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Abstract: Microaggregation refers to partitioning n given records into groups of at least k records
each to minimize the sum of the within-group squared error. Because microaggregation is
non-deterministic polynomial-time hard for multivariate data, most existing approaches are heuristic
based and derive a solution within a reasonable timeframe. We propose an algorithm for refining the
solutions generated using the existing microaggregation approaches. The proposed algorithm refines
a solution by iteratively either decomposing or shrinking the groups in the solution. Experimental
results demonstrated that the proposed algorithm effectively reduces the information loss of
a solution.
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1. Introduction

Protection of publicly released microdata from individual identification is a primary societal
concern. Therefore, statistical disclosure control (SDC) is often applied to microdata before releasing
the data publicly [1,2]. Microaggregation is an SDC method, which functions by partitioning a dataset
into groups of at least k records each and replacing the records in each group with the centroid of the
group. The resulting dataset satisfies the “k-anonymity constraint,” thus protecting data privacy [3].
However, replacing a record with its group centroid results in information loss, and the amount of
information loss is commonly used to evaluate the effectiveness of a microaggregation method.

A constrained clustering problem underlies microaggregation, in which the objective is to
minimize information loss and the constraint is to restrict the size of each group of records to not
fewer than k. This problem can be solved in polynomial time for univariate data [4]; however, it has
been proved non-deterministic polynomial-time hard for multivariate data [5]. Therefore, most
existing approaches for multivariate data are heuristic based and derive a solution within a reasonable
timeframe; consequently, no single microaggregation method outperforms other methods for all
datasets and k values.

Numerous microaggregation methods have been proposed, e.g., the Maximum Distance to
Average Vector (MDAV) [6], Diameter-Based Fixed-Size (DBFS) [7], Centroid-Based Fixed-Size
(CBFS) [7], Two Fixed Reference Points (TFRP) [8], Multivariate Hansen–Mukherjee (MHM) [9],
Density-Based Algorithm [10], Successive Group Minimization Selection (GSMS) [11], and Fast
Data-oriented Microaggregation [12]. They generate a solution that satisfies the k-anonymity constraint
and minimizes the information loss for a given dataset and an integer k. A few recent studies
have focused on refining the solutions generated using existing microaggregation methods [13–16].

Symmetry 2018, 10, 262; doi:10.3390/sym10070262 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-6844-1182
http://www.mdpi.com/2073-8994/10/7/262?type=check_update&version=1
http://dx.doi.org/10.3390/sym10070262
http://www.mdpi.com/journal/symmetry


Symmetry 2018, 10, 262 2 of 13

The most widely used method for refining a microaggregation solution is to determine whether
decomposing each group of records in the solution by adding its records to other groups can reduce
the information loss of the solution. This method, referred to as TFRP2 in this paper, is originally
used in the second phase of the TFRP method [8] and has been subsequently adopted by many
microaggregation approaches [10,11].

Because the above microaggregation approaches are based on simple heuristics and do not always
yield satisfactory solutions, there is room to improve the results of these existing approaches. Our aim
here is to develop an algorithm for refining the results of the existing approaches. The developed
algorithm should help the existing approaches to reduce the information loss further.

The remainder of this paper is organized as follows. Section 2 defines the microaggregation
problem. Section 3 reviews relevant studies on microaggregation approaches. Section 4 presents the
proposed algorithm for refining a microaggregation solution. The experimental results are discussed
in Section 5. Finally, conclusions are presented in Section 6.

2. Microaggregation Problem

Consider a dataset D of n points (records), xi, i∈{1, . . . ,n}, in the d-dimensional space. For a given
positive integer k ≤ n, the microaggregation problem is to derive a partition P of D, such that |p| ≥ k
for each group p∈P and SSE(P) is minimized. Here, SSE(P) denotes the sum of the within-group
squared error of all groups in P and is calculated as follows:

SSE(P) = ∑
p∈P

SSE(p), (1)

SSE(p) = ∑
x∈p

(
x− xp

)T(x− xp
)
, (2)

xp = ∑
x∈p

x/|p|. (3)

The information loss incurred by the partition P is denoted as IL(P) and is calculated as follows:

IL(P) = SSE(P)/SST(D), (4)

SST(D) = ∑
x∈D

(x− x)T(x− x), (5)

x = ∑
x∈D

x/|D|. (6)

Because SST(D) is fixed for a given dataset D, regardless of how D is partitioned, minimizing
SSE(P) is equivalent to minimizing IL(P). Furthermore, if a group contains 2k or more points, it can
be split into two or more groups, each with k or more points, to reduce information loss. Thus,
in an optimal partition, each group contains at most 2k − 1 points [17].

