
symmetryS S

Article

Computing Metric Dimension and Metric Basis of 2D
Lattice of Alpha-Boron Nanotubes

Zafar Hussain 1, Mobeen Munir 2,* ID , Maqbool Chaudhary 1 and Shin Min Kang 3,4,*
1 Department of Mathematics and Statistics, the University of Lahore, Lahore 54000, Pakistan;

hussainzafar888@gmail.com (Z.H.); maqboolchaudhri@gmail.com (M.C.)
2 Division of Science and Technology, University of Education, Lahore 54000, Pakistan
3 Department of Mathematics and RINS, Gyeongsang National University, Jinju 52828, Korea
4 Center for General Education, China Medical University, Taichung 40402, Taiwan
* Correspondence: mmunir@ue.edu.pk (M.M.), smkang@gnu.ac.kr (S.M.K.)

Received: 16 June 2018; Accepted: 19 July 2018; Published: 25 July 2018
����������
�������

Abstract: Concepts of resolving set and metric basis has enjoyed a lot of success because of
multi-purpose applications both in computer and mathematical sciences. For a connected graph
G(V,E) a subset W of V(G) is a resolving set for G if every two vertices of G have distinct
representations with respect to W. A resolving set of minimum cardinality is called a metric basis
for graph G and this minimum cardinality is known as metric dimension of G. Boron nanotubes
with different lattice structures, radii and chirality’s have attracted attention due to their transport
properties, electronic structure and structural stability. In the present article, we compute the metric
dimension and metric basis of 2D lattices of alpha-boron nanotubes.
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1. Introduction

In a complex network, one is always interested to uniquely identify the location of nodes by
assigning an address with reference to a particular set. Such a particular set with minimum possible
nodes is known as the metric basis and its cardinality is known as the metric dimension.

These facts have been efficiently utilized in drug design to attack on particular nodes. Some
computational aspects of carbon and boron nanotubes have been summed up in [1]. Similarly, a moving
point in a graph may be located by finding the distance from the point to the collection of sonar stations,
which have been properly positioned in the graph [2]. Thus, finding a minimal sufficiently large set of
labeled vertices, such that a robot can find its position, is a problem known as robot navigation, already
well-studied in [3]. This sufficiently large set of labeled vertices is a resolving set of the graph space and
the cardinality of such a set with minimum possible elements is the metric dimension. Similarly, on
another node, a real-world problem is the study of networks whose structure has not been imposed by
a central authority but is also brought into light from local and distributed processes. Obtaining a map
of all nodes and the links between them is difficult as well as expensive. To have a good approximation
of the real network, a frequently used technique is to attain a local view of network from multiple
dimensions and join them. The metric dimension also has some applications in this respect as well.

In nanomaterials, nanowires, nanocrystals, and nanotubes formulate three main classes.
Boron nanotubes are becoming highly attractive due to their extraordinary features, including work
function, transport properties, electronic structure, and structural stability, [3,4]. Triangular boron and
α-boron are deduced from a triangular sheet and an α-sheet as shown in Figure 1 below.
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Figure 1. (a) 2D lattice of Triangular Boron Tubes; (b) 2D-lattice of alpha-boron Tubes. 

The first boron nanotubes were made, in 2004, from a buckled triangular latticework [4]. The 
other famous type, alpha-boron, is constructed from an α-sheet. Both types are more conductive than 
carbon nanotubes regardless of their structure and chiralities. Due to an additional atom at the center 
of some of the hexagons, alpha-boron nanotubes have a more complex structure than triangular 
boron nanotubes [4]. This structure is the most stable known theoretical structure for boron 
nanotubes. With this specimen, boron nanotubes should have variable electrical properties, where 
wider ones should be metallic conductors, but narrower ones should be semiconductors. These tubes 
will replace carbon nanotubes in Nano devices like diodes and transistors. The following figure 
represents alpha-boron nanotubes. 

The subject matter of the present article is the metric dimension of the 2D-lattices of alpha-boron 
nanotubes. An elementary problem in chemistry is to provide a distinct mathematical representation 
for the set of atoms, molecules, or compounds in a big structure. Consequently, the huge structure of 
a chemical compound under discussion can be represented by a labeled graph whose vertex and edge 
labels specify the atom and bond types, respectively. So, a graph-theoretic interpretation of this 
problem is to provide unique mathematical representations for the vertices of a graph in such a way 
that distinct vertices have distinct representations [5]. Going with a similar idea, we associate a 2D 
planar graph corresponding to the structure where nodes or vertices are represented for atoms, and 
where edges are actually the bonds between them. For the basics of graph theory, we refer to [6]. 

