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Abstract: We studied the high-harmonic generation (HHG) of a two-level-system (TLS) driven by
an intense monochromatic phase-locked laser based on complex spectral analysis with the Floquet
method. In contrast with phenomenological approaches, this analysis deals with the whole process as
a coherent quantum process based on microscopic dynamics. We have obtained the time-frequency
resolved spectrum of spontaneous HHG single-photon emission from an excited TLS driven by a
laser field. Characteristic spectral features of the HHG, such as the plateau and cutoff, are reproduced
by the present model. Because the emitted high-harmonic photon is represented as a superposition of
different frequencies, the Fano profile appears in the long-time spectrum as a result of the quantum
interference of the emitted photon. We reveal that the condition of the quantum interference depends
on the initial phase of the driving laser field. We have also clarified that the change in spectral features
from the short-time regime to the long-time regime is attributed to the interference between the
interference from the Floquet resonance states and the dressed radiation field.

Keywords: high-harmonic generation; fano effect; quantum interference; Floquet method; complex
spectral analysis

1. Introduction

The advent of ultrafast strong light sources has opened up a new era of optical science,
called attosecond physics [1,2]. Recent advances in the manipulation techniques of a laser light
pulse, such as carrier-envelope-phase (CEP) control, has enabled us to induce coherent electron motion
with sub-femtosecond precision. The well-controlled coherent electron motion is a source of the
high-harmonic pulse in the XUV region to the X-ray region [3–10]. These attosecond light pulses are
now the most powerful tool to explore the real-time dynamics of electronic motions in atoms and
molecules on the attosecond time scale [11–16].

Recently, HHG has been experimentally observed also from solids, such as in
semiconductors [17–21], topological phase materials [22], low-dimensional materials [23], thin films [24],
and amorphous solids [25]. Some have used two-color light beams, such as near infrared and far infrared,
to clearly distinguish the different electronic excitations, which are sometimes called high-order sideband
generation (HSG) [26–29]. Even though coherent electronic motion in solids is different from that of
atoms and molecules, characteristic features of the HHG spectrum, such as the plateau and cutoff,
are common to those from atoms and molecules. These experiments indicate that the fundamental
mechanism of the HHG photon emission is the same, whether from atoms, molecules, or solids [30].
Therefore, it is essential to clarify the microscopic mechanism that determines how the quantum
coherence of an electron induced by the driving field is transferred to a high-harmonic photon through
nonlinear interaction between the electron and the driving field. Developing the microscopic theory of
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HHG, one has to keep in mind that HHG photon emission is a spontaneous photon emission because the
radiation field with the high-harmonic frequency is initially in the quantum vacuum [31,32]. For a precise
argument, it is necessary to include the entire HHG process as a coherent quantum process, including the
free radiation field as an environment.

Most conventional theories, however, have employed phenomenological treatments that may
terminate the quantum coherence in the HHG process: for example, the HHG emission spectrum
is calculated classically based on Maxwell’s equation [2,6,33–35], or the Markov approximation is
used in a master equation with a phenomenological parameter [18,27,30,36]. In fact, how to interpret
the dissipative spontaneous photon emission within the framework of quantum mechanics has been
a debate since the early days of the theory [37–40], as an irreversible decay process contradicts the
time-reversible quantum dynamics. As a solution to the problem, a new formalism, i.e., complex spectral
analysis, has been explored over the last two decades, so that the Hamiltonian can take complex
eigenvalues by expanding the vector space to the extended Hilbert space [41–48].

In this contribution, we apply complex spectral analysis to study the HHG, using the Floquet
method to take into account a non-perturbative interaction between the electron and the driving
field. The total system under consideration consists of not only the strongly coupled matter and
driving laser field, but also the free radiation field with a continuous spectrum. We solve the complex
eigenvalue problem of the Floquet Hamiltonian of the total system in the extended Hilbert space.
The time evolution of the quantum state is then described by the eigenstate expansion of the total
system, and thereby the quantum coherence is retained. We study the HHG of a two-level system
(TLS) driven by an intense monochromatic phase-locked laser and obtain the analytical expression for
the time-frequency resolved spectral amplitude for a HHG single-photon observation.

We show that the calculated HHG spectrum exhibits the characteristic features of HHG from
solids. We reveal that the quantum interference of the Floquet resonance states causes a Fano-type dip
structure in the HHG spectrum. Moreover, we show that quantum interference between the Floquet
resonance states and the dressed field states are responsible for the temporal change in the HHG
spectrum from the adiabatic regime to the stationary regime. Because the superposition of the photon
states with different frequencies depends on the initial phase of the driving laser, we can quantum
mechanically control the HHG photon emission by changing the phase of the laser.

2. Model

We consider spontaneous emission from a TLS excited by a delta-function pulse. The excited TLS
is driven by a monochromatic phase-locked laser field with amplitude E0 and frequency ω/2 with a
phase θ relative to the excitation delta-pulse as shown in Figure 1. Starting from the minimal coupling
Hamiltonian under the dipole approximation, the total Hamiltonian, composed of the electronic system
and the radiation field, is represented by [31].

|g〉

|e〉

excitation pulsedriving laser field

(t = 0)

∆0

θ

Figure 1. High-harmonic generation of a driven TLS.