This study proposed an algorithm for refining the solutions generated using the existing
microaggregation methods. The algorithm reduces the information loss of a solution by either
decomposing or shrinking a group in the solution. Experimental results obtained using the standard
benchmark datasets show that the proposed algorithm effectively improves the solutions generated
using state-of-the-art microaggregation approaches.

3. Related Work

3.1. Microaggregation Approaches

Many microaggregation approaches are based on a fixed-size heuristics in which groups of size
k are iteratively built around the selected records [6–8,10,11]. These approaches mainly differ in
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two aspects: selection of the first record for each group and formation of a group of size k from the
selected record.

Let T denote the remaining unpartitioned records in D. Initially, T = D. Common methods to
choose from T for the first record of a new group are as follows: the record (denoted as r) furthest from
the centroid of T (e.g., MDAV [6] and CBFS [7]), the record furthest from r (e.g., MDAV [6]), the two
records in T most distant from each other (e.g., DBFS [7]), and the two records furthest from the two
fixed reference points of D (e.g., TFRP [8]), where the reference points are separately determined from
the maximal and minimal values over all attributes in D.

Once the first record of a group is determined, one of the following two methods is commonly
adopted to grow the group to size k. The first method (referred to as Nearest Neighbors and denoted
as NN) is to form a group with the selected record and its k − 1 nearest neighbors in T [6,8,10,11].
The other (referred as Nearest to Center and denoted as NC) is to iteratively update the centroid of the
group and add the record in T that is nearest to the centroid of the group until the size of the group
reaches k [7]. The first method is faster, whereas the second is inclined towards minimizing the SSE of
the generated group.

GSMS [11], a fixed-size approach, adopts a different approach to iteratively build groups of size k.
Instead of choosing a record and then forming a group, it forms a candidate group for each record
in T by using the record and its k − 1 nearest records. Subsequently, the candidate group p with the
smallest SSE(p) + SSE(T/p) is selected, where T/p denotes the difference of T and p. A priority queue is
maintained for each record in T to update all candidate groups rapidly. However, such an arrangement
could result in high space complexity.

To speed up the fixed-size approaches, one can either use an efficient way to pick the first record
of each group [18–20] or reduce the size of the dataset to be processed [21]. In Refs. [18–20], the authors
first sorted all records by an auxiliary attribute. To build a new group, they used the first unassigned
record in this ordering as the first record of the new group, and then grew the new group to size k
by adding the first record’s k − 1 nearest neighbors. In Ref. [21], the authors first selected several
attributes that have a high mutual information measure with other attributes. Then, they applied
MDAV on the projection of the dataset on those selected attributes. Finally, the partition results were
extended to all attributes to calculate each group’s centroid.

In addition to fixed-size heuristics, many microaggregation approaches were derived using
methods not originally designed for the multivariate microaggregation problem. For example,
MDAV–MHM [9] first adopted heuristics (e.g., MDAV) to order the multivariate records and then
used Hansen–Mukherjee method (a microaggregation approach for univariate data [4]) to partition
the data according to this ordering. Other examples include Ref. [7] and Ref. [22], which extended the
minimal spanning tree partitioning algorithm [23], and Ref. [17], which extended Ward’s agglomerative
hierarchical clustering algorithm [24] to the microaggregation problem.

In this work, we focused on the k-anonymity constraint. However, many extensions of the
k-anonymity appeared in the literature, e.g., l-diversity [25], t-closeness [26] and (k, ε, l)-anonymity [27].
Ref. [28] proposed a microaggregation method to steer the microaggregation process such that the
desired privacy constraints were satisfied.

3.2. Refining Approaches

Most approaches for refining a microaggregation solution involved iteratively generating new
solutions and searching for possible improvements [13–16]. Clustering algorithms, such as k-means
and h-means, were adopted in [13] to modify a microaggregation solution. This approach used
a pattern search algorithm to search for the appropriate value of a parameter.