Let G be a connected graph and u, w be any two vertices of G. The length of the shortest path 
between u and w is called the distance between u and w and the number of edges between u and v in 
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representation with respect to w , then w  is called a resolving set of G (see [7–10]). A resolving 
set of minimum cardinality is called a basis of G and this minimum cardinality is the metric 
dimension of G, denoted by dim(G). 

The concept of the metric dimension was first crafted for metric spaces of a continuous nature 
but later on, these concepts were used for graphs. In fact, Slater initiated the concepts of metric 
dimension and resolving sets and these concepts were also studied by Melter and Harary 
independently in [11,12]. Resolving sets have been analyzed a lot since then. The resolving sets have 
applications in many fields including network discovery and verification [13], connected joins in 

Figure 1. (a) 2D lattice of Triangular Boron Tubes; (b) 2D-lattice of alpha-boron Tubes.

The first boron nanotubes were made, in 2004, from a buckled triangular latticework [4]. The other
famous type, alpha-boron, is constructed from an α-sheet. Both types are more conductive than carbon
nanotubes regardless of their structure and chiralities. Due to an additional atom at the center of
some of the hexagons, alpha-boron nanotubes have a more complex structure than triangular boron
nanotubes [4]. This structure is the most stable known theoretical structure for boron nanotubes.
With this specimen, boron nanotubes should have variable electrical properties, where wider ones
should be metallic conductors, but narrower ones should be semiconductors. These tubes will replace
carbon nanotubes in Nano devices like diodes and transistors. The following figure represents
alpha-boron nanotubes.

The subject matter of the present article is the metric dimension of the 2D-lattices of alpha-boron
nanotubes. An elementary problem in chemistry is to provide a distinct mathematical representation
for the set of atoms, molecules, or compounds in a big structure. Consequently, the huge structure
of a chemical compound under discussion can be represented by a labeled graph whose vertex and
edge labels specify the atom and bond types, respectively. So, a graph-theoretic interpretation of
this problem is to provide unique mathematical representations for the vertices of a graph in such a
way that distinct vertices have distinct representations [5]. Going with a similar idea, we associate a
2D planar graph corresponding to the structure where nodes or vertices are represented for atoms,
and where edges are actually the bonds between them. For the basics of graph theory, we refer to [6].

Let G be a connected graph and u, w be any two vertices of G. The length of the shortest path
between u and w is called the distance between u and w and the number of edges between u and v
in this shortest path is denoted by d(u, v). Let W = {w1, w2, w3, . . . , wn} be an ordered set of vertices
of G and v ∈ V(G). The k-vector (d(v, w1), d(v, w2), d(v, w3), . . . , d(v, wn)) is called the representation
r(v|w) of v with respect to w. If the distinct vertices of G have a distinct representation with respect to
w, then w is called a resolving set of G (see [7–10]). A resolving set of minimum cardinality is called a
basis of G and this minimum cardinality is the metric dimension of G, denoted by dim(G).

The concept of the metric dimension was first crafted for metric spaces of a continuous nature
but later on, these concepts were used for graphs. In fact, Slater initiated the concepts of metric
dimension and resolving sets and these concepts were also studied by Melter and Harary independently
in [11,12]. Resolving sets have been analyzed a lot since then. The resolving sets have applications in
many fields including network discovery and verification [13], connected joins in graphs, strategies
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for the mastermind games [14], applications to problems of pattern recognition, image processing,
combinatorial optimization, pharmaceutical chemistry, and game theory. In [8,10], authors computed
metric dimension of some graphs and proved that it is 1 if and only if graph is the path Pn. The metric
dimension of complete graph Kn is n− 1 for n > 1 and the metric dimension of cycle graph Cn is
2 for n > 1 [8]. In [7], authors computed the metric dimension of the Cartesian products of some
graphs. In [9], Imran et al. computed the metric dimension of the generalized Peterson graph. Also,
generalized Petersen graphs p(n, 2), antiprisms An, and circulant graphs Cn(1, 2) are families of graphs
with a constant metric dimension [15]. In [16], Imran et. al. discussed some families of graphs with a
constant metric dimension. Ali et al. computed partial results about the metrics dimension of classical
Mobius Ladders in [17], whereas Munir et al. computed the exact and full results for this family
in [18]. In [19], authors computed the metric dimension of a generalized wheel graph and ant-web gear
graph. Authors also gave a new family of convex polytopes with an unbounded metric dimension [19].
Recently authors in [20] computed metric dimension of some families of Gear graphs. Manuel et.
al. computed the metric dimension of a honey-comb network in [21]. In [22], the authors computed
the metric dimension of circulant graphs. In [23], authors computed explicit formula for the metric
dimension of a regular bipartite graph. Imran et al. computed the metric dimension of a Jahangir
graph in [24]. Authors discussed the metric dimension of the circulant and Harary graph in [25].

