
symmetryS S

Article

Vegetation Greening for Winter Oblique Photography
Using Cycle-Consistence Adversarial Networks

Xiaowei Xue 1 ID , Chunxue Wu 1 ID , Ze Sun 2, Yan Wu 3 ID and Neal N. Xiong 1,* ID

1 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology,
Shanghai 200093, China; xxw199423@163.com (X.X.); wcx@usst.edu.cn (C.W.)

2 School of Tourism and Geography Science, Jilin Normal University, Changchun 130024, China;
sun_ze@sina.com

3 School of Public and Environment Affairs, Indiana University, Bloomington, IN 47408, USA;
wuyan8910@126.com

* Correspondence: xiongnaixue@gmail.com; Tel.: +86-150-0184-2414

Received: 27 May 2018; Accepted: 18 July 2018; Published: 20 July 2018
����������
�������

Abstract: A 3D city model is critical for the construction of a digital city. One of the methods of
building a 3D city model is tilt photogrammetry. In this method, oblique photography is crucial for
generating the model because the visual quality of photography directly impacts the model’s visual
effect. Yet, sometimes, oblique photography does not have good visual quality due to a bad season or
defective photographic equipment. For example, for oblique photography taken in winter, vegetation
is brown. If this photography is employed to generate the 3D model, the result would be bad visually.
Yet, common methods for vegetation greening in oblique photography rely on the assistance of
the infrared band, which is not available sometimes. Thus, a method for vegetation greening in
winter oblique photography without the infrared band is required, which is proposed in this paper.
The method was inspired by the work on CycleGAN (Cycle-consistence Adversarial Networks).
In brief, the problem of turning vegetation green in winter oblique photography is considered as a
style transfer problem. Summer oblique photography generally has green vegetation. By applying
CycleGAN, winter oblique photography can be transferred to summer oblique photography, and the
vegetation can turn green. Yet, due to the existence of “checkerboard artifacts”, the original result
cannot be applied for real production. To reduce artifacts, the generator of CycleGAN is modified.
As the final results suggest, the proposed method unlocks the bottleneck of vegetation greening when
the infrared band is not available and artifacts are reduced.

Keywords: intelligence big data; adversarial network; oblique photography; vegetation greening

1. Introduction

A 3D city model is critical for the construction of a digital city. It is broadly used to provide
information for urban planning, construction, management and emergency response. One of the
methods to build a 3D city model is tilt photogrammetry [1]. Such a method generates the model using
oblique photography, in which the visual quality of oblique photography directly impacts the final
results’ visual effect. Accordingly, it is important to take oblique photography with good visual quality.

Yet, due to the bad effects from defective photographic equipment, bad weather or season,
oblique photography may have poor visual quality sometimes. One of the situations is taking oblique
photography in winter. For oblique photography taken in winter, the vegetation is usually brown,
and the image color is not bright. If this photography were used to generate a 3D model [2], the result
would be poor, as shown in Section 4. To generate a model with good visual quality, it is required
to improve the oblique photography’s visual quality. Yet, common methods like [3] need oblique
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photography’s infrared band to help turn the vegetation green, which is not available sometimes.
Hopefully, a method capable of turning vegetation green without the infrared band can be found.

In recent years, the convolutional neural network has been applied in a large number of domains,
and great success has been achieved. In the image-to-image translation area, Cycle-consistence
Adversarial Networks (CycleGAN) [4] arouses much attention by virtue of its excellent performance.
It is capable of capturing features of one image collection and finding out how these features could be
translated into another image collection. One of the impressive examples is its amazing transformation
between summer style and winter style. Inspired by this, vegetation greening in winter oblique
photography could serve as a style transfer problem for the reason that oblique photography taken
in summer usually has green vegetation. To verify the feasibility of this assumption, winter oblique
photography is converted into summer oblique photography using CycleGAN. As the result suggests,
vegetation becomes green after applying CycleGAN in winter oblique photography. Yet, “checkerboard
artifacts” are also found in transferred winter oblique photography. To reduce “checkerboard artifacts”,
CycleGAN’s generator is modified with respect to its kernels. As the final result suggests, vegetation
becomes green after the transformation, and artifacts are successfully reduced, as shown in Section 4.

To sum up, the contributions of our work are listed as follows.

