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Keywords: Chebyshev polynomials; sums of finite products; hypergeometric function

MSC: 11B68; 33C45

1. Introduction and Preliminaries

We first recall here that, for any nonnegative integer n, the falling factorial polynomials (x)n and
the rising factorial polynomials < x >n are respectively given by:

(x)n = x(x− 1) · · · (x− n + 1), (n ≥ 1), (x)0 = 1, (1)

< x >n= x(x + 1) · · · (x + n− 1), (n ≥ 1), < x >0= 1. (2)

The two factorial polynomials are related by:

(x)n = (−1)n < −x >n, < x >n= (−1)n(−x)n. (3)

We will make use of the following.

(2n− 2s)!
(n− s)!

=
22n−2s(−1)s < 1

2 >n

< 1
2 − n >s

, (4)

for any integers n, s with n ≥ s ≥ 0.

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)
Γ(x + y)

, (Re(x), Re(y) > 0), (5)

Γ
(

n +
1
2

)
=

(2n)!Γ( 1
2 )

22nn!
, (n ≥ 0). (6)

Here, B(x, y) and Γ(x) are respectively the Beta and Gamma functions.
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The hypergeometric function pFq

(
a1, ··· , ap
b1, ··· , bq

; x
)

is defined by (see [1]):

pFq

(
a1, · · · , ap

b1, · · · , bp
; x
)
=

∞

∑
n=0

< a1 >n · · · < ap >n

< b1 >n · · · < bq >n

xn

n!

(p ≤ q + 1, |x| < 1).

(7)

In this paper, we will need only some basic knowledge about Chebyshev polynomials, which we
recall here in below. The interested reader may want to refer to [1–3] for full accounts of this fascinating
area of orthogonal polynomials.

The Chebyshev polynomials of the first, second, third and fourth kinds are respectively defined
by the following generating functions.

1− xt
1− 2xt + t2 =

∞

∑
n=0

Tn(x)tn, (8)

1
1− 2xt + t2 =

∞

∑
n=0

Un(x)tn, (9)

F(t, x) =
1− t

1− 2xt + t2 =
∞

∑
n=0

Vn(x)tn, (10)

G(t, x) =
1 + t

1− 2xt + t2 =
∞

∑
n=0

Wn(x)tn. (11)

One way of deriving their generating functions is from their trigonometric formulas. For example,
those formulas for Vn(x) and Wn(x) are given by:

Vn(cos θ) =
cos(n + 1

2 )θ

cos θ
2

,

Wn(cos θ) =
sin(n + 1

2 )θ

sin θ
2

.

They are explicitly expressed as in the following.

Tn(x) = 2F1

(
−n, n;

1
2

;
1− x

2

)

=
n
2

[ n
2 ]

∑
l=0

(−1)l 1
n− l

(
n− l

l

)
(2x)n−2l , (n ≥ 1),

(12)

Un(x) = (n + 1) 2F1

(
−n, n + 2;

3
2

;
1− x

2

)

=
[ n

2 ]

∑
l=0

(−1)l
(

n− l
l

)
(2x)n−2l , (n ≥ 0),

(13)

Vn(x) = 2F1

(
−n, n + 1;

1
2

;
1− x

2

)
=

n

∑
l=0

(
2n− l

l

)
2n−l(x− 1)n−l , (n ≥ 0),

(14)
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Wn(x) = (2n + 1) 2F1

(
−n, n + 1;

3
2

;
1− x

2

)
= (2n + 1)

n

∑
l=0

2n−l

2n− 2l + 1

(
2n− l

l

)
(x− 1)n−l , (n ≥ 0).

(15)

The Chebyshev polynomials of the first, second, third and fourth kinds are also given by
Rodrigues’ formulas.

Tn(x) =
(−1)n2nn!

(2n)!
(1− x2)

1
2

dn

dxn (1− x2)n− 1
2 , (16)

Un(x) =
(−1)n2n(n + 1)!