In the present article, we intend to compute the metric dimension of 2D lattices of an α-boron
Nanotube. For the rest of this article, we reserve the symbol Tm,n for the 2D lattice of the α-boron
Nanotube of dimensions m and n. We use the term lattice only to denote the 2D sheet of the alpha-boron
tubes. The vertices of the alpha-boron sheet in the first row are u11, u12, u13, . . . , u1n, in second row
u21, u22, . . . , u2n, in third row u31, u32, u34, u35, u37, u38 . . . , u3n, etc. The representation of vertices is uij,
where i is the row number and j is the column number. For the sake of simplicity, we label the vertices
in Figure 2 as 11, 12, 13 etc. instead of u11, u12, u13 etc. Please see below, Figure 2.
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In the tubes, m1 and 1n are connected with each other, whereas in the 2D-lattice these vertices are
at n− 1 distance apart, see Figure 3.
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2. Main Results

Theorem 1. For all m, n ∈ Z+ and m < n, we have dim(Tm,n) = 2.

Proof. We consider the following labelling of vertices of 2D-lattice of alpha-boron tubes as depicted in
the above figure. Consider m× n 2D-lattice of α−boron nanotubes. The vertex set of G is partitioned as

{u11, u12, u13, . . . , u1n, u21, u22, . . . , u2n, u41, u42, . . . , u4n, u51, u52, . . . , u5n, u71, u72, . . . , u7n, . . . , um1, um2,

. . . , umn} ∪ {u31, u32, u34, u35, u37, u38 . . . , u3n, u61, u63, u64, u66, u67, u69, . . . , u6n, u91, u92, u94, u95, u97, u98, . . . . . . , u9n}

If m < n
Let W = {u11, u1n}. We prove that W is a resolving set for Tm,n. The representations of different

vertices of Tm,n are
For i = 1, r(u ij|W) = (j− 1, n− j); 1 ≤ j ≤ n

For i = 2, r(u ij|W) =

{
(1, n); j = 1

(j− 1, n + 1− j); 2 ≤ j ≤ n

In general, for 3 < i ≤ m where i is odd and i 6= 3k

r(u ij|W) =


(i− 1, n + i−1

2 − j); 1 ≤ j ≤ i−1
2

(j + i−3
2 , n + i−1

2 − j); i+1
2 ≤ j ≤ n− i−1

2

(j + i−3
2 , i− 1); n− i−3

2 ≤ j ≤ n

In general, for 4 ≤ i ≤ m where i is even and i 6= 3k

r(u ij|W) =


(i− 1, n + i

2 − j); 1 ≤ j ≤ i
2

(j + i−4
2 , n + i

2 − j); i+2
2 ≤ j ≤ n− i−2

2

(j + i−4
2 , i− 1); n− i−4

2 ≤ j ≤ n
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For i = 3k, 3k is odd and j 6= 3p

r(u ij|W) =


(i− 1, n + i−1

2 − j); 1 ≤ j ≤ i−1
2

(j + i−3
2 , n + i−1

2 − j); i+1
2 ≤ j ≤ n− i−1

2

(j + i−3
2 , i− 1); n− i−3

2 ≤ j ≤ n

For i = 3k, 3k is even and j 6= 3p− 1

r(u ij|W) =


(i− 1, n + i

2 − j); 1 ≤ j ≤ i
2

(j + i−4
2 , n + i

2 − j); i+2
2 ≤ j ≤ n− i−2

2

(j + i−4
2 , i− 1); n− i−4

2 ≤ j ≤ n

These representations are distinct. So W is a resolving set for Tm,n and the dim(Tm,n)≤ 2. Since Tm,n

is not a path so dim(Tm,n) ≥ 2. Hence the dim(Tm,n) = 2 in this case. �

Theorem 2. For all m, n ∈ Z+ and m ≥ n, we have dim(Tm,n) ≤ 3,

Proof. Let W = {u11, u1n, um1}. We prove that W is a resolving set. The representations of vertices uij
with respect to W are