(1) Vegetation greening in winter oblique photography is achieved. In comparison with common
methods, the infrared band is no longer required.

(2) Checkerboard artifacts are reduced after CycleGAN is modified. The transferred photography
can be applied in production.

(3) The model can be trained with unpaired images, which is practical.

The rest of this paper is organized as follows: In the next section, we review the relevant work
about unpaired image-to-image translation, GAN and cycle consistency. The proposed method is
illustrated in Section 3. The comparison between the proposed method and other methods is drawn in
Section 4. The last section draws the conclusions and discusses the future work.

2. Related Works

Unpaired image-to-image translation: The concept of image-to-image translation was first
proposed in [5]. Then, numerous methods for image-to-image translation have been proposed. On the
whole, these methods can fall into two groups. The first one is based on paired images for training,
and the second one is based on unpaired images.

For methods [5–10] in the first one, a lack of paired images poses a big challenge [4]. In practice,
it is hard and expensive to prepare paired images for training. One of the examples is artistic stylization.
For every input image to be stylized, it is hard to prepare its corresponding output because these
desired outputs are highly sophisticated. To overcome the limitation of insufficient paired images,
methods that do not require paired images for training have been proposed.

In [11], image-to-image translation based on unpaired images was achieved using a Bayesian
network. In [12], a Bayesian network was combined with a neural network to perform efficient
inference, so that a direct probabilistic model can be learned. In [13], an unsupervised image-to-image
translation network based on a variational autoencoder and GAN was proposed. It helped realize
learning without paired images under GAN. In [14], GAN was also employed to help build a Coupled
Generative Adversarial Network (CoGAN), in which the network can learn joint distributions of
different styles of images. In recent work, CycleGAN [4] aroused great attention by virtue of its
state-of-the-art performance. One example was its amazing translation between summer and winter.

Generate adversarial network: The Generate Adversarial Network (GAN) has a short history.
In 2014, GAN was firstly proposed in [15], and great success had been achieved. Then, different types
of GAN were proposed. In [16], a Laplacian pyramid was applied to an adversarial network, so that
coarse images could be made fine. In [17], a deep convolutional generative adversarial network was
proposed. It narrowed the gap between supervised learning and unsupervised learning. The work
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in [18] proposed a recurrent adversarial network. It could generate image samples for training.
The work in [19] came up with an interpretable representation learning using Information maximizing
Generative Adversarial Network (InfoGAN). It was capable of learning disentangled representations
in a completely unsupervised condition. The work in [20] listed several methods for better training of
GAN, and [21] explained the principles of GAN in terms of energy.

Cycle consistency: The use of cycle consistency as a way to regularize data has a long history.
Cycle consistency consists of forward consistency and backward consistency. It has served as
a trick for decades [22]. In [23–25], higher-order cycle consistency was used in different tasks,
like human translation, 3D shape matching and depth estimation. Especially, in the work of [25,26],
cycle consistency loss served as a method to train the neural network. This forms a strategy
in CycleGAN.

3. The Proposed Method

Our method aims to turn vegetation green in winter oblique photography when the infrared band
is not available. By using CycleGAN, this purpose can be achieved when winter oblique photography
is transferred to summer oblique photography. Beside, CycleGAN’s generator is modified by adjusting
the kernel’s size to reduce “checkerboard artifacts” in transferred photography.

3.1. CycleGAN

Image-to-image translation might be difficult because paired images are hard to prepare for
the model’s training. For instance, in our case, it is hard to find winter oblique photography’s
corresponding to summer oblique photography. To handle this problem, CycleGAN is introduced
to achieve an image-to-image translation. After training without paired images, the well-trained
CycleGAN model can be employed to realize a mapping from winter oblique photography to summer
oblique photography. Figure 1 shows an example of winter oblique photography and summer
oblique photography.
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Figure 1. A comparison of vegetation in winter oblique photography and summer oblique photography.
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First and foremost, we define X as winter oblique photography’s style domain and Y as summer
oblique photography’s style domain. These domains’ distributions are denoted as x~pdata(x) and
y~pdata(y), respectively. Every oblique photography that pertains to winter is denoted as {xi}N

i=1,
where xi ∈ X. Every oblique photography that pertains to summer is denoted as

{
yj
}M

j=1, where yj ∈ Y.
Besides, there are two mappings G: X→Y and F: Y→X. The first one translates winter oblique
photography to summer oblique photography, and the second one translates summer oblique
photography to winter oblique photography. The transferred winter oblique photography is denoted
as {G(x)}. Likewise, the transferred summer oblique photography is denoted as {F(y)}.