(2n + 1)!
(1− x2)−

1
2

dn

dxn (1− x2)n+ 1
2 , (17)

(1− x)−
1
2 (1 + x)

1
2 Vn(x) =

(−1)n2nn!
(2n)!

dn

dxn (1− x)n− 1
2 (1 + x)n+ 1

2 , (18)

(1− x)
1
2 (1 + x)−

1
2 Wn(x) =

(−1)n2nn!
(2n)!

dn

dxn (1− x)n+ 1
2 (1 + x)n− 1

2 . (19)

They have the following orthogonalities with respect to various weight functions.

∫ 1

−1
(1− x2)−

1
2 Tn(x)Tm(x)dx =

π

εn
δn,m, (20)

∫ 1

−1
(1− x2)

1
2 Un(x)Um(x)dx =

π

2
δn,m, (21)

∫ 1

−1
(

1 + x
1− x

)
1
2 Vn(x)Vm(x)dx = πδn,m, (22)

∫ 1

−1
(

1− x
1 + x

)
1
2 Wn(x)Wm(x)dx = πδn,m, (23)

where:

εn =

{
1, if n = 0,
2, if n ≥ 1,

δn =

{
0, if n 6= m,
1, if n = m.

(24)

To proceed further, we let:

αn,r(x) =
n

∑
l=0

∑
i1+i2+···+ir+1=l

(
r− 1 + n− l

r− 1

)
Vi1(x)Vi2(x) · · ·Vir+1(x),

(n ≥ 0, r ≥ 1),

(25)

βn,r(x) =
n

∑
l=0

∑
i1+i2+···+ir+1=l

(−1)n−l
(

r− 1 + n− l
r− 1

)
Wi1(x)Wi2(x) · · ·Wir+1(x),

(n ≥ 0, r ≥ 1).

(26)

We note here that both αn,r(x) and βn,r(x) are polynomials of degree n.
In the following, we assume that the polynomials with subscript n, like pn(x), qn(x) and rn(x),

have degree n.
The linearization problem in general consists of determining the coefficients cnm(k) in the

expansion of the product of two polynomials qn(x) and rm(x) in terms of an arbitrary polynomial
sequence {pk(x)}k≥0:

qn(x)rm(x) =
n+m

∑
k=0

cnm(k)pk(x).

A special problem of this is the case when pn(x) = qn(x) = rn(x), which is called either the
standard linearization or the Clebsch–Gordan-type problem.
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Another particular case is when rm(x) = 1, which is the so-called connection problem. If further
qn(x) = xn, it is called the inversion problem for the sequence {pk(x)}k≥0.

In this paper, we will consider the sums of finite products of Chebyshev polynomials of the third
and fourth kinds in (25) and (26). Then, we are going to express each of them as linear combinations of
the four kinds of Chebyshev polynomials Tn(x), Un(x), Vn(x) and Wn(x). Thus, our problem may be
regarded as a generalization of the linearization problem. We obtain them by explicit computations
and using Propositions 1 and Lemma 1. The general formulas in Proposition 1 can be derived by using
orthogonalities and Rodrigues’ formulas for Chebyshev polynomials and integration by parts.

Finally, we note that many problems in physics and engineering can be solved with the help of
special functions; for instance, we let the reader refer to the excellent papers [4–6] in this direction.

The next two theorems are our main results in which the terminating hypergeometric functions

3F2

(
−n, a, b

d, e ; 1
)

appear.