Case I: m is odd with n ≤ m < 2n and m 6= 6k + 1

For i = 1, r(u ij|W) =

{
(j− 1, n− j, m− 1); 1 ≤ j ≤ m+1

2(
j− 1, n− j, j + m−3

2
)
; m+3

2 ≤ j ≤ n

For i = 2, r(u ij|W) =


(1, n, m− 2); j = 1

(j− 1, n + 1− j, m− 2); 2 ≤ j ≤ m+1
2(

j− 1, n + 1− j, j + m−5
2
)
; m+3

2 ≤ j ≤ n

If i is odd and i 6= 3k then
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ i−1

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m− i); i+1

2 ≤ j ≤ m−(i−2)
2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ n− i−1

2

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+2)

2 ); n− i−3
2 ≤ j ≤ n

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ m−(i−2)

2 ,

(i− 1, n +
⌊

i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ i−1

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); i+1
2 ≤ j ≤ n− i−1

2

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+2)

2 ); n− i−3
2 ≤ j ≤ n

If i is even and i 6= 3k then
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for 3 < i ≤
⌈m

2
⌉

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ i

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m− i); i+2

2 ≤ j ≤ m−(i−3)
2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+3)

2 ); m−(i−5)
2 ≤ j ≤ n− i−2

2

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+3)

2 ); n− i−4
2 ≤ j ≤ n

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ m−(i−3)

2 ,

(i− 1, n +
⌊

i
2

⌋
− j, j + m−(i+3)

2 ); m−(i−5)
2 ≤ j ≤ i

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+3)

2 ); i+2
2 ≤ j ≤ n− i−2

2

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+3)

2 ); n− i−4
2 ≤ j ≤ n

If m = 6k + 1 with i 6= 3k and i is odd
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ i−1

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m− i); i+1

2 ≤ j ≤ m−i
2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m− i + 1); j = m−(i−2)

2

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ n− i−1

2 ,

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+2)

2 ); n− i−3
2 ≤ j ≤ n,

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ m−i

2 ,

(i− 1, n +
⌊

i
2

⌋
− j, m− i + 1); j = m−(i−2)

2 ,

(i− 1, n +
⌊

i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ i−1

2

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); i+1
2 ≤ j ≤ n− i−1

2 ,

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+2)

2 ); n− i−3
2 ≤ j ≤ n,

If m = 6k + 1 with i 6= 3k and i is even
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ i

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m− i); i+2

2 ≤ j ≤ m−(i−1)
2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m− i + 1); j = m−(i−3)

2

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−5)
2 ≤ j ≤ n− i−2

2 ,

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+2)

2 ); n− i−4
2 ≤ j ≤ n,
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for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ m−(i−1)

2 ,

(i− 1, n +
⌊

i
2

⌋
− j, m− i + 1); j = m−(i−3)

2 ,

(i− 1, n +
⌊

i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−5)
2 ≤ j ≤ i

2

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); i+2
2 ≤ j ≤ n− i−2

2 ,

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+2)

2 ); n− i−4
2 ≤ j ≤ n,

If i = 3k and 3k is odd
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ i−1

2 , j 6= 3l

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m− i); i+1

2 ≤ j ≤ m−(i−2)
2 , j 6= 3l

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ n− i−1

2 , j 6= 3l

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+2)

2 ); n− i−3
2 ≤ j ≤ n, j 6= 3l

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ m−(i−2)

2 , j 6= 3l

(i− 1, n +
⌊

i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ i−1

2 , j 6= 3l

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); i+1
2 ≤ j ≤ n− i−1

2 , j 6= 3l

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+2)

2 ); n− i−3
2 ≤ j ≤ n, j 6= 3l

If i = 3k and 3k is even
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ i

2 , j 6= 3l − 1

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m− i); i+2

2 ≤ j ≤ m−(i−3)
2 , j 6= 3l − 1

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+3)

2 ); m−(i−5)
2 ≤ j ≤ n− i−2

2 , j 6= 3l − 1

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+3)

2 ); n− i−4
2 ≤ j ≤ n, j 6= 3l − 1

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ m−(i−3)