Ĥ(t) = E1|1〉〈1|+ (E1 + ∆0)|2〉〈2|+ E(t) (|1〉〈2|+ |2〉〈1|)

+
∫

ωk â†
k âkdk + λ

∫
Ck (|1〉〈2|+ |2〉〈1|) (âk + â†

k)dk ,
(1)
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where |1〉 and |2〉 represent the ground and excited states with energies E1 and E2, respectively, and
∆0 ≡ E2 − E1. We classically describe the monochromatic phase-locked laser field as

E(t) ≡ E0 cos
(

ωt + θ

2

)
. (2)

Conversely, the scattered bosonic radiation field is dealt with quantum mechanically: âk (â†
k )

represents the free radiation field with energy ωk = c|k|, and λ is a dimensionless coupling constant,
where we consider c = 1. The coupling coefficient Ck is given by Ck =

√
ωk except for a constant

factor [31].
As shown in Appendix A, under the condition of

2
E2

0
ω
� ∆0 � |E0| , (3)

the Hamiltonian Ĥ(t) can be written in terms of the adiabatic basis of |g〉 and |e〉 given in
Equation (A12). Under the rotating wave approximation, the Hamiltonian is given by

Ĥad(t) = E0|g〉〈g|+ (Ee + A cos(ωt + θ)) |e〉〈e|+
∫

ωk â†
k âkdk + λ

∫
Ck

(
|e〉〈g|âk + |g〉〈e|â†

k

)
dk , (4)

where we have defined the renormalized amplitude as

A ≡ 2E2
0

∆0
. (5)

In this paper, we consider a one-dimensional system for simplicity, which does not influence our
main results. Hereafter, we simply write Ĥad(t) as Ĥ(t).

Because the number of elementary excitations does not change in Ĥ(t), the evolution of the
state is closed in a single-excitation subspace of the dressed atom states of |e〉 ⊗ |0k〉 ≡ |d〉 and
|g〉 ⊗ |1k〉 ≡ |k〉 [49]. Then, the Hamiltonian Ĥ(t) in this subspace is represented by

Ĥ(t) = (∆0 + A cos(ωt + θ)) |d〉〈d|+
∫

ωk|k〉〈k|dk + λ
∫
Ck(|d〉〈k|+ |k〉〈d|)dk , (6)

where the energy difference is defined by ∆0 ≡ Ee− E0, and we take E0 as the origin of energy. In terms
of the renormalized amplitude, the intensity of the driving field is given by |A cos(ωt + θ)|2, so that
the maximum intensity is A2.

Because the Hamiltonian is time-periodic, Ĥ(t + T) = Ĥ(t) with T ≡ 2π/ω, the Floquet theorem
may be applied: the wave vector can be written as

|Ψ(t)〉 = ∑
ξ

cξ e−izξ t|Φξ(t)〉 , (7)

with a periodic Floquet eigenfunction |Φξ(t + T)〉 = |Φξ(t)〉 with the Floquet quasi-energy zξ [50–52].
The composite space F ≡ R⊗ T is made up of the configuration spaceR and the space T of periodic
functions in time with period T [50]. The conjugate basis set {|κn)} to the time basis set {|t)} is
constructed as

|κn) ≡
1
T

∫ T

0
dteiκnt|t) , (8)
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where κn ≡ nω = 2πn/T (n = 0, 1, · · · ) [53]. It is well known that the Floquet eigenstate possesses
mode-translational symmetry [50]

|Φ(n)
ξ (t)〉 = exp[iκnt]|Φ(0)

ξ (t)〉 , z(n)ξ = z(0)ξ + nω , (9)

where (n) denotes the Floquet mode index and ξ classifies a state within a Floquet mode space of (n).
In terms of the conjugate basis set, the Floquet Hamiltonian is represented by

ĤF =
∞

∑
n=−∞

(∆0 + nω)|d, κn)〉〈(d, κn|+
∞

∑
n=−∞

A
2

[
eiθ |d, κn+1)〉〈(d, κn|+ e−iθ |d, κn)〉〈(d, κn+1|

]
+

∞

∑
n=−∞

∫
(ωk + nω)|k, κn)〉〈(k, κn|dk + λ

∞

∑
n=−∞

∫
Ck[|k, κn)〉〈(d, κn|+ |d, κn)〉〈(k, κn|]dk ,

(10)

where |·)〉 denotes the vector in the composite space F .
In Equation (10), the first two terms represent the strong coupling between the TLS and the

driving field in the Floquet composite basis. We note that the first two terms can be diagonalized in
terms of the Wannier-Stark basis [50] given by

|φ(n)
d )〉 =

∞

∑
m=−∞

e−i(n−m)θ Jn−m(a)|d, κm)〉 , (11)

where Jn(x) is the n-th order Bessel function of the first kind and a ≡ A/ω. Please note that the
Stark state is represented as a coherent sum of the bare discrete states in terms of the Floquet modes.
Then, the Floquet Hamiltonian ĤF can be rewritten as

ĤF =
∞

∑
n=−∞

{
(∆0 + nω)|φ(n)

d )〉〈(φ(n)
d |+

∫
(ωk + nω)|k, κn)〉〈(k, κn|dk

}
+ λ

∞

∑
n,m=−∞

∫
Ck Jm−n(a)

(
e−i(m−n)θ |k, κn)〉〈(φ(m)

d |+ ei(m−n)θ |φ(m)
d )〉〈(k, κn|

)
dk ,

(12)

where the first and second terms represent the diagonal Floquet energies for the Stark states and the
continuous states, respectively. The last term of Equation (12) shows that that the TLS couples with the
radiation field with different Floquet modes and the nonlinear interaction depends on the initial phase
of the driving field. Please note that this coupling represented by the Bessel function is nonlinear in
terms of the driving field amplitude a.

