ associated with the concerned metric,
and X̃α(ω) := {x ∈ Rn|X̃(ω) ≥ α} = [X̃(ω)]α, α ∈ [0, 1], ω ∈ Ω.

In the following, we assume that the FRV X̃ is second order under the metric δ2, i.e.,

E(‖X̃‖2) := E(δ2
2(X̃, {0})) < +∞. (19)

This condition can ensure the existence of second moments for FRVs [9].

Remark 3. ([8] Aumann expectation) The expectation EX̃ of an FRV X̃ is a normal compact fuzzy set of Rn

with the property that (EX̃)α = EX̃α, α ∈ [0, 1], where EX̃α is the Aumann expectation of the random set X̃α,
i.e.,

EX̃α = {Eη|η(ω) ∈ X̃α(ω), a.e., η ∈ L(Ω,R)}, (20)

where L(Ω,R) is the set of all real random variables with the existing expectation defined on Ω, a.e. means
almost everywhere.

Let X̃ be an FRV, then SX̃α
is a random element and E(SX̃α

) = SE(X̃α)
[9,21] if the Aumann

expectation E(X̃α) exists, α ∈ [0, 1] ([8,23]).
The concepts of variance and covariance take an important role in stochastic analysis and

statistical modeling, and they have been extended to FRVs in several different ways. Based on
the extension principle, Kruse and Meyer [24] proposed a kind of fuzzy variance and covariance
for FRVs, which seems to be weak from the aspect of keeping the original essence of the variance and
covariance. In recent years, it was advocated to propose definitions in which the essence of variance
and covariance is kept for FRVs, which means that the variance of an FRV is an accurate measurement
of the spread or dispersion of the FRV with its mean, and the covariance or the correlation coefficient
of two FRVs must measure their linear interdependence, so they should have no fuzziness [9,25].

Remark 4. The Fréchet variance of FRV X̃ w.r.t the distance δ2 is defined by

Var(X̃) := E(δ2
2(X̃, E(X̃))) = n

∫ 1

0

∫
Sn−1

Var(SX̃α
(x))µ(dx)dα. (21)

Remark 5. The Fréchet covariance of two FRVs X̃, Ỹ w.r.t. the distance δ2 is defined by

Cov(X̃, Ỹ) := n
∫ 1

0

∫
Sn−1

Cov(SX̃α
(x), SỸα

(x))µ(dx)dα. (22)

Then, the usual classical form

Cov(X̃, Ỹ) = E〈X̃, Ỹ〉 − 〈EX̃, EỸ〉, (23)
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Var(X̃) = E〈X̃, X̃〉 − 〈EX̃, EX̃〉, (24)

hold. In the case of n = 1, since the normalized Lebesgue measure µ(S0) = 1, and S0 = {−1, 1} is
symmetric, then µ(−1) = µ(1) = 1

2 , and we have

Var(X̃) =
1
2

∫ 1

0
(Var(inf X̃α) + Var(sup X̃α))dα. (25)

Cov(X̃, Ỹ) =
1
2

∫ 1

0
(Cov(inf X̃α, inf Ỹα) + Cov(sup X̃α, sup Ỹα))dα. (26)

This just coincides with the definitions of variance and covariance for a one-dimensional FRV,
proposed by Feng et al. [26], which indicates that Feng’s definitions are a special case of Remark 4 and
Remark 5 above.

Lemma 1. ([25]) Let X̃ and Ỹ be two FRVs with second order under the metric δ2, then

(1) Var(ũ) = 0;
(2) Var(aX̃ + bỸ) = a2Var(X̃) + b2Var(Ỹ) + 2abCov(X̃, Ỹ), ab ≥ 0, a, b ∈ R;
(3) Var(aξ) = ‖a‖2Varξ, a ∈ Rn, r.v.ξ ≥ 0;
(4) Cov((aX̃) + (bỸ), cZ̃) = acCov(X̃, Z̃) + bcCov(Ỹ, Z̃), ac ≥ 0, bc ≥ 0, a, b, c ∈ R;
(5) Cov((aX̃) + ũ, bỸ + ṽ) = abCov(X̃, Ỹ), ab ≥ 0, a, b ∈ R, ũ, ṽ ∈ F(Rn).

Definition 1. The fraction

R(X̃, Ỹ) = Cov(X̃, Ỹ)/
√

Var(X̃)Var(Ỹ), (27)

a normalized Fréchet covariance, is said to be the Fréchet correlation coefficient of two FRVs. X̃, Ỹ,
where Var(X̃) > 0, Var(Ỹ) > 0.

The independence of FRVs can follow from the independence of the random elements, which is
already defined by [9].

Lemma 2. ([25]) Let X̃ and Ỹ be two FRVs with second order under the metric δ2, then

(1) if X̃ and Ỹ are independent, then Cov(X̃, Ỹ) = 0;
(2) |R(X̃, Ỹ)| ≤ 1;
(3) R(X̃, Ỹ) = 1 if and only if Ỹ + (λEX̃) = EỸ + (λX̃), a.e., R(X̃, Ỹ) = −1 if and only if Ỹ + (λX̃) =

EỸ + (λEX̃), a.e., where λ =
√

VarỸ/VarX̃, Var(X̃) > 0, Var(Ỹ) > 0.

FRVs X̃ and Ỹ are said to be uncorrelated if R(X̃, Ỹ) = 0. If 0 < |R(X̃, Ỹ)| < 1, then there may
exist some weak linear dependent relations between X̃ and Ỹ.

Now we consider convergence properties of a sequence of FRVs with second order under the
metric δ2. Note that Feng [26] has already considered some convergence problems under the metric dp

for a sequence of one-dimensional FRVs, and under the metric d∞ for a sequence of n-dimensional FRVs.
Let {X̃n} be a sequence of FRVs with second order, and it is thus X̃ under the metric δ2, δ2(X̃n, X̃)

is a random variable. Define D2(X̃n, X̃) := [E(δ2
2(X̃n, X̃))]1/2. If D2(X̃n, X̃) → 0(n → ∞), then

it is said that the sequence {X̃n} of FRVs converges to FRV X̃ in mean square under metric δ2.
If δ2

2(X̃n, X̃))→ 0(n→ ∞) in probability, then it is said that the sequence {X̃n} of FRVs converges to
FRV X̃ in probability as n→ ∞. Referring to [26], we the have following theorem.

Theorem 1. Let {X̃n} be a sequence of FRVs with second order, and it is thus X̃ under the metric δ2, then the
following conditions are equivalent:

(1) D2(X̃n, X̃)→ 0(n→ ∞);
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(2) {X̃n} is a Cauchy sequence, i.e., limm,l→∞ D2(X̃m, X̃l) = 0;
(3) The series {‖X̃n‖2, n ≥ 1} of random variables is uniformly integrable and δ2(X̃n, X̃))→ 0(n→ ∞) in

probability.

Proof. (1)⇒ (2): Since D2(X̃n, X̃) → 0(n → ∞), D2(X̃m, X̃) → 0(m → ∞), then from the triangle
inequality of D2, we have

D2(X̃n, X̃m) ≤ D2(X̃n, X̃) + D2(X̃, X̃m)→ 0(n, m→ ∞). (28)

(2)⇒ (3): Since D2(X̃n, X̃m)→ 0(m, n→ ∞), which is equivalent to D2
2(X̃n, X̃m)→ 0(m, n→ ∞).

