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Abstract: While cloud customers can benefit from migrating applications to the cloud, they are
concerned about the security of the hosted applications. This is complicated by the customers not
knowing whether their cloud applications are working as expected. Although memory-safety Java
Virtual Machine (JVM) can alleviate their anxiety due to the control flow integrity, their applications
are prone to a violation of bytecode integrity. The analysis of some Java exploits indicates that the
violation results primarily from the given excess sandbox permission, loading flaws in Java class
libraries and third-party middlewares and the abuse of sun.misc.UnsafeAPI. To such an end, we
design an architecture, called RIM4J, to enforce a runtime integrity measurement of Java bytecode
within a cloud system, with the ability to attest this to a cloud customer in an unforgeable manner.
Our RIM4J architecture is portable, such that it can be quickly deployed and adopted for real-world
purposes, without requiring modifications to the underlying systems and access to application source
code. Moreover, our RIM4J architecture is the first to measure dynamically-generated bytecode.
We apply our runtime measurement architecture to a messaging server application where we show
how RIM4J can detect undesirable behaviors, such as uploading arbitrary files and remote code
execution. This paper also reports the experimental evaluation of a RIM4J prototype using both a
macro- and a micro-benchmark; the experimental results indicate that RIM4J is a practical solution
for real-world applications.

Keywords: Java bytecode; runtime measurement; cloud security; trusted computing

1. Introduction

Cloud computing gives customers a great deal of benefit in comparison with traditional
computing. For example, migrating applications to the cloud can remove the burden of repair
and maintenance and furnish united availability by way of replication and redundancy [1]. Due to
the efficiency and flexibility of the cloud, it has become prevalent to embrace the cloud in both
private and enterprise domains. However, security is now the major obstacle for further use of cloud
computing [2–4].

This is complicated by the customer not knowing whether his/her cloud applications are working
as expected. One of the most dangerous attacks is memory corruption bugs. Malicious attackers
exploit these bugs to alter the behavior of the application or even hijacking the control flow. The most
obvious solution to avoid these kinds of bugs would be to write applications in type-safe languages [5].
As such, it is always a better option for customers to leverage the safety property of Java platforms to
secure their applications in the cloud.
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The vendors of Java platforms fulfill the memory-safety property by containing the safe execution
of untrusted bytecodes in a so-called sandbox and isolating them from one another. However,
some research already has revealed that the sandbox is no longer unbreakable and may be bypassable
in recent years [6–9]. An adversary can execute malicious bytecode inside the same protection domain
as trusted code or tamper with benign bytecode and even replace it deliberately on the fly.

Through the analysis of related work [6–9] and a set of Java exploits [10–24], we found that there
are three factors to account for such a violation of byte integrity. First, the design and engineering of
the Java security sandbox is too complex and affords developers more flexibility than they need or use
in practice [6]. The unnecessary complexity and flexibility enable attackers to create a self-defined class
loader to load malicious classes into any protection domain, such as the exploit of CVE-2012-0507 [10].
Second, a variety of loading flaws [7,8] in the Java class libraries and third-party middlewares also
pose a risk to the security of the Java platform. They allow attackers to execute arbitrary bytecode by
sandbox-bypassing exploits, such as vulnerabilities in the Java class libraries [11,12] and third-party
middlewares [13–23]. Last but not least, many third-party frameworks have extensively utilized the
powerful, but dangerous API sun.misc.Unsafe to write high-performance code in Java [9] without
the necessary security checks. For example, in the exploit of CVE-2012-5076 [24], an attack bypasses
arbitrary permission checks to execute malicious bytecode in the memory.