In addition, there are also two discriminators DX and DY in CycleGAN. DX is responsible for
distinguishing real winter photography {xi}N

i=1 and fake winter photography (transferred summer
photography) {F(y)}. DY is responsible for distinguishing real summer photography

{
yj
}M

j=1 and fake
summer photography (transferred winter photography) {G(x)}.

The structure of CycleGAN is shown in Figure 2.
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CycleGAN consists of two mappings G: X→Y and F: Y→X and two discriminators DX and DY, as
shown in Figure 2. DY helps G: X→Y better translates winter photography to summer photography,
and the same goes for F: Y→X and DX.

3.2. Adversarial Loss

Adversarial loss [15] is used for both mapping G: X→Y and F: Y→X. For the mapping G: X→Y
and its discriminator DY, the loss is defined as:

LGAN(G, DY, X, Y) = Ey∼pdata(y)[log DY(y)]
+Ex∼pdata(x)[log(1− DY(G(x)))]

(1)

In CycleGAN, G tries to generate photography {G(x)} that is close to the distribution of domain Y,
while DY seeks to distinguish fake {G(x)} and real

{
yj
}M

j=1. G attempts to minimize Equation (1),
while DY tries to maximize it. Thus, the target of mapping G: X→Y is written as:

min
G

max
DY

LGAN(G, DY, X, Y) (2)

Likewise, the target of mapping F: Y→X can be written as:

min
F

max
DX

LGAN(F, DX , Y, X) (3)

3.3. Cycle Consistency Loss

The increase of cycle consistency loss [4] aims to ensure that learned mapping can map {xi}N
i=1

to desired output
{

yj
}M

j=1. For x from domain X, the image cycle translation should be able to bring
it to its origin, which is written as x→G(x)→F(G(x)) ≈ x. Equally, there is y→F(y)→G(F(y)) ≈ y.
Then, cycle consistency loss is defined as:
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Lcyc(G, F) = Ex∼pdata(x)[
∣∣∣∣∣∣F(G(x))− x

∣∣∣∣∣∣2]
+Ey∼pdata(y)[

∣∣∣∣∣∣G(F(y))− y
∣∣∣∣∣∣2] (4)

where Ex∼pdata(x)[
∣∣∣∣∣∣F(G(x))− x

∣∣∣∣∣∣2] and Ey∼pdata(y)[
∣∣∣∣∣∣F(G(y))− y

∣∣∣∣∣∣2] are forward cycle loss and
backward cycle loss, respectively.

3.4. Total Loss

The final objective is:

L(G, F, DX , DY) = LGAN(G, DY, X, Y)
+LGAN(F, DX , Y, X)

+λLcyc(G, F)
(5)

where λ determines the importance of cycle consistency loss. By experiments, λ is set as 11 here.

3.5. Elimination of Checkerboard Artifacts

We can find some small artifacts [27] called “checkerboard artifacts” if taking a close look at the
image generated by the neural network. These artifacts make the generated image look poor in detail.

Figure 3a is the input photography, and Figure 3b is the output photography. Figure 3c,d shows
the parts of Figure 3b where “checkerboard artifacts” are obvious.
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In [28], the cause of artifacts is clarified. In brief, the neural network often uses the deconvolution
operation to build images from low resolution to high resolution. In this period, uneven overlap is
created, which leads to the appearance of artifacts, especially in an image’s dark region.

To reduce artifacts in generated images, [29] came up with several solutions.

(1) Renounce the use of the deconvolution operation. The method instead is: first, use up-sampling
methods to build the image in the desired size; then, use the convolution operation to process the
image. The choices of up-sampling methods are the nearest neighbor method and the bilinear
method. The author of [29] recommended the nearest neighbor method.

(2) Adjust the kernel’s size in the model’s generator. Adjust the kernel’s size to enable it to be split
by stride. In CycleGAN’s generator, some layer’s kernel size is 3 with a stride of 2. Following the
instruction of [29], these kernels’ size is modified to 4, so that it can be divided by 2.