Theorem 1. Let n, r be integers with n ≥ 0, r ≥ 1. Then we have following.

n

∑
l=0

∑
i1+i2+···+ir+1=l

(
r− 1 + n− l

r− 1

)
Vi1(x)Vi2(x) · · ·Vir+1(x)

=
(−1)n(2n + 2r)!
r!22r(n + r− 1

2 )r

×
n

∑
k=0

(−1)kεk
(n− k)!(n + k)! 3F2

(
k− n, − k− n, 1

2 − n− r
1
2 − n, − 2n− 2r

; 1

)
Tk(x)

(27)

=
(−1)n(2n + 2r)!

r!22r−2(n + r− 1
2 )r−1

×
n

∑
k=0

(−1)k(k + 1)
(n− k)!(n + k + 2)! 3F2

(
k− n, − k− n− 2, 1

2 − n− r
− 1

2 − n, − 2n− 2r
; 1

)
Uk(x)

(28)

=
(−1)n(2n + 2r)!
r!22r(n + r− 1

2 )r

×
n

∑
k=0

(−1)k(2k + 1)
(n− k)!(n + k + 1)! 3F2

(
k− n, − k− n− 1, 1

2 − n− r
1
2 − n, − 2n− 2r

; 1

)
Vk(x)

(29)

=
(−1)n(2n + 2r)!

r!22r−1(n + r− 1
2 )r−1

×
n

∑
k=0

(−1)k

(n− k)!(n + k + 1)! 3F2

(
k− n, − k− n− 1, 1

2 − n− r
− 1

2 − n, − 2n− 2r
; 1

)
Wk(x).

(30)

Theorem 2. Let n, r be integers with n ≥ 0, r ≥ 1. Then we have following.

n

∑
l=0

∑
i1+i2+···+ir+1=l

(−1)n−l
(

r− 1 + n− l
r− 1

)
Wi1(x)Wi2(x) · · ·Wir+1(x)

=
(−1)n(2n + 2r)!
r!22r(n + r + 1

2 )r

×
n

∑
k=0

(−1)kεk
(n− k)!(n + k)! 3F2

(
k− n, − k− n, − 1

2 − n− r
1
2 − n, − 2n− 2r

; 1

)
Tk(x)

(31)
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=
(−1)n(2n + 1)(2n + 2r)!

r!22r−1(n + r + 1
2 )r

×
n

∑
k=0

(−1)k(k + 1)
(n− k)!(n + k + 2)! 3F2

(
k− n, − k− n− 2, − 1

2 − n− r
− 1

2 − n, − 2n− 2r
; 1

)
Uk(x)

(32)

=
(−1)n(2n + 2r)!
r!22r(n + r + 1

2 )r

×
n

∑
k=0

(−1)k(2k + 1)
(n− k)!(n + k + 1)! 3F2

(
k− n, − k− n− 1, − 1

2 − n− r
1
2 − n, − 2n− 2r

; 1

)
Vk(x)

(33)

=
(−1)n(2n + 1)(2n + 2r)!

r!22r(n + r + 1
2 )r

×
n

∑
k=0

(−1)k

(n− k)!(n + k + 1)! 3F2

(
k− n, − k− n− 1, − 1

2 − n− r
− 1

2 − n, − 2n− 2r
; 1

)
Wk(x).

(34)

As we know, the Bernoulli polynomials are not orthogonal polynomials, but Appell polynomials.
In [7], the sums of finite products of Chebyshev polynomials in (25) and (26) were expressed as linear
combinations of Bernoulli polynomials. Furthermore, the same has been done for the sums of finite
products of Bernoulli, Euler and Genocchi polynomials in [8–10]. All of these were found by deriving
Fourier series expansions for the functions closely connected with those various sums of finite products.
For some other applications of Chebyshev polynomials, we let the reader refer to [11–13].

2. Proof of Theorem 1

Here, we will prove Theorem 1. For this purpose, we first state Proposition 1 and Lemma 1 that
will be used in Sections 2 and 3.

The results in Proposition 1 can be derived by using the orthogonalities in (20)–(23) and the
Rodrigues formulas in (16)–(19). The statements (a) and (b) in Proposition 1 are respectively from
the Equations (23) and (35) of [14], while (c) and (d) are respectively from the Equations (22) and
(37) of [15].

Proposition 1. Let q(x) ∈ R[x] be a polynomial of degree n. Then, we have the following.