Iterative MHM, proposed in Ref. [14], built groups of a microaggregation solution according
to constrained clustering and linear programming relaxation and then fine-tuned the results using
an integrated iterative approach. Its solution was built on the microaggregation solution generated
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using the MDAV method, and the number of groups in the solution was determined in the same
manner as in MDAV-MHM [9].

An iterative local search approach [15] was proposed to refine a microaggregation solution.
During the local search, the microaggregation solution was improved by swapping a record between
two groups and shifting a record from one group to another. Furthermore, to explore the results using
a different number of groups, the number of groups in a solution was updated randomly within an
optimal range in each iteration. In addition, the “dissolve” operation (same as the TFRP2 method
described in Section 1) and the “distill” operation (i.e., forming a new group by removing records from
groups with more than k records) were used to adjust the number of groups in the solution.

Similar to Ref. [15], another iterative local search approach proposed in [16] used swapping
and shifting of the records between two groups to refine a microaggregation solution. This method
expanded the search space by allowing more than one swapping or shifting in each iteration of the
local search.

4. Proposed Algorithm

Figure 1 shows the pseudocode of the proposed algorithm for refining a microaggregation solution.
The input to the algorithm is a partition P of a dataset D generated using a fixed-size microaggregation
approach, such as CBFS, MDAV, TFRP, and GSMS. Because a fixed-size microaggregation approach
repeatedly generates groups of size k, it maximizes the number of groups in its solution P. By using
this property, our proposed algorithm focuses only on reducing the number of groups rather than
randomly increasing and decreasing the number of groups, as in Ref. [15].

The proposed algorithm repeats two basic operations until both operations cannot yield a new
and enhanced partition. The first operation, Decompose (line 4; Figure 1), fully decomposes each
group to other groups if the resulting partition reduces the SSE (Figure 2). This operation is similar to
the TFRP2 method described in Section 1. For each group p, this operation checks whether moving
each record in p to its nearest group reduces the SSE of the solution.

Because the Decompose operation could result in groups with 2k or more records, at its completion
(line 9; Figure 2), this operation calls the SplitLargeGroups function to split any group with 2k or more
records into several new groups such that the number of records in each new group is between k and
2k − 1. The SplitLargeGroups function (Figure 3) follows the CBFS method [7]. For any group p with
2k or more records, this function finds the record r∈p most distant from the centroid of p and forms
a new group pr = {r} (lines 4–7; Figure 3). It then repeatedly adds to pr the record in p nearest to the
centroid of pr until |pr| = k (lines 8–12; Figure 3). This process is repeated to generate new groups
until |p| ≤ k (lines 3–14; Figure 3). The remaining records in p are added to their nearest groups (lines
15–17; Figure 3).

The second operation, Shrink (line 5; Figure 1), shrinks any group with more than k records
(Figure 4). For any group p with more than k records, this operation searches for and moves the
record xmin∈p such that moving xmin to another group reduces the SSE the most (lines 3–14; Figure 4).
This process is repeated until p has only k records remaining or the resulting partition cannot further
reduce the SSE (lines 2–15; Figure 4). Similar to the Decompose operation, the Shrink operation results
in groups with 2k or more records and calls the SplitLargeGroups function to split these over-sized
groups (line 17; Figure 4).
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Notably, at most, bn/kc groups are present in a solution. Because lines 1–8 in Figure 2 and lines
1–16 in Figure 4 require searching for the nearest group of each record, their time complexity is O
(n2/k). The time complexity of the SplitLargeGroups function is O (k2 × n/k). Thus, an iteration of
the Decompose and Shrink operations (lines 3–5; Figure 1) entails O (n2/k + k2 × n/k) = O (n2) time
computation cost.

The proposed algorithm differs from previous work in two folds. First, the Shrink operation
explores more opportunities for reducing SSE. Figure 5a gives an example. The upper part of Figure 5a
shows the partition of 12 records (represented by small circles) generated by MDAV for k = 3. First,
the Decompose operation decomposes group p3 and merges its content into groups p2 and p4, as shown
in the middle part of Figure 5a. At this moment, the Decompose operation cannot further reduce the
SSE of the partition result. However, the Shrink operation can reduce the SSE by moving a record from
group p2 to group p1, as shown in the bottom part of Figure 5a.