After experiments, Solution (2) is adopted to reduce artifacts of Solution (1), which does not
reduce artifacts obviously. More details can be seen in Section 4.

The whole process can be illustrated as follows.

Process 1: CycleGAN training process.

Preparation: Training images of winter X and training images of summer Y, mapping G with
generated parameters θG and mapping F with yielded parameters θF, discriminator DX with yielded

parameters θDX and discriminator DY with yielded parameters θDY .
Input: x ∈ X and y ∈ Y

Do
Step1: update θG, θDY to minimize LGAN(G,DY,X,Y) and Ex∼pdata(x)[

∣∣∣∣∣∣F(G(x))− x
∣∣∣∣∣∣2] .

Step2: update θF, θDX to minimize LGAN(F,DX,Y,X) and Ey∼pdata(y)[
∣∣∣∣∣∣F(G(y))− y

∣∣∣∣∣∣2] .
Until convergence

4. Experimental Results

4.1. Dataset

Training data of winter oblique photography were acquired from Changsha, Hunan Province.
Summer oblique photography was captured from Jingjiang, Jiangsu Province. It is noteworthy that all
the photography should be at the same resolution. Otherwise, the training would be hard.
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4.2. Implementation Details

The generator used in CycleGAN was from [30]. For promotion, some kernels’ size was changed,
so that “checkerboard artifacts” could be reduced. The structure of the modified generator is defined
in Table 1.

Table 1. Structure of our generator.

Layer

Input
Reflection padding (3 × 3)

64 × 7 × 7 conv, Stride 1, Instance Norm, ReLU
128 × 4 × 4 conv, Stride 2, Instance Norm, ReLU
256 × 4 × 4 conv, Stride 2, Instance Norm, ReLU

Residual Block, 256 filter (9 blocks)
128 × 4 × 4 deconv, Stride 2, Instance Norm, ReLU
64 × 4 × 4 deconv, Stride 2, Instance Norm, ReLU

3 × 7 × 7 conv, stride 1
Tanh

conv means convolution, deconv means deconvolution, Tanh is activation function.

This generator has 4 layers with the kernel size of 4 and 9 residual blocks [31] under the instance
norm [32].

The structure of the residual block is illustrated in Figure 4.
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Our experiments were performed on an NVIDIA Titan XP GPU. The operation system was
Windows 7, and PyTorch served as the deep learning framework. It took us 3 days to finish the training.
Because of the paper’s typesetting, the images of some figures may be compressed. For the original
images, see https://github.com/carlblocking/results-of-my-first-sci-paper.

4.3. Results and Comparison

First and foremost, a comparison of the 3D model with good and bad visual quality is shown
as mentioned in Section 1. Figure 5a is the result of the original photography, and Figure 5b is

https://github.com/carlblocking/results-of-my-first-sci-paper
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from transferred photography. These images were captured from the 3D model’s look-down angle.
They were generated using the software smart3D. It is obvious that Figure 5b has better visual quality
than 5a. The vegetation is greener, and the image is brighter.
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by the original photography and (b) is generated by the transferred photography.

Then, the solutions mentioned in Section 3 with the aim to reduce artifacts were tested. The results
suggest that Solution (2) produces a satisfactory outcome, as shown in Figure 6.
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Figure 6a is the input photography. Figure 6b is Solution (1)’s output. Figure 6c is Solution (2)’s
output. It is obvious that Figure 6c has better visual quality than Figure 6b because Figure 6b has an
effect like an oil painting. Furthermore, artifacts are reduced in Figure 6c. Accordingly, Solution (2)
served as an improvement to CycleGAN’s generator here.
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In CycleGAN’s code [4], there are two different generators. One is from paper [30], which was
applied in the realization of CycleGAN [4]. The other is U-net [33]. To compare different generators’
performance, experiments based on our modified generator and these two generators were performed.
First, these generators were tested on winter oblique photography taken in Hengyang, Hunan Province.
The result is shown in Figure 7.