(a) q(x) =
n

∑
k=0

ck,1Tk(x),

where ck,1 =
(−1)k2kk!εk

(2k)!π

∫ 1

−1
q(x)

dk

dxk (1− x2)k− 1
2 dx,

(b) q(x) =
n

∑
k=0

ck,2Uk(x),

where ck,2 =
(−1)k2k+1(k + 1)!

(2k + 1)!π

∫ 1

−1
q(x)

dk

dxk (1− x2)k+ 1
2 dx,

(c) q(x) =
n

∑
k=0

ck,3Vk(x),

where ck,3 =
(−1)k2kk!
(2k)!π

∫ 1

−1
q(x)

dk

dxk (1− x)k− 1
2 (1 + x)k+ 1

2 dx,
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(d) q(x) =
n

∑
k=0

ck,4Wk(x),

where ck,4 =
(−1)k2kk!
(2k)!π

∫ 1

−1
q(x)

dk

dxk (1− x)k+ 1
2 (1 + x)k− 1

2 dx.

Lemma 1. Let l, m be nonnegative integers. Then, we have the following.

∫ 1

−1
(1− x)m− 1

2 (1 + x)l− 1
2 dx

=
2l+m

(l + m)!
Γ(l +

1
2
)Γ(m +

1
2
)

=
(2l)! (2m)! π

2l+m (l + m)! l! m!
.

(35)

Proof. By changing the variables 1 + x = 2y, the integral in (35) becomes:

2l+m
∫ 1

0
yl+ 1

2−1(1− y)m+ 1
2−1dy = 2l+m Γ(l + 1

2 )Γ(m + 1
2 )

Γ(l + m + 1)

=
2l+m (2l)! Γ( 1

2 ) (2m)! Γ( 1
2 )

(l + m)! 22l l! 22m m!
,

where we used (5) and (6).

As was shown in [7], the following lemma can be obtained by differentiating Equation (10). It
expresses the sums of finite products in (25) very neatly, which plays an important role in the following
discussion.

Lemma 2. Let n, r be integers with n ≥ 0, r ≥ 1. Then, we have the identity.

n

∑
l=0

∑
i1+i2+···+ir+1=l

(
r− 1 + n− l

r− 1

)
Vi1(x) · · ·Vir+1(x) =

1
2r r!

V(r)
n+r(x), (36)

where the inner sum runs over all nonnegative integers i1, i2, · · · , ir+1, with i1 + i2 + · · ·+ ir+1 = l.

From (14), the r-th derivative of Vn(x) is given by:

V(r)
n (x) =

n−r

∑
l=0

(
2n− l

l

)
2n−l(n− l)r(x− 1)n−l−r. (37)

In particular, we have:

V(r+k)
n+r (x) =

n−k

∑
l=0

(
2n + 2r− l

l

)
2n+r−l(n + r− l)r+k(x− 1)n−k−l . (38)

V(r+k)
n+r (x) =

n−k

∑
l=0

(
2n + 2r− l

l

)
2n+r−l(n + r− l)r+k(x− 1)n−k−l . (38)

Here, we will show only (28) of Theorem 1, since (27), (29) and (30) can be proved similarly to (28).
With αn,r(x) as in (25), we let:

αn,r(x) =
n

∑
k=0

ck,2Uk(x). (39)
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Then, from (b) of Proposition 1, (36), (38) and integration by parts k times, we have:

ck,2 =
(−1)k2k+1(k + 1)!

(2k + 1)!π

∫ 1

−1
αn,r(x)

dk

dxk (1− x2)k+ 1
2 dx

=
(−1)k2k+1(k + 1)!
(2k + 1)!π2rr!

∫ 1

−1
V(r)

n+r(x)
dk

dxk (1− x2)k+ 1
2 dx

=
2k+1(k + 1)!
(2k + 1)!π2rr!