Second, previous work performs the Decompose operation only once and ignores the fact that,
after the Decompose operation, the grouping of records may have been changed and consequently
new opportunities of reducing the SSE may appear [8,10,11]. Thus, the proposed algorithm repeatedly
performs both Decompose and Shrink operations to explore such possibilities until it cannot improve
the SSE any further. Figure 5b gives an example. The upper part of Figure 5b shows the partition of
13 records generated by MDAV for k = 3. At first, the Decompose operation can only reduce the SSE
by decomposing group p3 and merging its content into groups p2 and p4. Because group p2 now has
2k or more records, it is split into two groups, p21 and p22, as shown in the middle part of Figure 5b.
The emergence of the group p21 provides an opportunity to further reduce the SSE by decomposing
group p21 and merging its content into groups p1 and p22, as shown in the bottom part of Figure 5b.
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5. Experiment

5.1. Datasets

Three datasets commonly used for testing microaggregation performance were adopted in
this experiment [9]: Tarragona (834 records in a 13-dimensional space), Census (1080 records in
a 13-dimensional space), and EIA (4092 records with 11 numerical attributes). The original EIA dataset
contained 15 attributes, out of which 13 were numeric. We discarded the two numeric attributes (YEAR
and MONTH) and used the remaining 11 numeric attributes. Although there is no consensus on which
attributes should be used, the aforementioned settings are the most widely adopted [7–9,11,13,14,29].
However, differences exist; for example, Ref. [15] used only 10 attributes from both the Census and EIA
datasets. When comparing the experimental results from previous studies, one should check whether
the same set of attributes was used in the experiments.

Consistent with most studies, before microaggregation, each attribute in each dataset is
normalized to have zero mean and unit variance. This normalization step ensures that no single
attribute has a disproportionate effect on the microagregation results. In Ref. [30], the theoretical
bounds of information loss for these three datasets were derived. Without applying this normalization
step, the information loss might be lower than the theoretical bound derived in Ref. [30] (e.g., Ref. [19]).

5.2. Experimental Settings

As described in Section 4, the proposed algorithm refines the solution generated using a fixed-size
microaggregation approach. Seven fixed-size microaggregation approaches were adopted in this
study: CBFS-NN, CBFS-NC, MDAV-NN, MDAV-NC, TFRP-NN, TFRP-NC and GSMS-NN. The prefix
(i.e., CBFS, TFRP, MDAV, or GSMS, described in Section 3.1) indicates the heuristic used to select
the first record of each group, and the suffix (i.e., NN or NC, described in Section 3.1) indicates the
method used to grow the selected record to a group of k records. NN refers to forming a group using
the selected record and its k − 1 nearest neighbors, and NC refers to forming a group by iteratively
updating the centroid of the group and adding the record nearest to the centroid until the size of
the group reaches k. MDAV-NN, CBFS-NC, TFRP-NN, and GSMS-NN are the same as MDAV [6],
CBFS [7], TFRP [8], and GSMS [11] in the literature, respectively. Furthermore, we did not extend
GSMS to GSMS-NC because maintaining the candidate groups in GSMS by using the NC method
was too costly. Recalled from Section 3.1, the original GSMS [11] (referred to as GSMS-NN in this
paper) needs to maintain a candidate group for each record which contains the record and its k-1
nearest unassigned neighbors. In each iteration, GSMS chooses one candidate group as a part of
the final partition and updates the content of the other candidate groups to exclude those records in
the selected candidate group. Because repeatedly updating the content of these candidate groups is
time-consuming, GSMS maintains a priority queue for each record r that sorts all of the records by their
distances to r. Thus, the original GSMS essentially uses the NN method to form each group. If GSMS
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adopts the NC method to form each group, then the priority queue technique is no longer feasible
because the NC method is based on the distances to the groups’ centroids, not to a fixed record r as in
the NN method. That is, each time a group’s centroid changes, the corresponding priority queue must
be rebuilt, making GSMS-NC an inefficient alternative.