In Figure 7, inputs are the oblique photography of a building and a garden. In the result of the
generator of [30], artifacts can be found at the edge of buildings and the garden’s shadow. Artifacts
were not obvious in results of the U-net generator and our modified generator. The difference may not
be obvious due to the compression of image. To better show the results, SSIM (Structure Similarity
index) is introduced here [34].
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In Figure 7, photography from different generators is compared with the input photography
in terms of SSIM. The results are listed in Table 2. The results of the generator of [30] achieved the
lowest SSIM, suggesting the existence of artifacts. The U-net generator and our modified generator
achieved higher SSIM, suggesting fewer artifacts. Yet, this suggests that our modified generator
achieved lower SSIM than the U-net generator. This is because the results from our modified generator
were greener than those of U-net generator’s, which made the generated photography more different
from the original input photography. To verify this, these generators were tested on another group of
oblique photography.

Table 2. Comparison of SSIM from different generators.

Generator from [30] U-Net Generator Our Modified Generator

0.7346 0.9189 0.8978
0.6279 0.8379 0.8363

In Figure 8, the inputs are the oblique photography of the countryside in Qiqihar, Heilongjiang
Province. It shows another type of oblique photography with poor visual quality. They were taken in
bad weather, so that the brightness was low. In general, these generators have successfully improved
these inputs’ visual quality. Yet, in the results of the generator from [30], artifacts remained. In the
results of the U-net generator and our modified generator, artifacts were reduced. Yet, U-net generator’s
result was less green in vegetation in comparison with the results from our modified generator. To better
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show this difference, we tested the U-net generator and our modified generator on another group
of photographs.
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input, the generator of [30], the U-net generator and our modified generator.

In Figure 9, the input oblique photography involves the mountains of Changsha, Hunan
Province. The photography was taken in winter. The vegetation was not green. After transformation,
the vegetation turned green in both generators’ results. Yet, it is observed from Figure 9 that our
modified model achieved better performance than U-net as the vegetation was greener.
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Figure 9. Results of different generators tested on another photograph set. From left to right are the
results from: input, the U-net generator and our modified generator.

To evaluate the performances of different generators, they were compared in terms of forward
cycle loss and backward cycle loss.

Forward cycle loss was generally lower than backward cycle loss, as listed in Table 3. Our model
achieved the lowest loss in both forward cycle loss and backward cycle loss. As defined in Section 3,
forward cycle loss evaluates the performance of mapping F: Y→X, which translates summer oblique
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photography to winter oblique photography. Backward cycle loss evaluates the performance of
mapping G: X→Y, which translates winter oblique photography to summer oblique photography.

One assumption can explain why forward cycle loss was lower than backward cycle loss: that it
might be easier for mapping F: Y→X to degrade the visual quality of the photography. Conversely, it is
difficult for mapping G: X→Y to recover photography from low visual quality to high visual quality.
Thus, mapping G: X→Y is subject to higher loss than that of mapping F: Y→X.

Table 3. Comparison of forward cycle loss and backward cycle loss with different generators.

Generator Forward Cycle Loss Backward Cycle Loss

Generator from [30] 0.05 0.49
U-net generator 0.11 0.55

Our modified generator 0.015 0.32

Besides, in backward cycle loss, the generator from [30] obtains the highest value. This could be
attributed to the existence of artifacts. Furthermore, our modified generator’s loss value was lower
than that of the U-net generator. This was probably because our modified generator produced better
results than U-net, as the vegetation was greener. Yet, none of these assumptions have theoretical
proof. Hence, deeper research is required in the future.

Finally, an experiment of using transferred oblique photography to build the 3D model
was performed.

First, the original input photography and its corresponding transferred results are shown in
Figure 10. In Figure 10a is the oblique photography taken in bad weather, and Figure 10b is the
transferred result of this photograph. The original input photography was not bright, and its vegetation
was not green. Common methods cannot turn the vegetation green when the infrared band is not
available. Using our well-trained model, the photography can be improved significantly.
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Then, the transferred photography was employed to generate a 3D model. It is clear from Figure 11
that the generated 3D model had a good visual effect.
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Yet, in very rare cases, our model made the building slightly green in darkness, as shown in
Figure 12. We are now finding the reasons for and solutions to this problem.

In Figure 12, the wall becomes slightly green in darkness.
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5. Conclusions and Discussion

In this paper, a new vegetation greening method using CycleGAN for oblique photography was
proposed. Unlike common methods, the infrared band is not required to help turn the vegetation
green. By adjusting the kernel size of CycleGAN’s generator, “checkerboard artifacts” are reduced in
the final result.

Yet, in very few cases, buildings in darkness become green. Deeper research to handle these
problems is needed in the future.
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