∫ 1

−1
V(r+k)

n+r (x)(1− x2)k+ 1
2 dx

=
2k+1(k + 1)!
(2k + 1)!π2rr!

n−k

∑
l=0

(−1)n−k−l
(

2n + 2r− l
l

)
2n+r−l

× (n + r− l)r+k

∫ 1

−1
(1− x)n−l+1− 1

2 (1 + x)k+1− 1
2 dx.

(40)

From (40), (35), we get:

ck,2 =
2k+1(k + 1)!
(2k + 1)!π2rr!

×
n−k

∑
l=0

(−1)n−k−l(2n + 2r− l)!2n+r−l(n + r− l)!(2k + 2)!(2n− 2l + 2)!π
l!(2n + 2r− 2l)!(n− k− l)!2n−l+k+2(n− l + k + 2)!(n− l + 1)!(k + 1)!

=
(−1)n−k(k + 1)

r!

×
n−k

∑
l=0

(−1)l(2n + 2r− l)!(n + r− l)!(2n + 2− 2l)!
l!(n− k− l)!(n + k− l + 2)!(2n + 2r− 2l)!(n + 1− l)!

.

(41)

Using (3) and (4), (41) is equal to:

ck,2 =
(−1)n−k(k + 1)(2n + 2r)!

r!(n− k)!(n + k + 2)!

×
n−k

∑
l=0

(−1)l(n− k)l(n + k + 2)l <
1
2 − n− r >l 22n−2l+2(−1)l < 1

2 >n+1

l!(2n + 2r)l22n+2r−2l(−1)l < 1
2 >n+r<

1
2 − n− 1 >l

.

=
(−1)n(2n + 2r)!

r!22r−2(n + r− 1
2 )r−1

× (−1)k(k + 1)
(n− k)!(n + k + 2)!

n−k

∑
l=0

< k− n >l < −k− n− 2 >l <
1
2 − n− r >l

< − 1
2 − n >l < −2n− 2r >l l!

=
(−1)n(2n + 2r)!

r!22r−2(n + r− 1
2 )r−1

× (−1)k(k + 1)
(n− k)!(n + k + 2)! 3F2

(
k− n, − k− n− 2, 1

2 − n− r
− 1

2 − n, − 2n− 2r
; 1

)
.

(42)

Now, the Equation (28) in Theorem 1 follows from (39) and (42).

3. Proof of Theorem 2

In this section, we will show (31) of Theorem 2, as (32)–(34) can be treated analogously to (31).
The following lemma can be obtained by differentiating (11) and is stated as Lemma 3 in [7].
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Lemma 3. Let n, r be integers with n ≥ 0, r ≥ 1. Then, we have the following identity.

n

∑
l=0

∑
i1+i2+···+ir+1=l

(−1)n−l
(

r− 1 + n− l
r− 1

)
Wi1(x)Wi2(x) · · ·Wir+1(x)

=
1

2rr!
W(r)

n+r(x),

(43)

where the inner sum runs over all nonnegative integers i1, i2, · · · , ir+1, with i1 + i2 + · · ·+ ir+1 = l.

From (15), the r-th derivative of Wn(x) is given by:

W(r)
n (x) = (2n + 1)

n−r

∑
l=0

2n−l

2n + 1− 2l

(
2n− l

l

)
(n− l)r(x− 1)n−l−r. (44)

In particular,

W(r+k)
n+r (x)

= (2n + 1)
n−k

∑
l=0

2n+r−l

2n + 2r + 1− 2l

(
2n + 2r− l

l

)
(n + r− l)r+k(x− 1)n−k−l .

(45)

Here, we will show only (31) of Theorem 2, since (32)–(34) can be proven analogously to (31).
With βn,r(x) as in (26), we put:

βn,r(x) =
n

∑
k=0

ck,1Tk(x). (46)

Then, from (a) of Proposition 1, (43), (45) and integration by parts k times, we have:

ck,1 =
(−1)k2kk!εk

(2k)!π

∫ 1

−1
βn,r(x)

dk

dxk (1− x2)k− 1
2 dx

=
(−1)k2kk!εk
(2k)!π2rr!