The load-time measurements [25–28] can rely on system call interception to measure bytecode
integrity, but this alone does not accurately reflect runtime behaviors. Even worse, the operating system
(OS) views Java bytecode as data and manages the bytecode through writable heap areas. As such,
we cannot achieve runtime integrity by leveraging the natural support of all modern processors
to set all memory pages containing read-only bytecode. Although various runtime measurement
approaches [29–31] provide the integrity of running applications through virtual machine introspection,
these approaches all introduce a new challenge: portability (i.e., could be used on a variety of Java
Virtual Machines (JVMs) and platforms). Such approaches have limited applicability due to the need
for recompilation of the operating system, the need for a specialized language-level virtual machine
or the need to access application source code. Moreover, these approaches, as mentioned above,
cannot work well in the measurement of dynamically-generated bytecode as the type of bytecode is
directly created in the memory by the JVM. As such, these existing approaches cannot capture the
measured target by using the system call interception. Furthermore, they cannot leverage virtual
machine introspection due to the semantic gap in how to accurately extract the semantic meaning
about the bytecode from the outside view of the JVM.

Our goal in this paper is two-fold: (1) to build a portable runtime measurement system
to be applied seamlessly on other platforms; (2) to enforce an integrity measurement of
dynamically-generated bytecode to reduce the likelihood of false negatives. Our key idea is to
take advantage of the virtual machine features (attachment and instrumentation) supported by
commonly-used JVMs from vendors such as Oracle and the OpenJDKproject, ensuring a runtime
measurement without requiring any modification to the underlying client systems (e.g., hypervisors,
operating systems, language-level virtual machines).

To such an end, we propose a portable architecture toward the integrity of Java applications
within a cloud environment, called RIM4J, to enforce a runtime measurement, with the ability to attest
this to a cloud customer in an unforgeable manner. RIM4J performs fine-grained measurement at
the level of Java classes (a class containing Java bytecode is the basic unit for the implementation
of application behaviors). Instead of measuring the entire content of a class, RIM4J measures only
the critical piece of a class (bytecode) executed on the JVM. RIM4J also applies various measurement
modes (one-time or periodic) in light of an attestation request from a cloud customer. These modes are
used to seek a balance between performance overhead and security assurance. In such a way, RIM4J
builds an integrity measurement system for Java bytecode under various modes, further enabling an
attestation with acceptable overhead. Our contributions of this paper are summarized as follows:
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• A novel scheme to provide a runtime measurement for Java applications within a cloud
environment by taking advantage of commonly-used JVMs-supported attachment and
instrumentation features.

• A distinction between the dynamically-generated classes and normal loaded classes to reduce
the likelihood of false negatives by leveraging virtual machine-specific language features.
To the best of our knowledge, RIM4J is the first measurement approach for the integrity of
the dynamically-generated bytecode.

• A working RIM4J prototype and its application to real-world software such as Apache Tomcat
and ActiveMQ, as well as security and performance evaluations that confirm the effectiveness
and efficiency of RIM4J.

This paper is an expanded version of our previous work [32] published in SRDS2017, and the rest
of this paper is organized as follows. Section 2 reviews the necessary background on Java bytecode
and integrity measurement. Section 3 illustrates the architecture overview of RIM4J and the threat
model. Section 4 provides a detailed description of how the violations of bytecode integrity commonly
work through the analysis of some Java exploits. Section 5 presents the implementation of the runtime
measurement approach and describes the details of the dynamically-generated bytecode. The security
and performance evaluations are given in Section 6. Finally, we discuss limitations, cover related work
and conclude in Sections 7–9, respectively.

2. Background

In this section, we provide a basic introduction to the Java bytecode (Section 2.1). Additional,
we will give an overview of integrity measurement in trusted computing and a preliminary description
of how to measure a Java application within a cloud computing environment (Section 2.2).

2.1. Java Bytecode

As of 2018, Java, which is a class-based and object-oriented computer-programming language,
is among the most popular languages in use [33], particularly for client-server web applications,
with a reported nine million developers worldwide [34]. It is mainly attributed to the design and
implementation of Java bytecode [35,36]. Java applications are typically compiled to bytecode, which
can run on all platforms that support the JVM regardless of computer architecture. As shown in
Figure 1, a source code file is compiled into a particular file format (ends with the .class file name
extension), called ClassFile. Each class file contains one and only one class or interface.

class Person {

    public int get(int year) {

        Age age = (y) -> (2017 - y);

        return  age.getAge(year);    