Using Markov inequality, we have

P(δ2
2(X̃n, X̃m) ≥ ε) ≤

D2
2(X̃n, X̃m)

ε
→ 0(m, n→ ∞), (29)

for any ε > 0, which means δ2
2(X̃n, X̃m)→P 0, as n, m→ ∞, i.e., {X̃n} is a Cauchy sequence of FRVs

under the metric δ2 in probability. From the completeness of the space (F(Rn), δ2), the sequence {X̃n}
has a limit valued in F(Rn) under the metric δ2 in probability, thus the limit is an FRV, we denote it by
X̃, and we have δ2(X̃n, X̃)→P 0 as n→ ∞. Since each X̃n is of second order, it is obvious that ‖X̃n‖2 is
uniformly integrable.

(3)⇒ (1): Since δ2(X̃n, X̃)→P 0 as n→ ∞, and we have

P(|δ2(X̃n, {0})− δ2({0}, X̃)| ≤ δ2(X̃n, X̃) < ε)→ 1(n→ ∞), (30)

i.e., ‖X̃n‖ →P ‖X̃‖ as n→ ∞. By Fatou’s lemma,

E‖X̃‖2 ≤ lim
n→∞

inf E‖X̃n‖2 ≤ sup
n

E‖X̃n‖2 < ∞. (31)

The uniform integrability of {‖X̃n‖2}(n ≥ 1), and the inequality δ2
2(X̃n, X̃) ≤ 2(‖X̃n‖2 + ‖X̃‖2)

imply that {δ2
2(X̃n, X̃)}(n ≥ 1) is uniformly integrable. Using the dominated convergence theorem,

we have
lim

n→∞
D2

2(X̃n, X̃) = lim
n→∞

E(δ2
2(X̃n, X̃)) = 0. (32)

Theorem 2. Let {X̃n} be a sequence of FRVs with second order under the metric δ2 and supn E‖X̃n‖2 < ∞,
{bj} is a non-negative number series satisfying ∑∞

j=0 b2
j < ∞, then the infinite semi-linear sum of FRVs

∑∞
j=0 bjX̃j converges in probability under the metric δ2.
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Proof. (1) We prove that ∑∞
j=0 bjX̃j is integrable bounded.

E‖
∞

∑
j=0

bjX̃j‖ = lim
r→∞

E‖
r

∑
j=0

bjX̃j‖

= lim
r→∞

E
[
δ2

2(
r

∑
j=0

bjX̃j, {0})
]

= lim
r→∞

E
[
n
∫ 1

0

∫
Sn−1

(S(∑r
j=0(bjX̃j))α

(x)− S{0}(x))2µ(dx)dα
]

= lim
r→∞

E
[
n
∫ 1

0

∫
Sn−1

(b0SX̃0α
+ b1SX̃1α

+ · · ·+ brSX̃rα
)2µ(dx)dα

]
= lim

r→∞

r

∑
j=0

b2
j E‖X̃j‖+ lim

r→∞

r

∑
i,l=0,i 6=l

biblE〈X̃i, X̃l〉

≤ ( lim
r→∞

r

∑
j=0

b2
j ) sup

j
E‖X̃j‖2 + lim

r→∞
(

r

∑
i,l=0,i 6=l

b2
i + b2

l
2

) sup
j

E‖X̃j‖2 < ∞.

(2) We prove that {Wn = ∑n
j=0 bjX̃j} is a Cauchy sequence under the metric D2.

lim
r,l→∞

D2
2(Wr, Wl) = lim

r,l→∞
E(δ2

2(Wr, Wl))

= lim
r,l→∞

E
[
n
∫ 1

0

∫
Sn−1

(S(∑r
j=0 bjX̃j)α

(x)− S(∑l
j=0 bjX̃j)α

(x))2µ(dx)dα
]

= lim
r,l→∞

E
[
n
∫ 1

0

∫
Sn−1

(
r

∑
j=l+1

bjSX̃rα
)2µ(dx)dα

]
≤ lim

r,l→∞
[

r

∑
j=l+1

b2
j +

r

∑
i,s=l+1,i 6=s

b2
i + b2

s
2

] sup
j

E‖X̃j‖2

= 0 sup
j

E‖X̃j‖2 = 0,

since limj→∞ b2
j = 0. From Theorem 1, we determine that {Wn} converges to some FRV W in probability

under the metric δ2, i.e., ∑∞
j=0 bjX̃j converges in probability under the metric δ2.

Remark 6. In this paper, the expectation, variance, and covariance, as well as the correlation values of FRVs
and the convergence of a sequence of FRVs, are defined under the metric δ2 only. This is obviously a special
case from a general FRV point of view. Thus, our concerned autoregressive models for fuzzy data-valued time
series are special ones. For obtaining more general models, we may further consider a bit more general metric
on F(Rn).

3. A Fuzzy Set Valued ARMA Model Based on a Standardized Process

Based on the concepts of the Fréchet covariance and Fréchet linear correlation for the FRVs defined
in the former section, we consider some autoregressive models for fuzzy data-valued time series. In a
real-world situation, one may perceive such a process as a sequence of investment approximate returns
by time. Even the observers timely evaluations on some stock prices may also form such a time series.
Note that an example of autoregressive sequence of one-dimensional FRVs and the related correlation
function had already been proposed by Feng et al. [26].

Definition 2. Let {X̃t}(t ∈ Z) be a process of FRVs valued in F(Rn) with second order under the metric δ2. If t
denotes the time points, then {X̃t} is said to be a fuzzy data valued time series. The Fréchet covariance function
C(l, s) of the process {X̃t}(t ∈ Z) is defined by C(l, s) = Cov(X̃l , X̃s), l, s ∈ Z. The process {X̃t}(t ∈ Z)
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is said to be wide-sense (weakly) stationary if it holds that C(l, s) = Cov(X̃t+l , X̃t+s), E(X̃t), t, l, s ∈ Z,
are independent of t, where Z is the set of all integers.

Note that for a wide-sense stationary fuzzy data-valued time series, the Fréchet covariance
function can be simply denoted by C(h) := C(h, 0), since C(l, s) = C(l − s, 0).

Example 1. For a process {ξ̃t, t ∈ Z} of Gaussian FRVs ([27]): ξ̃t = E(ξ̃t) + ξt, where random vector
ξt ∼ Nn(0, Σ), an n-dimensional Gaussian distribution with zero mean vector, the Fréchet covariance function
can be carried out as

C(t, s) = Cov(ξt, ξs) = n
∫
Sn−1

(
n

∑
i=1

n

∑
j=1

xixjcov(ξti , ξsj))µ(dx), (33)

where x = (x1, · · · , xn) ∈ Sn−1, ξt = (ξt1 , · · · , ξtn), ξs = (ξs1 , · · · , ξsn) are real-valued n-dimensional
random vectors with multivariate Gaussian distribution Nn(0, Σ), and cov(ξti , ξsj) is the classical covariance of
random variables ξti , ξsj .