3. Complex Eigenvalue Problem of the Floquet Hamiltonian

The original time-dependent problem now becomes a time-independent eigenvalue problem,
where we may employ the established method to solve the complex eigenvalue problem of the
Hamiltonian. The difficulty arises, however, when we try to solve the eigenvalue problem by keeping
the unstable discrete states in the spectrum in ordinary Hilbert space in the composite space because
of the resonance singularity in the interaction between the TLS and the free radiation field [54].

To solve the problem of the resonance singularity, we extend the eigenvector subspace to the
extended Hilbert space, where the norm of the eigenvector vanishes [41,42,44,46–48,55]. The complex
eigenvalue problems of ĤF read

ĤF|Φ(n)
ξ )〉 = z(n)ξ |Φ

(n)
ξ )〉, 〈(Φ̃(n)

ξ |ĤF = z(n)ξ 〈(Φ̃
(n)
ξ | , (13)

where the right-eigenstate |Φ(n)
ξ )〉 and left-eigenstate 〈(Φ̃(n)

ξ | have the same complex eigenvalue z(n)ξ .
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The complex eigenbasis of |Φ(n)
ξ )〉 and 〈(Φ̃(n)

ξ | satisfy the bi-completeness and bi-orthonormal
relation [41,46,53]:

∞

∑
n=−∞

∑
ξ

|Φ(n)
ξ )〉〈(Φ̃(n)

ξ | = Î, (14)

〈(Φ̃(n)
ξ |Φ

(n′)
ξ )〉 = δKr

ξ,ξ ′δ
Kr
n,n′ , (15)

where δKr
i,j is the Kronecker delta.

The eigenvalue problem of the Floquet Hamiltonian was solved in terms of the
Brillouin–Wigner–Feshbach projection method, as shown in Appendix B [46–48,53].

In the weak coupling case λ� 1, the right-resonance eigenstate is given by

|Φ(n)
d )〉 = 〈(φ(n)

d |Φ
(n)
d )〉

|φ(n)
d )〉+ λ ∑

m

∫
dkCk

Jn−m(a)e−i(n−m)θ

[z− (ωk + mω)]+
z=z(n)d

|k, κm)〉

 , (16)

where the + sign in the denominator of Equation (16) indicates the analytic continuation of z from
the upper half of the complex energy plane [41]. The second term of the curl bracket shows that the
resonance states are given by the superposition of the discrete Stark state |φ(n)

d )〉 and the free radiation
field |k, κm)〉 belonging to the different Floquet modes with the laser phase-dependent weighted sum
of the Bessel function. The left-resonance eigenstates are also obtained by first taking the Hermite
conjugate, and then the same analytic continuation with the + index instead of the opposite analytic
continuation [41,46,53]. The complex eigenvalue of the resonance state is obtained by solving the
nonlinear dispersion equation

z(n)d = χ+
n,n(z

(n)
d ) = ∆0 + nω + λ2

+∞

∑
m=−∞

σ+(z(n)d −mω)J2
n−m(a) , (17)

where the dynamical self-energy χ+
n,n(z

(n)
d ) is defined by Equation (A17) and the scalar self-energy

function is given by Equation (A18). Of special importance is the fact that the self-energy in the
right-hand-side depends on the eigenvalues, which originate in the nonlinearity of the eigenvalue
problem of the effective Hamiltonian, as shown in Equation (A19). It should be emphasized that only if
we take into account this nonlinearity will the eigenvalues of the non-Hermitian effective Hamiltonian
coincide with the Hermitian total Hamiltonian [41]. We have solved this dispersion equation iteratively
to obtain the complex eigenvalues of the Floquet Hamiltonian, and we have thereby considered the
nonlinearity of the eigenvalue problem of the effective Hamiltonian, as shown in Equation (A14).
The resonance state decays exponentially, with the decay rate given by the imaginary part of z(n)

d̃
.

The dressed continuous right-eigenstates are also obtained in Appendix B.2 as

|Φ(n)
k )〉 = |k, κn)〉+ λCk ∑

m

Jm−n(a)ei(m−n)θ

ωk + nω + i0+ − χ+
m,m,D(ωk + nω)

×
{
|φ(m)

d )〉+ λ ∑
m′

∫ Ck′ Jm−m′(a)e−i(m−m′)θ |k′, κm′)〉dk′

ωk −ωk′ + (n−m′)ω + i0+

}
,

(18)

where χ+
n,n,D(ε) is the dynamical self-energy, defined by Equation (A17), with the delayed analytic

continuation from the upper half plane [41,46]. The continuous left-eigenstate has been similarly
obtained without taking the delayed analytic continuation. The dressed continuous right-eigenstate
|Φ(n)

k )〉 and the left-eigenstate 〈(Φ̃(n)
k | have the same real eigenvalues of z(n)k = ωk + nω that is
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equivalent to unperturbed energy. The right- and left-eigenstates of the resonance states and the
dressed continuous states satisfy the bi-completeness relation in the composite space F as

ÎF = ∑
n

{
|Φ(n)

d )〉〈(Φ̃(n)
d |+

∫
dk|Φ(n)

k )〉〈(Φ̃(n)
k |
}

. (19)

This decomposition of the identity makes it possible to represent any state vector of the total
system in terms of the complex spectral expansion.