    }

}

interface Age {

    int getAge(int year);

}

Magic

Version

Access_flags

Interfaces

Fields

Methods

Attributes

ConstantPool

SourceCode ClassFile

public java.lang.String get(int);

      0: invokedynamic #18,  0             

      5: astore_2

      6: aload_2                

      7: iload_1

      8: invokeinterface #19,  2

     13: ireturn              

#16 = NameAndType        #14:#17  

#17 = Utf8                       ()LAge;   

#18 = InvokeDynamic      #0:#16    

#19 = InterfaceMethodref #20.#22  

ByteCode

Figure 1. Relationship among source code and bytecode in the Java platform.
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Figure 1 illustrates a simplified example of a Java class. It starts with a magic number
(OxCAFEBABE) as a unique identifier of the JVM-supported format. The core in a class file is
ConstantPool and Methods. The ConstantPool can be roughly thought of as the data segment of a
Java application, which contains approximately 60% of an average class [37]. The Methods that contains
the bytecode can be approximated to the text segment, which makes up 12% of an average class [37].
The remaining parts are insignificant auxiliary content, such as debug and exception information.

2.2. Integrity Measurement

The integrity of a hosted application is a binary property that indicates whether this application
has been modified in an unauthorized manner. Such an unauthorized modification may lead to
incorrect or malicious behaviors by the application, such that it would be unwise for a cloud customer
to rely on it. Many previous efforts focused on measuring code and association integrity semantics
with the code [25,38,39]. Taking an integrity measurement of code means computing a cryptographic
hash (e.g., SHA-1 hash) of it and extending a hash chain with that hash value.

In the Java world, a series of classes constitutes a Java application. The ConstantPool and Methods
are the core of a Java class, just as the code is for a native application. As the RIM4J measurement is
taken at runtime rather than load-time, it computes a hash value of the entire measurement list instead
of the extended value.

RIM4J measurement generates two values: (1) a measurement list of a Java application M
containing each measurement m0, m1, · · · , mi where mi contains a hash value of a Java class hc and
hc = hash(ConstantPool||Methods); and (2) a hash aggregate H where H = hash(m0||m1|| · · · ||mi).
The attesting party provides M and a signed H to a cloud customer (the customer must be able to
reliably obtain the public key certificate for its attestation identity key), and the customer verifies that
a hash aggregate computed from the measurements in M corresponds to the signed hash aggregate.

3. The RIM4J Architecture

The primary goal of RIM4J is to provide runtime integrity measurements of Java applications
for cloud customers, even facing outside attacks through one or more Java vulnerability exploits.
The secondary goal of RIM4J is to make the approach of RIM4J practical, and thus, it can be deployed
for large software systems with small overhead.

3.1. Overview

vTPM-based attestation: RIM4J requires not only integrity measurement, but also remote
attestation in improving trustworthiness within cloud computing environments. Remote attestation
needs the support of cryptographic engines, which is embedded physically in the hardware Trusted
Platform Module (TPM). However, a physical TPM cannot be directly used by the VMs within a cloud
environment; thus vTPM is designed to offer the same usage model and services to the VMs [40]. In this
paper, RIM4J leverages a virtual TPM (vTPM) module to carry out directly an attestation between the
cloud customers and their leased virtual machines through the vTPM instances. Specifically, RIM4J
signs the integrity information through the Attestation Identity Key (AIK) of vTPM to provide the
integrity and unforgeability of this information, as well as leverages a secure connection to protect the
authenticity and confidentiality of an attestation.