We applied the proposed algorithm to refine the solution generated by each of the seven fixed-size
microaggregation approaches. The resulting methods are referred to as CBFS-NN3, CBFS-NC3,
MDAV-NN3, MDAV-NC3, TFRP-NN3, TFRP-NC3, and GSMS-NN3. Moreover, as a performance
baseline, we applied TFRP2 to refine the solution generated using each of the seven fixed-size
microaggregation approaches. Specifically, TFRP2 was implemented by executing the Decompose
function (Figure 2) once. We referred to the resulting methods as CBFS-NN2, CBFS-NC2, MDAV-NN2,
MDAV-NC2, TFRP-NN2, TFRP-NC2, and GSMS-NN2. Notably, TFRP-NN2 and GSMS-NN2 are the
same as TFRP2 [8] and GSMS-T2 [11], respectively, in the literature. Table 1 summarizes all of the
tested methods.

Table 1. Tested methods.

Tested Method Heuristic for Selecting the
1st Record of Each Group

Heuristic for Growing a Group
to Size k

Method for Refining
a Solution

CBFS-NN CBFS Nearest Neighbors to 1st record None
CBFS-NN2 CBFS Nearest Neighbors to 1st record TFRP2
CBFS-NN3 CBFS Nearest Neighbors to 1st record Our method in Figure 1
CBFS-NC CBFS Nearest to group’s Centroid None

CBFS-NC2 CBFS Nearest to group’s Centroid TFRP2
CBFS-NC3 CBFS Nearest to group’s Centroid Our method in Figure 1
MDAV-NN MDAV Nearest Neighbors to 1st record None

MDAV-NN2 MDAV Nearest Neighbors to 1st record TFRP2
MDAV-NN3 MDAV Nearest Neighbors to 1st record Our method in Figure 1
MDAV-NC MDAV Nearest to group’s Centroid None

MDAV-NC2 MDAV Nearest to group’s Centroid TFRP2
MDAV-NC3 MDAV Nearest to group’s Centroid Our method in Figure 1
TFRP-NN TFRP Nearest Neighbors to 1st record None

TFRP-NN2 TFRP Nearest Neighbors to 1st record TFRP2
TFRP-NN3 TFRP Nearest Neighbors to 1st record Our method in Figure 1
TFRP-NC TFRP Nearest to group’s Centroid None

TFRP-NC2 TFRP Nearest to group’s Centroid TFRP2
TFRP-NC3 TFRP Nearest to group’s Centroid Our method in Figure 1
GSMS-NN GSMS Nearest Neighbors to 1st record None

GSMS-NN2 GSMS Nearest Neighbors to 1st record TFRP2
GSMS-NN3 GSMS Nearest Neighbors to 1st record Our method in Figure 1

5.3. Experimental Results

Tables 2–4 show the information loss using each method in Table 1 for different values of k in
the Tarragona, Census, and EIA datasets, respectively. For brevity, we refer to those methods without
applying any refinement heuristic as the Unrefined methods (i.e., all method names without a suffix
“2” or “3” in the first column of Table 1), and those methods applying the TFRP2 heuristic to refine
a solution as the TFRP2 methods (i.e., all method names with a suffix “2”). Although the TFRP2
methods always achieved a lower information loss than their corresponding Unrefined methods did
on the Census and EIA datasets, our methods (i.e., all method names with a suffix “3”) could yield
an even lower information loss than the TFRP2 methods did on these two datasets (Tables 3 and 4).

The italicized entries in Table 2 indicate that, for the Tarragona dataset, the TFRP2 methods
could not improve the solutions provided by the Unrefined methods only in five cases (i.e., CBFS-NN,
CBFS-NC and GSMS-NN at k = 3, and MDAV-NN at k = 5 and 10). However, our methods could not
improve the Unrefined methods only in three cases (i.e., CBFS-NN, CBFS-NC and GSMS-NN at k = 3).
Therefore, our methods are more effective than the TFRP2 methods in refining the solutions of the
Unrefined methods. The best result for each k value is shown in bold in Tables 2–4.
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Table 2. The information loss (%) in the Tarragona dataset.