Using Equation (14), the state vector at time t in theR space is given by the Floquet eigenstates
as [50]

|Ψ(t)〉 = ∑
ξ

∑
n

e−iz(n)ξ t|Φ(n)
ξ (t)〉〈Φ̃(p)

ξ (0)|Ψ(0)〉 (20)

= ∑
ξ

∑
n

e−i(z(0)ξ +nω)teinωt|Φ(0)
ξ (t)〉〈Φ̃(n)

ξ (0)|Ψ(0)〉 (21)

= ∑
ξ

e−iz(0)ξ t|Φ(0)
ξ (t)〉〈Φ̃(0)

ξ (0)|Ψ(0)〉 , (22)

where we have used the Floquet mode-translational symmetry Equation (9). Using Equation (19),
the state vector is given by

|Ψ(t)〉 = e−iz(0)d t|Φ(0)
d (t)〉〈Φ̃(0)

d (0)|Ψ(0)〉+
∫

dke−iωkt|Φ(0)
k (t)〉〈Φ̃(0)

k (0)||Ψ(0)〉 . (23)

It should be noted that the wave function of the emitted single photon is described as the
superposition of the single photon states with different frequencies, as shown in the second term of
Equation (23).

4. HHG Spectrum

In this work, the HHG spectrum is studied in the case where the TLS is excited from |g〉 to |e〉 at
t = 0 by a single-photon pulse. In this case, the spontaneous HHG single-photon emission spectrum,
defined as the probability of detecting an emitted photon with frequency ωk during the observation
interval t, is obtained by

S(ωk, t) = 〈a†
k ak〉t = |〈k|Ψ(t)〉|2 , (24)

with |Ψ(0)〉 = |d〉 [31,56,57]. Substituting the right- and left-eigenstates of ĤF in Equation (23),
the analytical expression for the spectral amplitude is obtained as

〈k|Ψ(t)〉 = −λCk

∞

∑
m=−∞

e−iz(m)
d t Jm(a)e−imθ

[ωk − z]+
z=z(m)

d

+ λCke−iωkt
∞

∑
m=−∞

Jm(a)e−imθ

ωk + i0+ − χ+
m,m(ωk)

+
i

2π
λCk ∑

n,l

∫
Γ

dω′ρ(ω′)
C2

ω′ J
2
l (a)e−i(ω′−mω)t

∑m J2
l−m(a)C2

ω′−mωρ(ω′ −mω)

× 1
ω′ − χΓ

l,l(ω
′)

Jl−n(a)e−i(l−n)θ

ω′ + i0+ − (ωk + nω)
(25)

≡ sR(k, t) + sC(k, t) + sBR(k, t) , (26)

where ρ(ω) is the density of states of the free radiation field, and C2
k dk = C2(ω)ρ(ω)dω with ω = c|k|.

Equation (25) is the principal result of this paper: the contributions of the resonance state and
the dressed continuous states are analytically decomposed in the first (sR) and second (sC) terms,
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respectively. While the first term decays exponentially with time, the second term does not decay over
time, giving a stationary HHG spectrum. The third term (sBR) represents the branch point effect [41,44],
where the contour of the integral denoted by Γ is taken in the different Riemann sheets at the branch
point. This term represents the non-Markovian effect, only contributing to the very short time known
as Zeno time, or the very long time known as the long-time tale [44]. The contribution of the third term
is very small in the present case, with a large amplitude of the driving laser field.

In Figure 2, we show the calculated results of the long-time HHG spectrum
S∞(ωk) ≡ limt→∞ S(ωk, t) for the following parameters: ∆0 = 20, a = 10, λ = 0.06, and θ = 0 in (a)
and θ = −π/2 in (b). We take these parameters to approximately represent the experiments of WSe2,
such as the driving laser field frequency 2π/ω ' 20 THz, the band gap between the valence and the
conduction bands ∆0 ' 400 THz [27]. The driving laser amplitude a ≡ A/ω is determined so as to
agree with the cutoff energy of the experiments ncutoff/h̄ω ' 10.

0 10 20 30 40 50

10 9

10 8

10 7

10 6

10 5

10 4

10 3

0 10 20 30 40 50

10 9

10 8

10 7

10 6

10 5

10 4

10 3(a) (b)

Figure 2. Stationary HHG spectrum S∞(ωk) for ∆0 = 20, a = 10, λ = 0.06. (a) θ = 0 and (b) θ = −π/2.
The fundamental spontaneous emission spectrum at ωk = 20 is shown by the dashed lines. The red
marks indicate the absolute value of the Bessel function |Jl(a)|2.