It is obvious that a process {ξ̃t, t ∈ Z} of Gaussian FRVs is mutually uncorrelated in the sense
of the Fréchet correlation if and only if the process {ξt} of the Gaussian random vectors is mutually
uncorrelated in the sense of the Fréchet correlation. Note that the Fréchet correlation between two
random vectors is different from the conventional concept of correlation of two random vectors in
multivariate statistics; the former depends on the Fréchet covariance, whereas the latter depends on the
ordinary covariance matrix. Also, in this example, we can determine that the wide-sense stationarity
of the process of Gaussian FRVs is equivalent to the wide-sense stationarity of the process of Gaussian
random vectors.

In the following, we consider a special error term process, which may help us to propose an
applicable ARMA model with fuzzy data in the area of financial data analysis.

Definition 3. ([10]) Let {w̃t}(t ∈ Z) be a process of fuzzy random sets valued in F(Rn) with second order
under the metric δ2. {w̃t}(t ∈ Z) is said to be a standardized process of FRVs if it holds that

Cov(w̃t+h, w̃t) =

{
1, h = 0,
0, h 6= 0,

(34)

where t, h ∈ Z. Obviously, a standardized process {w̃t}(t ∈ Z) of FRVs is wide-sense stationary.

Sometimes, a standardized process of fuzzy random sets {w̃t}(t ∈ Z) can be viewed in the sense
of a white noise process, i.e., a fuzzy observation on a conventional white noise process, which means
that if εt is a term of a white noise process {εt}, t ∈ Z, then w̃t can be viewed as some fuzzy observation
on εt satisfying the membership value w̃t(εt) = 1. Note that, in general, w̃t is not unique, as it depends
on the observers’ opinions, and different observers may set different membership functions w̃t.

In the one-dimensional case, we present a standardized process of FRVs based on a real-valued
white noise process. However, it is difficult to give a standardized process of FRVs in an n-dimensional
case (n ≥ 2).

Example 2. Let {εt} be a white noise process, i.e., E(εt) = 0, Var(εt) = 1, cov(εi, ε j) = 0, i 6= j, t, i, j ∈ Z.
We define a process {w̃t} of FRVs as follows,

w̃t(x) =

{
x− εt + 1, εt − 1 ≤ x ≤ εt,
−x + εt + 1, εt ≤ x ≤ εt + 1.

(35)

It is easy to know that {w̃t} is a standardized process of FRVs.
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In the following, we always assume that the standardized process of FRVs can be used for
modeling the error term process of a time series model with fuzzy data.

Definition 4. ([10]) A process of FRVs {X̃t} with second order under the metric δ2 is said to be a fuzzy
set-valued p-order autoregressive (briefly, AR(p) with fuzzy data) process if {X̃t} is wide-sense stationary and,
for any t ∈ Z, it holds that

X̃t = θ1X̃t−1 + θ2X̃t−2 + . . . + θpX̃t−p + w̃t, (36)

where θi is a real number-valued parameter, {w̃t} is a standardized process of FRVs, and p is a natural number.

Definition 5. ([10]) A process of FRVs {X̃t} with second order under the metric δ2 is said to be a fuzzy
set-valued (p, q)-order autoregressive moving average (briefly, ARMA(p, q) with fuzzy data) process if {X̃t} is
wide-sense stationary and, for any t ∈ Z, it holds that

X̃t = θ1X̃t−1 + θ2X̃t−2 + . . . + θpX̃t−p + φqw̃t−q + · · ·+ φ1w̃t−1 + w̃t, (37)

where θi, φi are real number-valued parameters, {w̃t} is a standardized process of FRVs, and p, q are
natural numbers.

An ARMA(p, q) process {X̃t} of FRVs is said to be a causal ARMA(p, q) process under the
metric δ2 if it has a wide-sense stationary solution almost everywhere, i.e., there exists a positive
(or negative) number series {bj} such that ∑∞

j=0 bjw̃t−j converges in probability under the metric δ2

and X̃t=∑∞
j=0 bjw̃t−j, a.e., where {w̃t} is a standardized process of FRVs.

Example 3. Let {Ỹt} be a wide-sense stationary process of fuzzy random sets with second order, set X̃t =

Ỹt − E(Ỹt), then, by (5) of Lemma 1, we have Cov(X̃t+h, X̃t) = Cov(Ỹt+h, Ỹt), thus, {X̃t} is wide-sense
stationary and with fuzzy zero expectations {0̃}, where 0̃ is independent of t and not unique.

Lemma 3. ([10]) Let {X̃t}(t ∈ Z) be an AR(1) with fuzzy data: X̃t=θX̃t−1 + w̃t, where {w̃t} is a standardized
process of FRVs. Then, {X̃t} possesses a wide-sense stationary solution X̃t=∑∞

j=0 θ jw̃t−j almost everywhere if
0 < θ < 1, and supt ‖w̃t‖2 < ∞.

For the estimation of an AR(1) with fuzzy data based on sample x̃1, x̃2, · · · , x̃m from the process
{X̃t} of FRVs with second order, we can determine that

(1) If the AR(1) model is causal, then an estimator of the parameter θ can be θ̂ = Ĉ(1)
Ĉ(0)

, where

Ĉ(1) :=
1
m

m−1

∑
t=1

n
∫ 1

0

∫
Sn−1

(S(x̃t+1)α
(x)− Sx̃α

(x))(S(x̃t)α
(x)− Sx̃α

(x))µ(dx)dα, (38)

Ĉ(0) :=
1
m

m

∑
t=1

n
∫ 1

0

∫
Sn−1

(S(x̃t)α
(x)− Sx̃α

(x))2µ(dx)dα, (39)

are the sample-based estimators of the Fréchet covariance C(1), C(0), respectively,
and x̃= 1

m ∑m
t=1 x̃t.

(2) If the AR(1) with fuzzy data is not causal, then we may employ the least square method proposed
by [20] to estimate the parameter θ.

Now, we consider applying the least square estimation method proposed by [20] under the
concerned metric δ2 to estimate an ARMA(1,1) model X̃t = θ1X̃t−1 + φ1w̃t−1 + w̃t, (t ∈ Z). Assume that
we have the observations x̃i, i = 0, · · · , d, on the process, and we generate some terms w̃i, i = 0, · · · , d
of a standardized process, where it is assumed that x̃0 = w̃0 = 0.
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The estimation of the model can be carried out by minimizing the function

L(θ1, φ1) =
d

∑
i=1

δ2
2(x̃i, θ1 x̃i−1 + φ1w̃i−1), (40)

on the set
A := {θ1, φ1|x̃i −h (θ1 x̃i−1 + φ1w̃i−1) exists for i = 1, · · · , d}. (41)

We obtain the least square estimates of the parameters θ1 > 0, φ1 > 0 as follows,

θ̂1 = ∑d
i=1〈x̃i ,x̃i−1〉

∑d
i=1〈x̃i−1,x̃i−1〉

−

[
∑d

i=1〈x̃i ,x̃i−1〉−∑d
i=1〈x̃i−1,x̃i−1〉

][
∑d

i=1〈x̃i−1,w̃i−1〉
]2

(
∑d

i=1〈x̃i−1,x̃i−1〉
)[(

∑d
i=1〈x̃i−1,w̃i−1〉

)2
−
(

∑d
i=1〈w̃i−1,w̃i−1〉

)(
∑d

i=1〈x̃i−1,x̃i−1〉
)] ,

(42)

φ̂1 =

(
∑d

i=1〈x̃i ,x̃i−1〉
)(

∑d
i=1〈x̃i−1,w̃i−1〉

)
−
(

∑d
i=1〈x̃i−1,x̃i−1〉

)(
∑d

i=1〈x̃i ,w̃i−1〉
)(

∑d
i=1〈x̃i−1,w̃i−1〉

)2
−
(

∑d
i=1〈w̃i−1,w̃i−1〉

)(
∑d

i=1〈x̃i−1,x̃i−1〉
) , (43)

and θ̂1 > 0, φ̂1 > 0, otherwise, the estimators θ̂1, φ̂1 are not a suitable solution.
If the parameters θ1 < 0, φ1 < 0, then their least square estimators can be carried out by replacing

x̃i−1, w̃i−1 with −x̃i−1,−w̃i−1, respectively, in the above formula of θ̂1, φ̂1.
The asymptotic properties of the least square estimators for ARMA(1, 1) with fuzzy data can be

given as follows.