Method/k 3 4 5 10 20 30

CBFS-NN 16.966 19.730 22.819 33.215 42.955 49.489
CBFS-NN2 16.966 19.227 22.588 33.211 42.944 49.481
CBFS-NN3 16.966 18.651 22.268 33.173 42.872 49.404
CBFS-NC 15.617 19.230 22.609 37.105 47.685 56.042

CBFS-NC2 15.617 19.210 22.150 36.892 46.415 53.212
CBFS-NC3 15.617 19.172 21.434 36.290 41.848 47.231
MDAV-NN 16.9326 19.546 22.4613 33.192 43.195 49.483

MDAV-NN2 16.9324 19.029 22.4613 33.192 43.099 49.460
MDAV-NN3 16.9320 18.434 22.4612 33.184 42.771 49.261
MDAV-NC 15.631 19.176 22.712 36.992 47.705 56.370

MDAV-NC2 15.617 19.140 22.284 36.955 46.167 52.705
MDAV-NC3 15.598 19.068 21.409 36.389 41.122 47.297
TFRP-NN 17.112 19.995 23.412 33.557 43.416 50.187

TFRP-NN2 17.070 19.715 23.136 33.405 43.343 49.965
TFRP-NN3 16.954 19.275 22.408 32.866 42.652 48.512
TFRP-NC 17.629 19.511 23.222 35.645 47.654 55.604

TFRP-NC2 16.702 19.374 23.171 35.400 46.317 53.050
TFRP-NC3 16.021 19.233 22.839 34.909 41.358 47.034
GSMS-NN 16.610 19.050 21.948 33.234 43.023 49.433

GSMS-NN2 16.610 19.046 21.723 33.230 43.008 49.429
GSMS-NN3 16.610 19.039 21.311 33.208 42.932 49.395

Table 3. The information loss (%) in the Census dataset.

Method/k 3 4 5 10 20 30

CBFS-NN 5.654 7.441 8.884 14.001 19.469 23.881
CBFS-NN2 5.648 7.439 8.848 13.902 19.384 23.651
CBFS-NN3 5.644 7.406 8.554 12.809 17.938 21.509
CBFS-NC 5.348 7.173 8.685 14.341 21.390 26.505

CBFS-NC2 5.337 7.165 8.656 14.117 20.470 24.848
CBFS-NC3 5.325 7.139 8.575 12.672 17.365 20.326
MDAV-NN 5.692 7.495 9.088 14.156 19.578 23.407

MDAV-NN2 5.683 7.434 9.054 14.017 19.492 23.289
MDAV-NN3 5.660 7.218 8.950 12.809 18.129 21.201
MDAV-NC 5.343 7.290 8.945 14.361 21.364 25.123

MDAV-NC2 5.335 7.265 8.898 14.043 20.091 23.686
MDAV-NC3 5.334 7.222 8.698 12.648 17.481 20.647
TFRP-NN 5.864 7.965 9.252 14.369 20.167 23.607

TFRP-NN2 5.805 7.831 9.039 14.042 19.817 23.063
TFRP-NN3 5.735 7.428 8.408 13.024 18.211 21.112
TFRP-NC 5.645 7.636 9.301 14.834 21.719 26.725

TFRP-NC2 5.546 7.496 9.037 14.265 20.555 25.031
TFRP-NC3 5.466 7.382 8.796 12.963 17.973 20.892
GSMS-NN 5.564 7.254 8.686 13.549 18.792 22.432

GSMS-NN2 5.545 7.251 8.597 13.452 18.451 22.354
GSMS-NN3 5.535 7.240 8.367 13.085 17.230 21.089
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Table 4. The information loss (%) in the EIA dataset.

Method/k 3 4 5 10 20 30

CBFS-NN 0.478 0.671 1.740 3.512 7.053 10.919
CBFS-NN2 0.416 0.614 0.960 2.644 6.981 10.854
CBFS-NN3 0.402 0.587 0.803 2.036 6.823 10.605
CBFS-NC 0.470 0.672 1.533 3.276 7.628 10.084

CBFS-NC2 0.426 0.612 0.891 2.552 7.410 10.046
CBFS-NC3 0.415 0.574 0.762 2.282 7.110 10.038
MDAV-NN 0.483 0.671 1.667 3.840 7.095 10.273

MDAV-NN2 0.417 0.614 0.969 2.931 7.010 10.192
MDAV-NN3 0.401 0.587 0.802 2.022 6.806 9.873
MDAV-NC 0.471 0.677 1.459 3.058 7.641 9.984

MDAV-NC2 0.428 0.612 0.962 2.744 7.427 9.946
MDAV-NC3 0.415 0.573 0.795 2.298 7.109 9.937
TFRP-NN 0.513 0.680 1.768 3.543 7.087 11.116