The intensity of the mth-order high-harmonics of the long-time HHG spectrum is mostly
determined by the absolute values of the Bessel function |Jm(a)|2, as shown by the red marks in the
figures. The characteristic features of the HHG spectrum, such as the plateau and cutoff, are explained
by the behavior of the Bessel functions. Because the ratio of the successive order of the Bessel function
is evaluated as |Jm(a)/Jm−1(a)|2 ' (a/2m)2 for m & a, the intensity of the high-harmonics sharply
drops at m ∼ a. Consequently, the cutoff energy is determined by the amplitude of the laser field a, and
not by the intensity a2, underlining the typical feature of the HHG spectrum from solids [17–19,21].

The cross terms of the different Floquet modes in S∞(ωk) represent the quantum interferences of
the photon emissions from them. Because of this interference effect, Fano-type dip structures appear
in the plateau region, as shown in Figure 2. Because the coefficients in the summation in Equation (25)
include the initial phase of the laser, the spectral profile of the stationary HHG spectrum is also affected,
as shown in Figure 2a,b. Hence, it is possible to quantum mechanically control the HHG photon
emission by changing the initial phase of the driving laser field.

Within the decay time of an excited state, the resonance state components crucially contribute to
the temporal profile of the HHG spectrum. As seen from Equation (25) the first and second terms have
opposite signs; hence, the spectral amplitude cancels out at t = 0, except for the small branch point
effect. As the resonance component decays exponentially with time, the spectral cancellation weakens,
approaching the stationary HHG spectrum. In Figure 3, the temporal change of the HHG spectrum
is shown, where the components of the resonance and dressed-continuous states are separately
depicted. Although spectral cancellation of the resonance and dressed field states has been studied in
configurational space for a simple spontaneous emission system [44], the present result demonstrates
spectral cancellation in the frequency domain under a strong driving field.
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Figure 3. The temporal spectral profile of HHG S(ωk, t) (black line) for ωt = π/4 (a), π/2 (b), π (c),
and 2π (d), where the same parameters of Figure 2a are used. The resonance state |sR(k, t)|2 and the
dressed continuous state (−1)|sC(k, t)|2 components are depicted by blue and red lines, respectively.
The excited state energies Ee(t) = ∆0 + A cos(ωt + θ) are indicated by the arrows.

The resonance state components of the HHG not only reduce its intensity in time, but also
change its spectral shape as a result of the interference of the Floquet resonance modes, as shown
by the blue curves in Figure 3, while the dressed-continuous state components retain their spectral
shape. Because of the interference of the Floquet resonance states, the peak position of the HHG
spectrum adiabatically follows the temporal excited state energy Ee(t) = ∆0 + A cos(ωt+ θ), as shown
in Figure 4. In time, the adiabatic behavior of the transient HHG asymptotically approaches the
stationary HHG spectrum.

(a) (b)

(c) (d)

t t

t t

Figure 4. The transient HHG spectrum for θ = 0 (a,c), and θ = −π/2 (b,d). The parameters are the
same as in Figure 2. The red curves in the contour maps (c,d) indicate Ee(t).
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5. Concluding Remarks

We have studied the HHG from a TLS driven by a monochromatic phase-locked laser field in
terms of complex spectral analysis for the total system, including the free radiation field, where we
have treated the spontaneous HHG photon emission as a coherent quantum process. We have obtained
the complex eigenstates of the Floquet Hamiltonian in the extended Hilbert space with the use of the
Wannier–Stark basis, going far beyond the ordinary perturbation method. The decomposition of the
identity in the extended Hilbert space is represented by the exponentially decaying Floquet resonance
states, with complex eigenvalues, and the stable dressed radiation field, with real eigenvalues.
These eigenstates are written as a superposition of the different Floquet mode states. The time
evolution of the quantum state is then described by the eigenstate expansion of the total system;
thereby, the quantum coherence is retained.

We have obtained the analytical expression of the time-frequency resolved spectral amplitude for
a HHG single-photon observation. The amplitude is decomposed into the Floquet resonance states and
the dressed radiation field, where the former and the latter give the transient and the long-time HHG
spectra, respectively. The calculated long-time spectrum shows a typical HHG spectral feature with
the plateau and the cutoff, where the spectral cutoff is not proportional to the driving field intensity
but the amplitude, as seen in the HHG from solids [17–21]. It is interesting to see that the simple TLS
system captures the characteristics of the HHG from solids that possess various electronic excitations.
It is likely that the two-level state excitation corresponds to the optically allowed excitation at the Γ
point from a valence band to a conduction band [58,59].

Recent experiments have observed multiple plateau structures in the HHG spectrum from solids
as a consequence of the quantum interference of the different electronic excitations in solids [18,19].
In this work, we have revealed the other type of quantum interference in the HHG process:
the Fano interference between the different Floquet modes, i.e., different high-order harmonics.
This quantum interference is caused when a single emitted photon with different frequencies interferes
via a common free radiation field, similar to the quantum interference involving different energy
states of a single quanta of light [60,61]. This type of interference might be smeared out under a
phenomenological assumption.