Theorem 3. Let {X̃t} be an ARMA(1,1) process with fuzzy data X̃t = θ1X̃t−1 + φ1w̃t−1 + w̃t, (θ1 >

0, φ1 > 0) and the least square estimators θ̂1, φ̂1 shown in (42),(43) exist on A := {θ1, φ1|x̃i −h (θ1 x̃i−1 +

φ1w̃i−1) exists for i = 1, · · · , d} under the selected distance δ2 based on a sample {x̃i, i = 0, · · · , d}.
If E(w̃i) ≈ 0, i = 0, · · · , d, and 〈w̃i, w̃j〉 and 〈w̃s, w̃l〉 are uncorrelated for (i, j) 6= (s, l), i, j, s, l ∈
{1, 2, . . . , d}, and Var(〈w̃i, w̃j〉) = 0, 0 < θ1 < 1, φ1 > 0, then the least square estimators θ̂1, φ̂1 are weakly
consistent. In a special case of φ1 = 1, θ̂1, φ̂1 are consistent.

Proof. From (42), the definition of 〈·, ·〉, and the equality x̃t = θ1 x̃t−1 + φ1w̃t−1 + w̃t, we have

θ̂1 − θ1 =
(1−θ1)(∑d

i=1〈x̃i−1,w̃i−1〉)2−
(

∑d
i=1〈w̃i−1,w̃i−1〉

)
(φ1 ∑d

i=1〈x̃i−1,w̃i−1〉+∑d
i=1〈x̃i−1,w̃i〉)(

∑d
i=1〈x̃i−1,w̃i−1〉

)2
−
(

∑d
i=1〈w̃i−1,w̃i−1〉

)(
∑d

i=1〈x̃i−1,x̃i−1〉
) . (44)

Replacing x̃t−1 with x̃t−1 = θ1 x̃t−2 + φ1w̃t−2 + w̃t−1, then x̃t = θ2
1 x̃t−2 + θ1φ1w̃t−2 + (θ1 +

φ1)w̃t−1 + w̃t. Iterating the above equality, it holds that:

x̃t = θt
1 x̃0 + θt−1

1 φ1w̃0 + (θt−1
1 + θt−2

1 φ1)w̃1 + (θt−2
1 + θt−3

1 φ1)w̃2

+(θt−3
1 + θt−4

1 φ1)w̃3 + . . . + (θt−k
1 + θt−k−1

1 φ1)w̃k + . . . + (θ1 + φ1)w̃t−1 + w̃t.
(45)

By the assumption and Definition 3 and (34), we have E〈w̃i, w̃j〉 = 〈Ew̃i, Ew̃j〉 = 0, (i 6= j),
E〈w̃i, w̃i〉 = 1, and

E〈w̃i, x̃j〉 =


0, i > j,
1, i = j,

θ
j−i
1 + θ

j−i−1
1 φ1, i < j.

(46)

E〈x̃i, x̃i〉 = 1 + (θ1 + φ1)
2 + (θ2

1 + θ1φ1)
2 + (θ3

1 + θ2
1φ1)

2 + . . . + (θi−1
1 + θi−2

1 φ1)
2

=
1−θ2i

1 +2φ1θ1(1−θ
2(i−1)
1 )+φ2

1(1−θ
2(i−1)
1 )

1−θ2
1

.
(47)
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Also, we have

E
(
〈w̃i, w̃j〉〈w̃s, w̃l〉

)
=

{
1, i = j and s = l,
0, otherwise.

(48)

E
(
〈w̃i, w̃j〉2

)
=

{
1, i = j,
0, i 6= j.

(49)

Set the numerator and the denominator of (44) as follows,

S1 := (1− θ1)(
d

∑
i=1
〈x̃i−1, w̃i−1〉)2 −

( d

∑
i=1
〈w̃i−1, w̃i−1〉

)
(φ1

d

∑
i=1
〈x̃i−1, w̃i−1〉+

d

∑
i=1
〈x̃i−1, w̃i〉). (50)

D1 :=
( d

∑
i=1
〈x̃i−1, w̃i−1〉

)2 −
( d

∑
i=1
〈w̃i−1, w̃i−1〉

)( d

∑
i=1
〈x̃i−1, x̃i−1〉

)
. (51)

From (45), we have E
(
〈x̃i, w̃i〉2

)
= E

(
〈w̃i, w̃i〉2

)
= 1, and E(∑d

i=1〈x̃i−1, w̃i−1〉)2 = (d− 1)2,

E
( d

∑
i=1
〈w̃i−1, w̃i−1〉

)
(φ1

d

∑
i=1
〈x̃i−1, w̃i−1〉+

d

∑
i=1
〈x̃i−1, w̃i〉) = φ1(d− 1)2. (52)

Thus, we have E(S1) = (1− φ1)(d− 1)2. It can also be determined that E(S2
1) is bounded, since

E(〈x̃i, w̃j〉2) ≤ E(‖x̃i‖2‖w̃j‖2), E(〈x̃i, w̃j〉〈x̃s, w̃l〉) ≤ E(‖x̃i‖‖w̃j‖‖x̃s‖‖w̃l‖). By the assumption and

Chebyshev’s inequality, it holds that S1
(d−1)2

p→ 1− φ1. After computation, it can also be determined that

E(D1) = − d−1
(1−θ2

1)
2 [(d− 2)(θ2

1 − θ4
1)− θ4

1(1− θ
2(d−1)
1 )

+2(d− 2)θ1φ1(1− θ2
1)− 2θ3

1φ1(1− θ
2(d−2)
1 )

+(d− 2)φ2
1(1− θ2

1)− φ2
1θ2

1(1− θ
2(d−2)
1 )],

(53)

and E(D2
1) is bounded, by the assumption and Chebyshev’s inequality, it holds that

D1

(d− 1)2
p→ 1

(1− θ2
1)

2
[θ4

1 − θ2
1 + 2θ1φ1(θ

2
1 − 1) + φ2

1(θ
2
1 − 1)]. (54)

Thus,
S1

D1
=

S1/(d− 1)2

D1/(d− 1)2
p→ 1− φ1

1
(1−θ2

1)
2 [θ

4
1 − θ2

1 + 2θ1φ1(θ
2
1 − 1) + φ2

1(θ
2
1 − 1)]

. (55)

i.e., θ̂1 − θ1
p→ 1−φ1

1
(1−θ2

1 )
2 [θ

4
1−θ2

1+2θ1φ1(θ
2
1−1)+φ2

1(θ
2
1−1)]

,

Obviously, θ̂1 − θ1
p→ 0 when φ1 = 1, i.e., θ̂1 is consistent.