2 , j 6= 3l − 1

(i− 1, n +
⌊

i
2

⌋
− j, j + m−(i+3)

2 ); m−(i−5)
2 ≤ j ≤ i

2 , j 6= 3l − 1

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+3)

2 ); i+2
2 ≤ j ≤ n− i−2

2 , j 6= 3l − 1

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+3)

2 ); n− i−4
2 ≤ j ≤ n, j 6= 3l − 1

Case II: If m is even and m 6= 6k + 2
For i is odd and i 6= 3k
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for 3 < i ≤
⌈m

2
⌉

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ i−1

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m− i); i+1

2 ≤ j ≤ m−(i−1)
2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+1)

2 ); m−(i−3)
2 ≤ j ≤ n− i−1

2

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+1)

2 ); n− i−3
2 ≤ j ≤ n

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ m−(i−1)

2 ,

(i− 1, n +
⌊

i
2

⌋
− j, j + m−(i+1)

2 ); m−(i−3)
2 ≤ j ≤ i−1

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+1)

2 ); i+1
2 ≤ j ≤ n− i−1

2

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+1)

2 ); n− i−3
2 ≤ j ≤ n

If i is even i 6= 3k
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ i

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m− i); i+2

2 ≤ j ≤ m−(i−2)
2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ n− i−2

2

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+2)

2 ); n− i−4
2 ≤ j ≤ n

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ m−(i−2)

2 ,

(i− 1, n +
⌊

i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ i

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); i+2
2 ≤ j ≤ n− i−2

2

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+2)

2 ); n− i−4
2 ≤ j ≤ n

If m = 6k + 2 with i 6= 3k and i is odd
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ i−3

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m− i); i−1

2 ≤ j ≤ m−(i+1)
2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m− i + 1); j = m−(i−1)

2

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−3)
2 ≤ j ≤ n− i−1

2 ,

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+2)

2 ); n− i−3
2 ≤ j ≤ n,



Symmetry 2018, 10, 300 9 of 13

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ m−(i+1)

2 ,

(i− 1, n +
⌊

i
2

⌋
− j, m− i + 1)); j = m−(i−1)

2 ,

(i− 1, n +
⌊

i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−3)
2 ≤ j ≤ i−3

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); i−1
2 ≤ j ≤ n− i−1

2 ,

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+2)

2 ); n− i−3
2 ≤ j ≤ n,

If m = 6k + 2 with i 6= 3k and i is even
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ i

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m− i); i+2

2 ≤ j ≤ m−i
2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m− i + 1); j = m−(i−2)

2

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ n− i−2

2 ,

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+2)

2 ); n− i−4
2 ≤ j ≤ n,

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ m−i

2 ,

(i− 1, n +
⌊

i
2

⌋
− j, m− i + 1); j = m−(i−2)

2 ,

(i− 1, n +
⌊

i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ i−2

2 ,

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); i
2 ≤ j ≤ n− i−2

2 ,

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+2)

2 ); n− i−4
2 ≤ j ≤ n,

If i = 3k and 3k is odd
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ i−1

2 , j 6= 3k

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m− i); i+1

2 ≤ j ≤ m−(i−2)
2 , j 6= 3k

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ n− i−1

2 , j 6= 3k

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+2)

2 ); n− i−3
2 ≤ j ≤ n, j 6= 3k

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ m−(i−2)

2 , j 6= 3k

(i− 1, n +
⌊

i
2

⌋
− j, j + m−(i+2)

2 ); m−(i−4)
2 ≤ j ≤ i−1

2 , j 6= 3k

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+2)

2 ); i+1
2 ≤ j ≤ n− i−1

2 , j 6= 3k

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+2)

2 ); n− i−3
2 ≤ j ≤ n, j 6= 3k
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If i = 3k and 3k is odd
for 3 < i ≤

⌈m
2
⌉

r(u ij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ i

2 , j 6= 3k− 1

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, m− i); i+2

2 ≤ j ≤ m−(i−3)
2 , j 6= 3k− 1

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+3)

2 ); m−(i−5)
2 ≤ j ≤ n− i−2

2 , j 6= 3k− 1

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+3)

2 ); n− i−4
2 ≤ j ≤ n, j 6= 3k− 1

for
⌈m

2
⌉
+ 1 ≤ i ≤ m

r(uij|W) =



(i− 1, n +
⌊

i
2

⌋
− j, m− i); 1 ≤ j ≤ m−(i−3)