∫ 1

−1
W(r)

n+r(x)
dk

dxk (1− x2)k− 1
2 dx

=
2kk!εk

(2k)!π2rr!

∫ 1

−1
W(r+k)

n+r (x)(1− x2)k− 1
2 dx

=
(2n + 1)2kk!εk
(2k)!π2rr!

n−k

∑
l=0

(−1)n−k−l2n+r−l

2n + 2r + 1− 2l

(
2n + 2r− l

l

)
× (n + r− l)r+k

∫ 1

−1
(1− x)n−l− 1

2 (1 + x)k− 1
2 dx.

(47)

From (47), (35) and after some simplifications, we get:

ck,2 =
(2n + 1)εk(−1)n−k

r!

×
n−k

∑
l=0

(−1)l(2n + 2r− l)!(n + r− l)!
l!(n− k− l)!(n + k− l)!(2n + 2r− 2l + 1)!(n− l)!

=
2(2n + 1)εk(−1)n−k

r!

×
n−k

∑
l=0

(−1)l(2n + 2r− l)!(n + r− l + 1)!(2n− 2l)!
l!(n− k− l)!(n + k− l)!(2n + 2r− 2l + 2)!(n− l)!

.

(48)
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Using (3) and (4), (48) is equal to:

ck,1 =
2(2n + 1)(2n + 2r)!εk(−1)n−k

r!(n− k)!(n + k)!

×
n−k

∑
l=0

(−1)l(n− k)l(n + k)l <
1
2 − n− r− 1 >l 22n−2l(−1)l < 1

2 >n

l!(2n + 2r)l22n+2r+2−2l(−1)l < 1
2 >n+r+1<

1
2 − n >l

=
(2n + 1)(−1)n(2n + 2r)!

r!22r+1(n + r + 1
2 )r+1

× (−1)kεk
(n− k)!(n + k)!

k

∑
l=0

< k− n >l < −k− n >l < − 1
2 − n− r >l

< 1
2 − n >l < −2n− 2r >l

=
(−1)n(2n + 2r)!
r!22r(n + r + 1

2 )r

× (−1)kεk
(n− k)!(n + k)! 3F2

(
k− n, − k− n, − 1

2 − n− r
1
2 − n, − 2n− 2r

; 1

)
.

(49)

Now, Equation (31) in Theorem 2 follows from (46) and (49).

Remark 1. As we noted earlier, Lemmas 2 and 3 play crucial roles and express sums of finite products in (25)
and (26) very neatly as higher-order derivatives of Vn(x) and Wn(x). These could be derived by noting that
Chebyshev polynomials are special cases of Jacobi polynomials and using the general formula for the derivative of
Jacobi polynomials. Indeed, their Jacobi polynomial expressions and the derivatives of the Jacobi polynomials are
as follows:

Vn(x) = P(−1/2,1/2)
n (x)/P(−1/2,1/2)

n (1),

Wn(x) = P(1/2,−1/2)
n (x)/P(1/2,−1/2)

n (1),

d
dx

P(a,b)
n (x) =

1
2
(n + a + b + 1)P(a+1,b+1)

n−1 (x).

4. Conclusions

The linearization problem in general consists of determining the coefficients cnm(k) in the
expansion of the product of two polynomials qn(x) and rm(x) in terms of an arbitrary polynomial
sequence {pk(x)}k≥0:

qn(x)rm(x) =
n+m

∑
k=0

cnm(k)pk(x).

Along this line and as a generalization of this, we considered sums of finite products of Chebyshev
polynomials of the third and fourth kinds and represented each of those sums of finite products as
linear combinations of the four kinds of Chebyshev polynomials, which involve the hypergeometric
function 3F2. It is certainly possible to represent such sums of finite products by other orthogonal
polynomials, which is our ongoing project.
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