Set the numerator and the denominator of (43) as follows,

S2 :=
( d

∑
i=1
〈x̃i, x̃i−1〉

)( d

∑
i=1
〈x̃i−1, w̃i−1〉

)
−
( d

∑
i=1
〈x̃i−1, x̃i−1〉

)( d

∑
i=1
〈x̃i, w̃i−1〉

)
, (56)

D2 :=
( d

∑
i=1
〈x̃i−1, w̃i−1〉

)2 −
( d

∑
i=1
〈w̃i−1, w̃i−1〉

)( d

∑
i=1
〈x̃i−1, x̃i−1〉

)
, (57)

Then, we have E(D2) = E(D1), and E(D2
2) is bounded, by the assumption and Chebyshev’s

inequality, it holds that

D2

(d− 1)2
p→ 1

(1− θ2
1)

2
[θ4

1 − θ2
1 + 2θ1φ1(θ

2
1 − 1) + φ2

1(θ
2
1 − 1)]. (58)
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Also, we have E(S2) = (d − 1)2(1 − φ1) − φ1(d−1)
(1−θ2

1)
2 [(d − 2)(θ2

1 − θ4
1) − θ4

1(1 − θ
2(d−1)
1 ) + 2(d −

2)θ1φ1(1− θ2
1)− 2θ3

1φ1(1− θ
2(d−2)
1 ) + (d− 2)φ2

1(1− θ2
1)− φ2

1θ2
1(1− θ

2(d−2)
1 )] and E(S2

2) is bounded,
by the assumption and Chebyshev’s inequality, it holds that

S2

(d− 1)2
p→ 1− φ1 +

φ1

(1− θ2
1)

2
[θ4

1 − θ2
1 + 2θ1φ1(θ

2
1 − 1) + φ2

1(θ
2
1 − 1)], (59)

Thus,

S2

D2
=

S2/(d− 1)2

D2/(d− 1)2
p→ 1− φ1

1
(1−θ2

1)
2 [θ

4
1 − θ2

1 + 2θ1φ1(θ
2
1 − 1) + φ2

1(θ
2
1 − 1)]

+ φ1. (60)

i.e., φ̂1 − φ1
p→ 1−φ1

1
(1−θ2

1 )
2 [θ

4
1−θ2

1+2θ1φ1(θ
2
1−1)+φ2

1(θ
2
1−1)]

,

Remark 7. (1) The proposed AR, ARMA model for the processes of FRVs is an extension of the autoregressive
sequence model proposed by Feng et al. [26].

(2) In the proposed models, the so-called standardized process of FRVs plays an important role, as the
causality of the AR(p) and ARMA(p, q) with fuzzy data are defined, and we only present an example of the
standardized process in the one-dimensional case. This standardized process is a special error term process only.

(3) In the general case, without the restriction of the second order for the FRVs, the processes of the FRVs
may not be posed for the standardized processes, and, at most, we may set an AR(p) with fuzzy data as

X̃t = θ1X̃t−1 + θ2X̃t−2 + . . . + θpX̃t−p + B̃t, (61)

where {B̃t} is only an unexplained remainder process of the plus operation among the successive p + 1 elements
in process {X̃t}, and it may be no longer standardized, t ∈ Z. This general case is a hard open problem.

(4) The considered metric δ2 can also be extended to a general metric, like ρ, given in the literature [9,25].

4. An Empirical Analysis of the ARMA(p, q) Models with Fuzzy Data

In this section, we consider an empirical analysis for the proposed ARMA model with fuzzy data
so as to demonstrate the goodness of the model. To this end, we use the following procedure: Step
(1) investigate and collect the data from a practical time series related to the concerned problem; Step
(2) generate the perception mixed fuzzy data based on the real data; Step (3) select and estimate the
model based on the obtained fuzzy data; Step (4) give the results of prediction using the estimated
model; Step (5) compare the model with other available models.

It is well known that the financial market is a complex, non-stationary, noisy, chaotic, and
dynamic system. The main reason is the fact that a huge amount of information is reflected in
the financial market. The main factors include the economic condition, political situation, traders’
expectations and emotions, catastrophes, and other unexpected events. Stock market data have to be
considered in the framework of uncertainties. Therefore, predictions of stock market prices and their
directions with high accuracy are quite difficult.

We consider the problem of predicting the trends of monthly HSI by means of the ARMA models
for linguistic data, and here the linguistic data are the perception mixed HSI data.
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Step 1

Consider the observations in three time series of close value, low value, and high value of
the monthly HSI in the time period from January 2009 to December 2013, as shown in Figure 1,
where, for simplicity, the employed data are the original data divided by 1000. Generally speaking, the
observations can be simply expressed as a finite number series. For instance, since there are a total of
60 months in the time period from January 2009 to December 2013, we may assume that the three finite
series {mi}, {ai}, {bi}, i = 1, · · · , 60 denote the observations in the three time series for close value,
low value, and high value in the time period from January 2009 to December 2013, respectively; here, i
is a serial number.

Figure 1. The curves of the close value, low value, and high value for monthly Hang Seng Index (HSI).
(https://www.hsi.com.hk/eng).

Step 2

Note that each monthly data implies very complex information about the random variation of the
market, the psychological responses, and judgment-based behaviors of the market participators in one
month-long period. In order to gain more informative predictions of the HSI trends, it is suggested to
use the three data—the close value, low value, and high value—simultaneously in an appropriate way,
in which the evaluator’s perception ought to be mixed, and the perception has to be vague, since the
background information hidden behind the three data is so complicated that there is no way to make
the perception clear. Though some predictions can be made through the ordinary time series models
using a single close value or average value during the time period, the predicted judgment could be
much more biased, as the data used here lack completeness of information. Therefore, we view the
three values (close value, low value, high value) of each monthly data integrally as linguistic data, i.e.,
perception mixed financial data, and model it with a simple triangular (or symmetric ) fuzzy number
(LR-fuzzy number [9]) defined on the interval [low value, high value] of the fluctuation. As mentioned
above, by mi, ai, bi we denote the close value, low value, and high value of the ith observation of the
monthly HSI, respectively, and, according to the expression of an LR-fuzzy number [9], the three data
form a simple LR-fuzzy number

(mi, mi − ai, bi −mi)LR,

where mi, mi − ai, bi − mi denote the core, the left spread, and the right spread of the LR fuzzy
number (mi, mi − ai, bi −mi)LR, respectively, (i = 1, · · · , 60), and L, R denote the shape functions of the
LR-fuzzy number. For simplicity, the shape functions are often taken as L(x) = R(x) = max{0, 1− x}.

https://www.hsi.com.hk/eng
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According to this procedure, the linguistic monthly data of HSI from January 2009 to December 2013
can be determined, and they are shown in Table 1. (Note that the serial numbers i = 61, 62, · · ·
represent Jan. 2014, Feb. 2014, · · · , respectively.)

Table 1. Linguistic monthly HSI from January 2009 to December 2013 ((m, l, r) := (m, l, r)LR).