Within the decay time, the Floquet resonance states contribute to the transient behavior of the
HHG spectrum. The transient HHG spectrum changes as if a photon emission occurs from the driven
excited state, and the emitted photon energy adiabatically follows the temporal change of the excitation
energy. We have shown that this temporal behavior of HHG is understood as a result of the quantum
interference between the Floquet resonance states and the dressed field states. Our calculation also
shows that the spectrum asymptotically approaches the long-time HHG spectrum, as the resonance
state contribution decays exponentially over time.

In the present method, the decay process of the excited state is consistently described with the
HHG process because the whole process is treated as a coherent quantum process. We find that the
decay rate increases with the amplitude of the driving field, as shown in Figure A1. This is because more
Floquet resonance is involved in the decaying process as the amplitude of the driving field increases.
In our calculation of the HHG spectrum, we have used the decay rate 2|Imz(0)d (a = 10)| ' 0.2885,
which corresponds to the lifetime of the excited state of 22 fs. (Please note that the radiative lifetime is
considered to be much longer than this value [62]). This is much shorter than the pulse width of the
driving laser used in the experiments ('100 fs) [27]. As long as the pulse width of the driving field is
longer than the lifetime of the excited state, the HHG spectrum does not depend on its pulse width.

The conventional theories of the HHG are attempting to solve the time-dependent coupled
Schrödinger equation of the electron and the radiation field as an initial value problem [31,37,57].
The problem with these theories is the validity of the Markovian approximation in deriving the kinetic
equation of the electron, as its applicability remains uncertain for the far-from-equilibrium situation
caused by the driving field [63]. Conversely, the present method attempts to solve the stationary
eigenvalue problem in the Floquet space, independent of the initial condition [46,53], where the
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irreversible time-symmetry breaking is not derived as a result of the Markov approximation for the
equation but as a rigorous result of the dynamics caused by the resonance singularity [41,42,44,55].
The present method is an extension of the complex eigenvalue problem of the total Hamiltonian to
the Floquet space. Because we have dealt with the HHG photon emission as a coherent quantum
process including the radiation field, we may study the time evolution of the quantum coherence of a
single photon with different modes 〈â†

q âk〉t, in terms of which we analyze the creation of the quantum
coherence through the nonlinear interaction of the electron and the driving field.

In this work, we have assumed the delta-pulse for the excitation pump pulse, which equally
excites all the Floquet modes by white excitation. In a real situation, the excitation pulse has a finite
pulse width that is as long as 10∼100 fs. It will be interesting to study the effect of a finite pulse width
of the excitation, whereby the frequency correlation between the excitation light and the HHG photon
can be clarified. Another interesting subject is the competition between the Raman scattering process
and the luminescence process in coherent resonant scattering spectroscopy under an intense driving
laser field [64–67]. A study of the effect of the excitation pulse width on the HHG is now underway.
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HHG High-Harmonic Generation
TLS Two-Level System
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Appendix A. Hamiltonian of the Driven TLS

In this section, we shall derive the driven TLS Hamiltonian Equation (4) starting from an
off-diagonal coupling of the TLS with the radiation field.

We consider spontaneous photon emission from a driven two-level system (TLS) consisting of the
ground state |1〉 and an excited state |2〉 with the excitation energy ∆0 ≡ E2 − E1. The TLS is driven
energetically by a monochromatic phase-locked laser field, as shown in Figure 1. The TLS is excited
from the ground state to the excited state at t = 0 by a delta-function pulse, followed by spontaneous
emission under the energy driving. The Hamiltonian is given by Equation (1):

Ĥ(t) = E1|1〉〈1|+ (E1 + ∆0)|2〉〈2|+ E(t) (|1〉〈2|+ |2〉〈1|)

+
∫

ωk â†
k âkdk + λ

∫
Ck (|1〉〈2|+ |2〉〈1|) (âk + â†

k)dk (A1)

≡ ĤTLS(t) + ĤR + ĤTLS,R (A2)

We solve the adiabatic eigenvalue problem of the driven TLS:

ĤTLS(t)|φj(t)〉 = λj(t)|φj(t)〉 , (j = ±) . (A3)
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The adiabatic eigenvalues are given by

λ±(t) =
∆0

2
± 1

2

√
∆2

0 + 4E2(t) , (A4)

and the corresponding eigenstates are

|φ+(t)〉 = cos ϕ(t)|1〉+ sin ϕ(t)|2〉 ,

|φ−(t)〉 = − sin ϕ(t)|1〉+ cos ϕ(t)|2〉 , (A5)

where

tan ϕ(t) = −E(t)
∆0

(A6)

We consider the situation where the energy gap between the ground state and the excited state is
much larger than the amplitude of the driving field:

∆0 � |E0| , (A7)

and the amplitude is much larger than the energy quanta of the driving field,

E0 � ω . (A8)

Under these conditions, we can rewrite Ĥ(t) in terms of the adiabatic eigenstates as

Ĥ(t) = −2E2(t)
∆0

|φ−(t)〉〈φ−(t)|+
(

∆0 +
2E2(t)

∆0

)
|φ+(t)〉〈φ+(t)|

+
∫

ωk â†
k âkdk + λ

∫
Ck (|φ+(t)〉〈φ−(t)|+ |φ−(t)〉〈φ+(t)|)

(
âk + â†

k

)
dk .