2 , j 6= 3k− 1

(i− 1, n +
⌊

i
2

⌋
− j, j + m−(i+3)

2 ); m−(i−5)
2 ≤ j ≤ i

2 , j 6= 3k− 1

(j +
⌊

i−3
2

⌋
, n +

⌊
i
2

⌋
− j, j + m−(i+3)

2 ); i+2
2 ≤ j ≤ n− i−2

2 , j 6= 3k− 1

(j +
⌊

i−3
2

⌋
, i− 1, j + m−(i+3)

2 ); n− i−4
2 ≤ j ≤ n, j 6= 3k− 1

For i = 2n− 1, r(uij|W) = (2n− 2, 2n− 2, j− 1); 1 ≤ j ≤ n

For i = 2n− 2, r(uij|W) =

{
(2n− 3, 2n− 2, 1); j = 1

(2n− 3, 2n− 3, j− 1); 2 ≤ j ≤ n

If m is odd, r ≥ 2 and rn ≤ m < (r + 1)n
For i = rn + k where 0 ≤ k ≤ n− 1
If i is odd,

r(uij|W) =

 (rn + k− 1, rn + k− 1, m− i); 1 ≤ j ≤ m−(rn+k−2)
2(

rn + k− 1, rn + k− 1, j + m−(rn+k+2)
2

)
; m−(rn+k−4)

2 ≤ j ≤ n

If i is even,

r(uij|W) =

 (rn + k− 1, rn + k− 1, m− i); 1 ≤ j ≤ m−(rn+k−3)
2(

rn + k− 1, rn + k− 1, j + m−(rn+k+3)
2

)
; m−(rn+k−5)

2 ≤ j ≤ n

If i = 3k, i is odd and j 6= 3p then

r(uij|W) =

 (rn + k− 1, rn + k− 1, m− i); 1 ≤ j ≤ m−(rn+k−2)
2(

rn + k− 1, rn + k− 1, j + m−(rn+k+2)
2

)
; m−(rn+k−4)

2 ≤ j ≤ n

If i = 3k, i is even and j 6= 3p− 1 then

r(uij|W) =

 (rn + k− 1, rn + k− 1, m− i); 1 ≤ j ≤ m−(rn+k−3)
2(

rn + k− 1, rn + k− 1, j + m−(rn+k+3)
2

)
; m−(rn+k−5)

2 ≤ j ≤ n

If m is even, r ≥ 2 and rn ≤ m < (r + 1)n
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For i = rn + k where 0 ≤ k ≤ n− 1 If i is odd,

r(uij|W) =

 (rn + k− 1, rn + k− 1, m− i); 1 ≤ j ≤ m−(rn+k−1)
2(

rn + k− 1, rn + k− 1, j + m−(rn+k+1)
2

)
; m−(rn+k−3)

2 ≤ j ≤ n

If i is even,

r(uij|W) =

 (rn + k− 1, rn + k− 1, m− i); 1 ≤ j ≤ m−(rn+k−2)
2(

rn + k− 1, rn + k− 1, j + m−(rn+k+2)
2

)
; m−(rn+k−4)

2 ≤ j ≤ n

If i = 3k, i is odd and j 6= 3p then

r(uij|W) =

 (rn + k− 1, rn + k− 1, m− i); 1 ≤ j ≤ m−(rn+k−1)
2(

rn + k− 1, rn + k− 1, j + m−(rn+k+1)
2

)
; m−(rn+k−3)

2 ≤ j ≤ n

If i = 3k, i is even and j 6= 3p− 1 then

r(uij|W) =

 (rn + k− 1, rn + k− 1, m− i); 1 ≤ j ≤ m−(rn+k−2)
2(

rn + k− 1, rn + k− 1, j + m−(rn+k+2)
2

)
; m−(rn+k−4)

2 ≤ j ≤ n

These representations are distinct. So, W is a resolving set for Tm,n. Therefore, the metric
dimension of Tm,n is ≤3. Now we prove that the metric dimension of Tm,n is greater than 2. For this
we shall prove that any set of cardinality two does not resolve. �

Theorem 3. For all m, n ∈ Z+ and m ≥ n, we have dim(Tm,n) ≥ 3,

Proof. Let W =
{

uij, upq
}

be a resolving set for Tm,n. We consider all possibilities and come up with a
contradistinction in each case. The following three possibilities arise

Possibility 1: If uij, upq lie on the same row then i = p.