Year Month Data Year Month Data

2009

1 (13.278, 0.839, 2.485)

2012

1 (20.39, 2.07, 0.2)
2 (12.811, 0.177, 1.165) 2 (21.68, 1.411, 0.08)
3 (13.576, 2.23, 0.681) 3 (20.555, 0.181, 1.086)
4 (15.52, 2.188, 0.457) 4 (21.094, 1.059, 0.011)
5 (18.171, 2.316, 0.056) 5 (18.629, 0.251, 2.756)
6 (18.378, 1.002, 0.784) 6 (19.441, 1.385, 0.138)
7 (20.573, 3.387, 0.139) 7 (19.796, 1.086, 0.073)
8 (19.724, 0.132, 1.473) 8 (19.482, 0.032, 0.818)
9 (20.956, 1.529, 0.975) 9 (20.84, 1.764, 0.055)
10 (21.752, 1.447, 0.868) 10 (21.641, 0.874, 0.206)
11 (21.821, 0.819, 1.278) 11 (22.03, 0.932, 0.119)
12 (21.872, 0.939, 0.722) 12 (22.657 , 0.969, 0.061)

2010

1 (20.121, 0.205, 2.551)

2013

1 (23.729, 0.869, 0.187)
2 (20.268, 1.185, 0.172) 2 (23.02, 0.575, 0.924)
3 (21.239, 0.664, 0.212) 3 (22.299, 0.323, 0.963)
4 (21.108, 0.345, 1.281) 4 (22.737, 1.314, 0.125)
5 (19.765, 0.974, 1.247) 5 (22.392, 0.102, 1.12)
6 (20.128, 0.917, 0.829) 6 (20.803, 1.377, 1.761)
7 (21.029, 1.251, 0.09) 7 (21.883, 1.764, 0.187)
8 (20.536. 0.164, 1.27) 8 (21.731, 0.266, 0.964)
9 (22.358, 1.828, 0.081) 9 (22.859, 0.911, 0.695)
10 (23.096, 0.592, 0.77) 10 (23.206, 0.566, 0.328)
11 (23.007, 0.224, 1.981) 11 (23.881, 1.418, 0.133)
12 (23.035, 0.653, 0.577) 12 (23.306, 0.593, 0.805)

2011

1 (23.447, 0.39, 0.987)
2 (23.338, 0.892, 0.644)
3 (23.527, 1.404, 0.407)
4 (23.72, 0.252, 0.748)
5 (23.684, 1.165, 0.24)
6 (22.398, 0.89, 1.308)
7 (22.44, 0.829, 0.395)
8 (20.534, 1.666, 2.274)
9 (17.592, 0.593, 3.382)
10 (19.864, 3.694, 0.409)
11 (17.989, 0.376, 2.184)
12 (18.434, 0.613, 0.6)

Step 3

For LR-fuzzy data ũ = (m, l, r)LR, whose α-cut is ũα = [m− lL(−1)(α), m + rR(−1)(α)], α ∈ [0, 1],
where L(−1)(α) = R(−1)(α) = 1− α for the above L(x), R(x), we have the support function of ũα as

Sũα(x) =

{
m + (1− α)r, x = 1,

m− (1− α)l, x = −1.
(62)



Symmetry 2018, 10, 324 17 of 23

and the sample-based Fréchet covariance for linguistic monthly HSI in Table 1 can be computed using

Cov(ũj+h, ũj) = 1
60 ∑60−h

j=1

[ ∫ 1
0 (S(ũj+h)α

(1)− Sũα
(1))(S(ũj)α

(1)− Sũα
(1))dα

+
∫ 1

0 (S(ũj+h)α
(−1)− Sũα

(−1))(S(ũj)α
(−1)− Sũα

(−1))dα
]

= 1
60 ∑60−h

j=1

[ ∫ 1
0

(
mj+h + (1− α)rj+h −m− (1− α)r

)(
mj + (1− α)rj −m

−(1− α)r
)
dα +

∫ 1
0

(
(1− α)lj+h −mj+h − (1− α)l + m

)(
(1− α)lj −mj − (1− α)l + m

)
dα
]
.

(63)

The wide-sense stationarity of the considered linguistic monthly HSI time series may be obtained
approximately from the stationarity of both series

{ ∫ 1

0
S(ũj)α

(1)dα
}
=
{

mj +
rj

2

}
and

{ ∫ 1

0
S(ũj)α

(−1)dα
}
=
{ lj

2
−mj

}
, j = 1, · · · , 60. (64)

The magnitude of the sample autocorrelation functions of the latter two series decay geometrically
to zero, and the sample partial autocorrelation functions are negligible for lags greater than 1. Thus, we
may fit an ARMA(1,1) with fuzzy data for the linguistic monthly HSI time series, because usually
an ARMA is better than an AR, though the AR(1) with fuzzy data can also be employed here [11].
For estimating the model, according to Definition 3, a standardized process of FRVs {w̃t} is generated,
as shown in Table 2, based on a generated white noise process {εt}.

Table 2. The former 60 elements of a standardized process of fuzzy random variables (FRVs).

i w̃i i w̃i i w̃i

1 (1.80482, 0.01, 0.01) 21 (1.30572, 0.001, 0.0001) 41 (−1.3595, 0.00008, 0.0001)
2 (−0.07992, 0.007, 0.008) 22 (1.42513, 0.0003, 0.0002) 42 (−2.33134, 0.001, 0.00012)
3 (0.39658, 0.01, 0.002) 23 (−0.4158, 0.0002, 0.0001) 43 (−0.40969, 0.00012, 0.0006)
4 (−1.08332, 0.0015, 0.001) 24 (1.61438, 0.0003, 0.001) 44 (0.6542, 0.0003, 0.0001)
5 (2.23829, 0.01, 0.001) 25 (−1.05773, 0.001, 0.00002) 45 (0.39926, 0.00003, 0.00001)
6 (−0.62423, 0.001, 0.001) 26 (−0.94833, 0.0001, 0.001) 46 (−0.46931, 0.00002, 0.0006 )
7 (0.51366, 0.002, 0.001) 27 (0.95365, 0.0003, 0.001) 47 (0.86633, 0.0003, 0.00001)
8 (−0.08661, 0.0002, 0.0013) 28 (0.39198, 0.0002, 0.0001) 48 (−0.92372, 0.0002, 0.00008)
9 (−0.59418, 0.0002, 0.001) 29 (−0.07614, 0.00102, 0.0001) 49 (1.27746, 0.0001, 0.00002)
10 (0.03189, 0.002, 0.0012) 30 (1.22056, 0.0017, 0.00018) 50 (−1.4526, 0.0001, 0.001)
11 (−0.7378, 0.00021, 0.0013) 31 (−0.63084, 0.00016,0.00018) 51 (0.34892, 0.0002, 0.0001)
12 (−0.25014, 0.01, 0.0003) 32 (−0.63576, 0.001, 0.0001) 52 (−0.05535, 0.00012, 0.0001)
13 (0.685, 0.0013, 0.00011) 33 (−0.34, 0.001, 0.00008) 53 (−1.228, 0.0008, 0.0001)
14 (−0.80416, 0.0013, 0.0003) 34 (0.07628, 0.0001, 0.0002) 54 (0.14502, 0.0001, 0.00006)
15 (−0.74428, 0.0011, 0.0003) 35 (0.95536, 0.000016, 0.00011) 55 (−0.8395, 0.0001, 0.00032)
16 (−0.7955, 0.0002, 0.0001) 36 (−1.2167, 0.0001, 0.00011) 56 (−0.09626, 0.00009, 0.0006)
17 (0.34071, 0.001, 0.0001) 37 (1.18449, 0.0006, 0.0003) 57 (−0.85758, 0.0001, 0.00002)
18 (−0.30051, 0.001, 0.00017) 38 (−0.34369, 0.0002, 0.0003) 58 (0.76497, 0.00002, 0.001)
19 (−1.34985, 0.00031, 0.0005) 39 (1.09024, 0.0001, 0.00006) 59 (0.04501, 0.000016, 0.00001)
20 (0.4327, 0.0001, 0.0002) 40 (−0.13531, 0.0002, 0.0001) 60 (1.92838, 0.00008, 0.0002)