(A9)

Shifting the energy origin to −2E2(t)/∆0, we have

Ĥ(t) =

(
∆0 +

4E2
0

∆0
+

2E2
0

∆0
cos(ωt + θ)

)
|φ+(t)〉〈φ+(t)|

+
∫

ωk â†
k âkdk + λ

∫
Ck (|φ+(t)〉〈φ−(t)|+ |φ−(t)〉〈φ+(t)|)

(
âk + â†

k

)
dk .

(A10)

With the use of the rotating wave approximation for the TLS and the free radiation field
and defining

|e〉 ≡ |φ+(t)〉 , |g〉 ≡ |φ−(t)〉 ,
2E2

0
∆0
≡ A , (A11)

we have

Ĥad(t) = E0|g〉〈g|+ (Ee + A cos(ωt + θ)) |e〉〈e|+
∫

ωk â†
k âkdk + λ

∫
Ck

(
|e〉〈g|âk + |g〉〈e|â†

k

)
dk . (A12)

With the definition of Equation (A11), the above conditions for Equations (A7) and (A8) reduce to
Equation (3).
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Appendix B. Complex Eigenvalue Problem of the Floquet Hamiltonian

Appendix B.1. Discrete Floquet Resonance State

To solve the complex eigenvalue problem for the atom in the F -space, we use the
Feshbach—Brilloiun–Wigner projection method with the projection operators

P̂d ≡
∞

∑
n=−∞

|φ(n)
d )〉〈(φ(n)

d |,

Q̂d ≡ 1− P̂d =
∞

∑
n=−∞

∫ ∞

−∞
|k, κn)〉〈(k, κn|dk, (A13)

where P̂d is the projection operators on the Stark basis set {|φ(n)
d )〉}. Acting these projection operators

on Equation (13), we have a closed form of the eigenvalue problem of the effective Hamiltonian in the
P-subspace as

Ĥeff,d(z
(n)
α )P̂d|Φ(n)

α )〉 = z(n)α P̂d|Φ(n)
α )〉 , (A14)

〈(Φ̃(n)
α |P̂dĤeff,d(z

(n)
α ) = z(n)α 〈(Φ̃(n)

α |P̂d , (A15)

where the effective Hamiltonian Ĥeff,d(z) is given by

Ĥeff,d(z) = P̂d ĤFP̂d + P̂d ĤFQ̂d
1

z− Q̂d ĤFQ̂d
Q̂dĤFP̂d,

=
∞

∑
n,n′=−∞

χ+
n,n′(z)|φ

(n)
d )〉〈(φ(n′)

d | .
(A16)

The dynamical self-energy χn,n′(z) is given by

χ+
n,n′(z) ≡ (∆0 + nω)δn,n′ + λ2 ∑

m
Jn−m(a)Jn′−m(a)σ+(z−mω)ei(n−n′)θ , (A17)

with the self-energy σ+(z) represented as the Cauchy integral,

σ+(z) =
∫ ∞

−∞

C2
k

z−ωk
dk. (A18)

Because of the resonance singularity in the self-energy, the effective Hamiltonian becomes
non-Hermitian with the complex eigenvalues. We would emphasize that the eigenvalue problem
is nonlinear because the effective Hamiltonian depends on its own eigenvalue in the eigenvalue
problem Equation (A19). When this nonlinearity is taken into account, the eigenvalues of the effective
Hamiltonian are the same as those of the total Hamiltonian [41,47].

In our previous work, we have solved the eigenvalue problem of the Floquet Hamiltonian using
the continued fraction expansion [46]; here, the strong coupling with the driving field has been fully
incorporated in the Stark basis. With the Floquet translational symmetry Equation (9), it is enough to
consider the eigenstates for the principal mode n = 0. In the week coupling case λ� 1, we can neglect
the off-diagonal component of χn,n′(z) so that the eigenvalue problem of Ĥeff,d(z) has been solved as

Ĥeff,d(z)|φ(0)
d )〉 = z(0)d |φ

(0)
d )〉 , (A19)

where the complex eigenvalue of the resonance state is obtained by iteratively solving the nonlinear
dispersion equation
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z(0)d = χ+
0,0(z

(0)
d ) = ∆0 + λ2

+∞

∑
m=−∞

σ+(z(0)d −mω)J2
−m(a) . (A20)

The imaginary part of z(0)d is given by the decay rate of the excited state.
It should be noted that the decay rate is given by the weighted sum of the self-energy with the

Bessel function. In Figure A1, we show the calculated results of the decay rate as a function of a = A/ω.
It can be shown that if the bandwidth of the free radiation field is on the same order as ω, such as for a
photonic crystal, the decay rate may completely vanish as the coherent destruction tunneling from |e〉
to |g〉 [46].

2 4 6 8 10 12 14

0.14435

0.14430

0.14425

0.14420

Figure A1. Im[z(0)d ] as a function of the driving field amplitude for λ = 0.06, ∆0 = 20, ω = 1.