IMA-enforced protection: Since RIM4J aims at providing runtime measurements for Java
applications, it requires the underlying system to be trustworthy, which can be easily achieved
with existing approaches (e.g., IMA [25]). RIM4J leverages IMA to build upon the initial trust in a
guest VM by verifying the integrity of the software loaded into this VM, in the order that they are
booted. Especially, RIM4J can prevent the underlying JVM from malicious adversaries by verifying
the integrity of its binary content (executable files, dynamical libraries, and so on) with the correct
pre-calculated reference. On the other hand, RIM4J relies on the enforcement of such W

⊕
X mapping

to protect the guest user memory, which is proven to be an effective and efficient approach to ensure
runtime code integrity.
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Architecture overview: Figure 2 shows an overview of the RIM4J architecture. A Java application
whose “executable file” consists of classes (normal loaded class) is loaded into the memory through
Java classloaders, and the JVM creates quite a few classes (dynamically-generated class) during runtime
due to the implementation of language features (Section 5.2). Existing approaches [25,28] that rely on
the system call interception or virtual machine introspection can measure the normal loaded classes,
but not the dynamically-generated classes which are data directly created in a heap by the JVM.
The incapacity in this type of measurement is due to the semantic gap in how to accurately extract
the semantic meaning about the dynamically-generated classes from the outside view of the JVM.
Note that there is no clear distinction between a normal loaded class and a dynamically-generated
class from the JVM’s perspective.

vTPM Manager

Host VM
Attestation 

Service

Measurement 
Agent

vT
P

M
 In

st
a

n
ce

vT
P

M
 In

st
a

n
ce

Guest VM

JVM

Java Application

Attachment Lib

Instrumentation Lib

Class Reslover

Bytecode 
Analyzer

Measurement List

1

2

4

3

Virtual TPM

5

IMA Module kernel

Hypervisor

Initialization 
Controller

TPM Driver

loading

Dynamically-generated Class

Normal Loaded Class

Measurement during Runtime

Attestation during Runtime

Figure 2. Architecture overview of RIM4J.

Once a cloud customer issues an attestation request, the Attestation Serviceshall then notify the
Initialization Controllerto start up a Measurement Agentthrough the invocation of the attach API in
the Attachment lib (Step 1©). Although the Measurement Agent is running inside the same world of
the Java application, the trustworthy JVM provides the isolation between the agent and the classes.
Furthermore, this agent becomes online when, and only when carrying out an integrity measurement.
To bridge the semantic gap, the Measurement Agent relies on the use of Instrumentation libto access the
heap area storing the Java classes (Step 2©). Due to the limitation of the Instrumentation lib, RIM4J only
gains the entire byte content of a class, and this class is not the same as its original version at load time,
which results from the JVM’s performance optimization for the efficient execution of a class. To address
the issues as mentioned above, RIM4J resolves and analyzes a class to extract the bytecode (Step 3©),
which can be similar to the text segment of a binary executable file (Section 2.1). After completing
the current measurement, the agent writes measurements into a protected measurement list (Step 4©),
which can be retrieved by the Attestation Service (Step 5©). During runtime, the measurement list is
confined to be written by the Measurement Agent and read by the Attestation Service through the
SELinuxsystem.

Measurement mode: RIM4J allows customers to invoke the measurement and attestation requests
at any time during the lifecycle of the hosted applications. It also provides the customers with two
modes of operation: one-time measurement and periodic measurement.
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One-time measurement: The cloud customer can request the attestation at any time. Whenever
receiving a request, the Measurement Agentcarries out a runtime measurement of the attested
application and generates an integrity proof. Then, the Attestation Service performs the sign operation
of the proof by the AIK and sends back the result to the customer.

Periodic measurement: The cloud customer can specify the frequency of attestations, specified as
constant or random. The Measurement Agent enforces measurements under the specified frequency,
and the Attestation Service supplies the measurements periodically. The customer receives recent fresh
results and can stop the process at any time.

3.2. Threat Model and Assumptions

RIM4J aims at measuring Java applications at runtime so that a cloud customer can detect
suspicious behaviors, such as remote command execution or uploading malicious files. In such a
way, we assume that the goal of an adversary is to obtain persistent access to an application of a
cloud customer in order to steal, disrupt or even deny the data and code of a cloud customer. Under
these circumstances, the adversary needs to execute malicious bytecode in the same trusted privileged
domain through one or more Java exploits. Specifically, the adversary may try to use sophisticated
attacks to invalidate a secure access-control policy or bypass a load-time measurement check, so that it
can directly execute bytecode in the memory during runtime.