For the estimation of the parameters, here we assume that this standardized process {w̃t} basically
satisfies the condition of Theorem 3. Applying Equations (42) and (43) of the least square estimators
for the ARMA(1,1) model with fuzzy data in Section 3 to the data from Tables 1 and 2 (the case of
d = 60, n = 1), we obtain the estimated ARMA(1,1) of the concerned linguistic monthly HSI with
Matlab as

X̃i = 0.992X̃i−1 + 0.104w̃i−1 + w̃i. (65)
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Step 4

For the simplicity of computation and comparison, we only consider the prediction for the former
10 months in 2014. A predicted linguistic monthly HSI for the 10 months from January 2014 to October
2014 (the serial numbers i = 61, 62, 63, 64, 65, 66, 67, 68, 69, 70.) are obtained using the prediction formula
ˆ̃Xi = 0.992X̃i−1 + 0.104w̃i−1; both the real linguistic monthly HSI and the obtained predicted linguistic

monthly HSI for the 10 months are shown in Table 3.

Table 3. The real linguistic monthly HSI and the predicted linguistic monthly HSI.

i Real Linguistic Monthly HSI Predicted Linguistic Monthly HSI

61 (22.035, 0.289, 1.434) (23.274, 0.381, 0.236)
62 (22.836, 1.639, 0.15) (23.662, 0.313, 0.368)
63 (22.151, 1.014, 0.688) (23.182, 0.121, 0.502)
64 (22.133, 0.037, 1.091) (23.311, 0.248, 0.308)
65 (23.081, 1.401, 0.128) (23.402, 0.313, 0.470)
66 (23.19, 0.388, 0.207) (23.431, 0.402, 0.487)
67 (24.756, 1.63, 0.156) (24.217, 0.418, 0.501)
68 (24.742, 0.552, 0.492) (24.406, 0.419, 0.537)
69 (22.932, 0.077, 2.43) (24.100, 0.428, 0.558)
70 (23.998, 1.433, 0.048) (23.579, 0.432, 0.563)

Table 3, in fact, also gives a direct comparison between the real and the predicted linguistic
monthly HSI. The comparison indicates that the obtained forecasting model is quite reasonable in
capturing the complex uncertain and imprecise information, since the linguistic forecasted data provide
more information than the crisp data, so the decision makers could consider the best and worst possible
situations. On the other hand, the accuracy of forecasting using this model could be improved by
adjusting the terms of the standardized process.

Step 5

Note that the predicted linguistic monthly HSI in Table 3, in fact, gives the predictions of the
close value series, low value series, and high value series of the monthly HSI simultaneously. Thus,
the comparisons of the real close values with the predicted close values, the real low values with the
predicted low values, and the real high values with the predicted high values can be done. For instance,
the comparison of the close values shown in Table 4 indicates that the predictions for values numbered
62, 65, 66, 67, 68, 70 in the list are with absolute errors less than 0.632, relative errors less than 2.74%,
and the predictions for the remainder values have absolute errors within the interval (0.632, 1.239),
and relative errors within the interval (2.74%, 5.62%). Similarly, the comparisons regarding the low
values and high values, respectively, of the monthly HSI can also be carried out.

Table 4. A comparison of the predicted close values obtained by the fuzzy set-valued autoregressive
moving average (ARMA)(1,1) with the real close values in the monthly HSI.

i Real Close Values Predicted Close Values Absolute Error Relative Error

61 22.035 23.274 1.239 5.62%
62 22.836 23.462 0.626 2.74%
63 22.151 23.182 1.031 4.654%
64 22.133 23.210 1.077 4.869%
65 23.081 23.302 0.221 0.957%
66 23.190 23.413 0.223 0.95%
67 24.756 24.217 0.539 2.17%
68 24.742 24.406 0.336 1.356%
69 22.932 24.100 1.168 5.09%
70 23.998 23.579 0.419 1.746%



Symmetry 2018, 10, 324 19 of 23

Remark 8. The study of the fuzzy set-valued time series modeling is just in its infancy. There are only
two estimated fuzzy set-valued models like AR(1) and ARMA(1,1) [10,11] that can be considered for model
comparison under special conditions. However, it is obvious here that the fuzzy set-valued ARMA(1,1) model
is better than the fuzzy set-valued AR(1) model for the forecast of the linguistic monthly HSI data. On the
other hand, it may not be appropriate to compare the fuzzy set-valued time series models with the classical time
series models straightforwardly, since the types of data treated by the two kinds of time series are different.

In a special case, we may compare the predicted close values obtained by the proposed fuzzy set-valued
ARMA(1,1) model above with the predicted close values obtained by the ordinary AR(1) or AR(2) or AR(3) or
AR(1,1) models through a comparison of their prediction absolute errors and relative errors (note that using
time series technology, it can be verified that the ordinary AR(1) or AR(2) or AR(3) or AR(1,1) models can be
appropriately applied for the prediction of the concerned time series of close values). The comparison results of
AR(1) or AR(2) or AR(3) or AR(1,1) with the real close values are shown in Tables 5–8, respectively. Finally,
a comparison result of the prediction errors from the fuzzy ARMA(1,1) with the prediction errors from AR(1),
AR(2), AR(3), and AR(1,1) for the case of close values of the monthly HSI are shown in Table 9, which indicates
that, on average, the prediction accuracy of our proposed model is better than that of the other four ordinary time
series models, since the average absolute error 0.691 of fuzzy ARMA(1,1) is less than the average absolute errors
1.182, 1.194, 1.487, 1.191 of AR(1), AR(2), AR(3), ARMA(1,1), respectively. Further, the average relative
error 3.03% of fuzzy ARMA(1,1) is less than the average relative errors 5.03%, 5.08%, 6.29%, 5.07% of AR(1),
AR(2), AR(3), ARMA(1,1), respectively. Also, the error data shown in Table 9 indicate that for the months
numbered 61,63,66,67,68,70, both the absolute errors and the relative errors of fuzzy ARMA(1,1) are less than
those of AR(1), AR(2), AR(3), ARMA(1,1), thus, the prediction accuracy of our proposed model is better than
that of the other four ordinary time series models. For the month numbered 62, the absolute errors and the
relative errors of fuzzy ARMA(1,1) are slightly larger than those of AR(1), AR(2), AR(3), ARMA(1,1), but the
differences for the absolute errors and relative errors are not more than 0.086 and 0.34%, respectively. Thus, the
prediction accuracy of our proposed model is almost the same as that of the other four ordinary time series models.
For the month numbered 64, the absolute errors and the relative errors of fuzzy ARMA(1,1) are larger than those
of AR(1), AR(2), AR(3), ARMA(1,1), but the differences for the absolute errors and relative errors are not more
than 0.454 and 2.059%, respectively, thus, the prediction accuracy of our proposed model is not better than that
of the other four ordinary time series models. For the month numbered 65,the absolute errors and the relative
errors of fuzzy ARMA(1,1) are slightly larger than those of AR(1), AR(2), ARMA(1,1); the differences for the
absolute errors and relative errors are not more than 0.048 and 0.207%, respectively, but the absolute errors
and the relative errors of fuzzy ARMA(1,1) are less than those of AR(3), thus, the prediction accuracy of our
proposed model is not better than that of the other three ordinary time series models AR(1), AR(2), ARMA(1,1),
but it is better than that of AR(3). For the month numbered 69, the absolute errors and the relative errors of fuzzy
ARMA(1,1) are slightly larger than those of AR(1), AR(2), ARMA(1,1); the differences for the absolute errors
and relative errors are not more than 0.547 and 2.39%, respectively, but the absolute errors and the relative
errors of fuzzy ARMA(1,1) are less than those of AR(3), thus, the prediction accuracy of our proposed model is
not better than that of the other three ordinary time series models AR(1), AR(2), ARMA(1,1), but it is better
than that of AR(3).