Now that we have solved the eigenvalue problem of Ĥeff,d(z) in the P-subspace, the eigenstate of
the total Hamiltonian with the same eigenvalue is obtained by adding the Q-component.

|Φ(0)
d )〉 = |φ(0)

d )〉+ 1

z(0)d − Q̂d ĤFQ̂d

Q̂d ĤFP̂d|φ(0)
d )〉

= 〈(φ(0)
d |Φ

(0)
d )〉

|φ(0)
d )〉+ λ

∞

∑
m=−∞

∫
dkCk

J−m(a)eimθ

[z− (ωk + mω)]+
z=z(0)d

|k, κm)〉

 ,

(A21)

where we take the analytic continuation toward these complex poles from the upper complex plane in
the Cauchy integral [41]. The left resonance state is similarly obtained as

〈(Φ̃(0)
d | = 〈(φ

(0)
d |+ 〈(φ

(0)
d |P̂d ĤFQ̂d

1

z(0)d − Q̂d ĤFQ̂d

= 〈(Φ̃(0)
d |φ

(0)
d )〉

〈(φ(0)
d |+ λ

∞

∑
m=−∞

∫
dkCk

J−m(a)e−imθ

[z− (ωk + mω)]+
z=z(0)d

〈(k, κm|

 ,

(A22)

where it should be noted that we need to take the same direction in the analytic continuation of the
Cauchy integral as with the right-resonance state to obtain the same complex eigenvalue.

The normalization constants of 〈(φ(0)
d |Φ

(0)
d )〉 and 〈(Φ̃(0)

d |φ
(0)
d )〉 are determined so as to satisfy the

bi-normalization condition of

〈(Φ̃d|Φd)〉 = 1 . (A23)

With use of Equations (A17), (A21), and (A22), the bi-normalization condition reads
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1 = 〈(φ(0)
d |Φ

(0)
d )〉〈(Φ̃(0)

d |φ
(0)
d )〉

{
1 + λ2 ∑

m

∫
dkC2

k
J2
−m(a)

([z− (ωk + mω)]+)2

}
(A24)

= 〈(φ(0)
d |Φ

(0)
d )〉〈(Φ̃(0)

d |φ
(0)
d )〉

(
1− d

dz
χ0,0(z)

∣∣∣∣
z=z(0)d

)
. (A25)

Appendix B.2. Dressed Radiation Field

We take the same procedure for the radiation field of the Floquet Hamiltonian. The projection for
the continuum state is taken as

P̂k ≡∑
n
|k, κn)〉〈(k, κn|,

Q̂k ≡∑
n

|φ(n)
d )〉〈(φ(n)

d |+ ∑
k′( 6=k)

|k′, κn)〉〈(k′, κn|
 . (A26)

The effective Hamiltonian can be obtained as with the resonant state,

Ĥeff,k = ∑
n
(εk + nω)|k, κn)〉〈(k, κn|. (A27)

Therefore, we get the eigenvalue problem of the effective Hamiltonian (A27)

Ĥeff,k|k, κn)〉 = (εk + nω)|k, κn)〉, (A28a)

〈(k, κn|Ĥeff,k = (εk + nω)〈(k, κn|. (A28b)

We have obtained the expression for the dressed radiation field as

|Φ(n)
k )〉 = |k, κn)〉+

1
ωk + nω− Q̂k ĤFQ̂k

Q̂k ĤFP̂k|k, κn)〉,

= |k, κn)〉+ λCk ∑
l

Jl−n(a)ei(l−n)θ ∑
m

Gk(dd)
m,l (ωk + nω)|φ(m)

d )〉

+ λCk ∑
l

Jl−n(a)ei(l−n)θ ∑
m

∑
k′( 6=k)

λVk′

(ωk + nω)− (ωk′ + mω) + i0+ ∑
m′

Jm′−m(a)Gk(dd)
m′ ,l (ωk + nω)|k′, κm)〉 ,

(A29)

where Green’s function Gk(dd)
m,l is determined by

Gk(dd)
m,l (z) ≡ 〈(φ(m)

d |
1

z− Q̂k ĤFQ̂k
|φ(l)

d )〉 = 1
z− (∆0 + lω)

{
δm,l + ∑

m′
χm,m′(z)G

k(dd)
m′ ,l (z)

}
. (A30)

In the weak coupling case, we may neglect the off-diagonal terms, approximating

Gk(dd)
m,l (z) '

δKr
m,l

z− χl,l(z)
. (A31)

Therefore, we finally obtain
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|Φ(n)
k )〉 = |k, κn)〉+ ∑

l

λCk Jl−n(a)ei(l−n)θ

ωk + nω + i0+ − χ+
l,l,DL(ωk + nω)

×
|φ(l)

d )〉+ ∑
k′( 6=k)

∑
m

λCk′ Jl−m(a)e−i(l−m)θ

ωk + nω + i0+ − (ωk′ + mω)
|k′, κm)〉

 , (A32)

〈(Φ̃(n)
k | = 〈(k, κn|+ ∑

l

λCk Jl−n(a)e−i(l−n)θ

ωk + nω + i0− − χ−l,l(ωk + nω)

×
〈(φ(l)

d |+ ∑
k′( 6=k)

∑
m

λCk′ Jl−m(a)ei(l−m)θ

ωk + nω + i0− − (ωk′ + mω)
〈(k′, κm|

 , (A33)

which give Equation (18).
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