If W = {u11, u1n} then r(un+1, n
2
|W) = r(u n+1, n+2

2
|W
)

if n is even and

r(un+1, n+1
2
|W) = r(u n+1, n+3

2
|W
)

, if n is odd so both cases result in contradiction. In all remaining
possibilities, we denote ux instead of r(ux|W) where no confusion arises.

(i) If W =
{

uij, uiq
}

and 1 ≤ i < m and 1 ≤ j < q < n then ui,q+1= ui+1,q+1, a contradiction.

(ii) If W =
{

uij, uiq
}

and 1 ≤ i < m, i = 3k and 1 ≤ j < q < n then ui−1,j= ui+1,j or ui−1,j−1= ui+1,j−1,
a contradiction.

(iii) If W =
{

uij, uiq
}

and 1 ≤ i < m and 1 < j < q = n then ui,j−1= ui+1,j, a contradiction.

(iv) If W =
{

umj, umq
}

and 1 ≤ j < q < n then um,q+1= um−1,q or um,q+1= um−1,q+1, a contradiction.

(v) If W =
{

umj, umq
}

and 1 < j < q = n then um,j−1= um−1,j, a contradiction.

(vi) If W = {ui1, uin} and 1 < i < m then ui−1,1= ui+1,1, a contradiction.
(vii) If W = {um1, umn} and then um−n,3= um−n,4, a contradiction.

Possibility 2: If uij, upq lie on the same column then j = q.

(i) If W = {u11, um1} then u21= u22, a contradiction.
(ii) If W =

{
ui1, uj1

}
and 1 ≤ i < j < m then uj3= uj+1,3 or uj3= uj+1,2, a contradiction.

(iii) If W =
{

ui1, uj1
}

and 1 < i < j = m then ui3= ui−1,2 or ui3= ui−1,3, a contradiction.
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(iv) If W =
{

uiq, ujq
}

, 1 ≤ i < j < m and 1 < q < n then uj+1,q= uj+1,q+1 or uj+1,q = uj+1,q−1,
a contradiction.

(v) If W =
{

uiq, ujq
}

, 1 < i < j ≤ m and 1 < q < n then ui−1,j−1= ui−1,j or ui−1,j= ui−1,j+1,
a contradiction.

(vi) If W =
{

uiq, ujq
}

, i = 1, j = m and 1 < q < n then u2,j = u2,j+1, a contradiction.

(vii) If W =
{

ui,n−1, uj,n−1
}

and i < j < m then uj,n−2= uj+1,n−2 or uj,n−3= uj+1,n−2, a contradiction.

(viii) If W = {u1,n, um,n} then either um−1,n−1= um−1,n or um−2,n−1= um−2,n, a contradiction.

Possibility 3: If uij, upq lie neither on the same row nor the same column so i 6= p and j 6= q.
Let W =

{
ui,j, up,q

}
. Since i 6= p so let i < p.

(i) If j < q then up,q+1= up+1,q+1 or up,q+1= up+1,q, a contradiction
(ii) If j > q then up−1,q= up,q+1 or up−1,q+1= up,q+1, a contradiction
(iii) If i = 1 and p = m then u2,j = u2,j+1 or u1,j+1 = u2,j+1 or um−1,q+1 = um,q−1, a contradiction.

So any set with cardinality 2 does not resolve Tm,n. So, the metric dimension of Tm,n is greater
than 2. Hence metric dimension of Tm,n is 3 if m > n. �

3. Conclusions and Discussion

In the present article, we computed the metric dimension of a 2D-lattice of alpha-boron nanotubes,
Tm,n, and have come up with the following summarized result:

dim(Tm,n)=

{
2 if m < n

3 if m ≥ n

It is evident that the dimension depends upon the size of the 2D sheet. These results
have applications in drug design, networking communication, robot navigations, designing
new nano-devices and nano-engineering. Actually, these results are useful for engineer and
hardware-designers that use alpha-boron sheets in different industries. It is overwhelming that
they can capture the whole sheet uniquely if they know the resolving set and metric dimension. It can
save time and cost if they choose only two or three vertices depending upon the size of the sheet using
our results. We can conclude that every atom in the 2D sheet of alpha-boron nanotubes can be uniquely
accessed and controlled by its metric basis whose cardinality is 2 or 3 depending upon the dimensions
of the sheet.
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