Similarly, the same comparison can be done for the high values and low values of the monthly HSI.
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Table 5. A comparison of the predicted close values obtained by the classical AR(1) with the real close
values in the monthly HSI.

i Real Close Values Predicted Close Values Absolute Error Relative Error

61 22.035 23.663 1.628 7.38%
62 22.836 23.458 0.622 2.723%
63 22.151 23.264 1.113 5.02%
64 22.133 23.081 0.948 4.283%
65 23.081 22.908 0.173 0.75%
66 23.19 22.746 0.444 1.91%
67 24.756 22.592 2.164 8.74%
68 24.742 22.448 2.294 9.27%
69 22.932 22.311 0.621 2.7%
70 23.998 22.183 1.815 7.56%

Table 6. A comparison of the predicted close values obtained by the classical AR(2) with the real close
value in the monthly HSI.

i Real Close Values Predicted Close Values Absolute Error Relative Error

61 22.035 23.658 1.623 7.36%
62 22.836 23.447 0.611 2.67%
63 22.151 23.247 1.096 4.94%
64 22.133 23.06 0.927 4.19%
65 23.081 22.883 0.198 0.86%
66 23.19 22.717 0.473 2.04%
67 24.756 22.561 2.195 8.87%
68 24.742 22.414 2.328 9.41%
69 22.932 22.275 0.657 2.86%
70 23.998 22.145 1.835 7.65%

Table 7. A comparison of the predicted close values obtained by the classical AR(3) with the real close
value in the monthly HSI.

i Real Close Values Predicted Close Values Absolute Error Relative Error

61 22.035 23.688 1.653 7.5%
62 22.836 23.382 0.546 2.4%
63 22.151 23.065 0.914 4.1%
64 22.133 22.756 0.623 2.81%
65 23.081 22.473 0.608 2.63%
66 23.19 22.219 0.971 4.19%
67 24.756 21.993 2.763 11.16%
68 24.742 21.794 2.948 11.91%
69 22.932 21.62 1.312 5.72%
70 23.998 21.467 2.531 10.5%
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Table 8. A comparison of the predicted close values obtained by the classical ARMA(1,1) with the real
close value in the monthly HSI.

i Real Close Values Predicted Close Values Absolute Error Relative Error

61 22.035 23.66 1.625 7.37%
62 22.836 23.45 0.614 2.69%
63 22.151 23.252 1.101 4.97%
64 22.133 23.066 0.923 4.21%
65 23.081 22.89 0.191 0.83%
66 23.19 22.725 0.465 2%
67 24.756 22.57 2.186 8.83%
68 24.742 22.423 2.319 9.37%
69 22.932 22.286 0.646 2.82%
70 23.998 22.156 1.842 7.68%

Table 9. A comparison of the proposed fuzzy set valued ARMA(1,1) with the classical AR(1), AR(2),
AR(3), and ARMA(1,1) in the prediction errors for the close value of the monthly HSI.

i fuzzy ARMA(1,1) AR(1) AR(2) AR(3) ARMA(1,1)
abs.err., rel.err. abs.err., rel.err. abs.err., rel.err. abs.err., rel.err. abs.err., rel.err.

61 1.239, 5.62% 1.628, 7.38% 1.623, 7.36% 1.653, 7.5% 1.625, 7.37%
62 0.626, 2.74% 0.622, 2.723% 0.611, 2.67% 0.546, 2.4% 0.614, 2.69%
63 1.031, 4.654% 1.113, 5.02% 1.096, 4.94% 0.914, 4.1% 1.101, 4.97%
64 1.077, 4.869% 0.948, 4.283% 0.927, 4.19% 0.623, 2.81% 0.923, 4.21%
65 0.221, 0.957% 0.173, 0.75% 0.198, 0.86% 0.608, 2.63% 0.191, 0.83%
66 0.223, 0.95% 0.444, 1.91% 0.473, 2.04% 0.971, 4.19% 0.465, 2%
67 0.539, 2.17% 2.164, 8.74% 2.195, 8.87% 2.763, 11.16% 2.186, 8.83%
68 0.336, 1.356% 2.294, 9.27% 2.328, 9.41% 2.948, 11.91% 2.319, 9.37%
69 1.168, 5.09% 0.621, 2.7% 0.657, 2.86% 1.312, 5.72% 0.646, 2.82%
70 0.449, 1.746% 1.815, 7.56% 1.835, 7.65% 2.531, 10.5% 1.842, 7.68%

ave. 0.691, 3.02% 1.182, 5.033% 1.194, 5.085% 1.487, 6.292% 1.191, 5.076%

(abs. = absolute, rel. = relative, err. = error, ave. = average).

5. Conclusions

The ARMA models are important in many fields and applications, although they are most widely
applied in time series analysis. In this big-data era, various complex data, such as interval-valued
data, linguistic data, etc., have arisen. Theoretically, it is meaningful and valuable to extend the
statistical regression models and time series models to such complex data, and such research has
recently received much attention. In this paper, we extended the ARMA model to the case of linguistic
data that can be modeled by some symmetric fuzzy sets. We firstly determined that the estimators
from the least square estimation of the ARMA(1,1) model under some L2 distance between two sets
are weakly consistent. To verify the effectiveness of the proposed linguistic-valued ARMA models,
we applied them to forecast the linguistic monthly Hang Seng Index (HSI) with an empirical analysis,
and detailed comparisons of the models with other classical AR(1), AR(2), AR(3) models, as well as the
ARMA(1,1) model, are given. Furthermore, we present theoretical proofs for some conclusions on the
convergence properties of the sequence of the FRVs mentioned in this paper [10].

It should be pointed out that the semi-linear structure of the space of all fuzzy data make us
consider all the parameters to be positive or negative, and the estimation of parameters for a high-order
(the order is larger than 3) AR and ARMA models with fuzzy data becomes much more complicated.
The theory of time series with FRVs (fuzzy set-valued data) needs to be further studied. In relation to
the present paper, we expect to further investigate several problems: (1) The asymptotic properties of
the least square estimators for the general model ARMA(p, q); (2) Improving the accuracy level of the
forecasting using the fuzzy set-valued ARMA(1,1), AR(1) models.
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