TFRP-NN2 0.419 0.613 0.969 2.669 6.977 10.993
TFRP-NN3 0.405 0.585 0.8 2.04 6.771 10.491
TFRP-NC 0.465 0.674 1.670 3.288 7.663 11.286

TFRP-NC2 0.420 0.607 0.887 2.545 7.443 10.684
TFRP-NC3 0.410 0.574 0.779 2.289 7.116 10.324
GSMS-NN 0.469 0.669 1.713 3.313 6.958 11.384

GSMS-NN2 0.407 0.610 0.890 2.569 6.859 10.704
GSMS-NN3 0.394 0.59 0.796 2.101 6.647 9.314

In Table 5, our best results from Tables 2–4 are compared with the best results of the almost
quadratic time microaggregation algorithms from [11]. In all cases, less information loss was observed
using our methods. Furthermore, for the Census dataset with k = 10 and for the EIA dataset with k = 5 or
10, the best solutions obtained by our methods in Table 5 are the most superior in the literature [11,13].

Table 6 indicates the cases in which our methods yielded a lower information loss than those
in [11]. Among the seven methods, both CBFS-NC3 and GSMS-NN3 outperformed the results from [11]
for six of the nine cases. Table 5 confirms that CBFS-NC3 and GSMS-NN3 also yielded the best results
for two and three of the nine cases, respectively.

Table 5. Best information loss (IL) from Ref. [11] and from our methods.

Dataset k
Best from [11] Our Best

IL*100 Method IL*100 Method

Tarragona 3 16.36 GSMS-T2 15.598 MDAV-NC3
Tarragona 5 21.72 GSMS-T2 21.311 GSMS-NC3
Tarragona 10 33.18 MD-MHM 32.866 TFRP-NN3

Census 3 5.53 GSMS-T2 5.325 CBFS-NC3
Census 5 8.58 GSMS-T2 8.367 GSMS-NN3
Census 10 13.42 GSMS-T2 12.648 MDAV-NC3

EIA 3 0.401 GSMS-T2 0.394 GSMS-NN3
EIA 5 0.87 GSMS-T2 0.762 CBFS-NC3
EIA 10 2.17 µ-Approx 2.022 MDAV-NN3
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Table 6. The cases that our methods yield lower information loss than the best results from Ref. [11].

Method
Tarragona Census EIA

k = 3 k = 5 k = 10 k = 3 k = 5 k = 10 k = 3 k = 5 k = 10

CBFS-NN3 V V V V V
CBFS-NC3 V V V V V V
MDAV-NN3 V V V
MDAV-NC3 V V V V V
TFRP-NN3 V V V V V
TFRP-NC3 V V V V
GSMS-NN3 V V V V V V

6. Conclusions

In this paper, we proposed an algorithm to effectively refine the solution generated using
a fixed-size microaggregation approach. Although the fixed-size approaches (i.e., methods without
a suffix “2” or “3”) do not always generate an ideal solution, the experimental results in Tables 2–4
concluded that the refinement methods (i.e., methods with a suffix “2” or “3”) help with improving the
information loss of the results of the fixed-size approaches. Moreover, our proposed refinement
methods (i.e., methods with a suffix “3”) can further reduce the information loss of the TFRP2
refinement methods (i.e., methods with a suffix “2”) and yield an information loss lower than those
reported in the literature [11].

The TFRP2 refinement heuristic checks each group for the opportunity of reducing the information
loss via decomposing the group. Our proposed algorithm (Figure 1) can discover more opportunities
such as this than the TFRP2 refinement heuristic does because the proposed algorithm can not only
decompose but also shrink a group. Moreover, the TFRP2 refinement heuristic checks each group only
once, but our proposed algorithm checks each group more than once. Because one refinement step
could result in another refinement step that did not exist initially, our proposed algorithm is more
effective in reducing the information loss than the TFRP2 refinement heuristic does.

The proposed algorithm is essentially a local search method within the feasible domain of the
solution space. In other words, we refined a solution while enforcing the k-anonymity constraint
(i.e., each group in a solution contains no fewer than k records). However, the local search method
could still be trapped in the local optima. A possible solution is to allow the local search method to
temporarily step out of the feasible domain. Another possible solution is to allow the information
loss to increase within a local search step but at a low probability, similar to the simulated annealing
algorithms. The extension of the local search method warrants further research.
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