We acknowledge the possibility that an adversary can modify bytecode between the time it is
attested and the time it is used. This unaddressed problem with current code-attestation technology is
the time-of-attestation and time-of-use discrepancy. Even though the bytecode is correct to work at the
time of attestation, an adversary could compromise the attested bytecode by the time of use.

We consider that the cloud service provider is trustworthy, a reasonable presumption for
cloud customers at present. The same assumption has been adopted by many cloud security
architectures [28,30,41,42]. We, therefore, view threats such as insider adversaries and collusion attacks
to be out of scope. These threats are quite valuable, but are not resolved by our RIM4J architecture
for now. We also assume an adversary without the ability to physically tamper with any hardware of
any host machine (i.e., CPU, memory and TPM). In cloud computing environments, the security of
RIM4J depends on keeping the underlying runtime systems (i.e., Hypervisor, OS and JVM) working
legitimately. Therefore, we assume that the cloud service provider does not purposefully deploy
malicious underlying systems with an explicit capability to control and disrupt a hosted application of
a cloud customer.

4. Java Exploits Analysis

The Java platform enables cloud customers to keep their applications away from memory
corruption attacks, such as the control-flow hijack attack, but customers still suffer from the bytecode
corruption attack within cloud computing environments. The bytecode corruption attack may originate
from the sandbox and classloader. The Sandboxin the Java platform is supposed to enforce security
restrictions to contain the execution of untrusted code. Classloaders are supposed to ensure that
all code is only able to load classes that it is allowed to access. However, we find that a set of
exploits can bypass sandbox restrictions that should be enforced during runtime and load classes that
should be incapable of being loaded. Even worse, these exploits do not rely on any specific CPU or
operating systems to work on any platform (e.g., Windows, Linux). Although the introduction of
sun.misc.Unsafe enables cloud customers to write high-performance “systems-level” code in Java, the
operations the Java’s unsafe capability provides can be dangerous, as they allow one to circumvent
the safety guarantees provided by the Java language and the JVM. If misused, the consequence can
be bytecode corruption, meaning that an adversary loads and executes arbitrary classes without any
security checks.



Symmetry 2018, 10, 253 7 of 23

First, the Java sandbox model affords so much flexibility that it leads to unnecessary vulnerabilities
and bad security practices [6]. In the Java sandbox model, the JVM leverages a number of security
permissions to restrict the behaviors of untrusted code for securing a benign application. For cloud
customers, they do not need all of the security permissions. Some permissions can yet decrease the
security of the hosted application without obviously improving practical functionality. A security
permission, RuntimePermission“createClassLoader”, enables defining arbitrary classes in the same
protection domain as trusted code. Once a cloud customer unintentionally grants his/her application
with this permission, it can pose a risk to the security of the application and incur significant losses. For
example, in the CVE-2012-0507 [10], an adversary can invoke a classloader to create some self-defined
classloader by using type confusion attacks. As depicted in Listing 1, the elaborately-crafted classloader
defines an additional malicious class in an escalated privilege context, meaning that this class can
perform any operations and access any resources with the intended malicious purposes.

Second, many loading flaws [7,8] in Java core class libraries and third-party middlewares have
been exposed in recent years, which breach restrictions from the sandbox to execute arbitrary bytecode.
Classloaders play a central role in guaranteeing the safety property of the Java platform, and they are
supposed to prevent adversaries from loading untrusted classes into the same protection domain as
good classes. However, recent exploits indicate that classloaders may allow an attacker to profit from a
confused deputy attack or abuse security vulnerabilities in trusted classes to implement the loading of
arbitrary classes. For Java class libraries, Listing 3 and 4 give various examples of the implementation
to load arbitrary classes. Listing 3 uses a class MethodHandle to invoke arbitrary methods without the
stack-based access control; Listing 4 leverages the weakness of JmxMBeanServer and MBeanInstantiator
to execute any class that they should be incapable of loading. For third-party middlewares, there is
a significant number of malicious exploits [13–23]. For example, CVE-2016-3088 in ActiveMQ [22]
and CVE-2013-4444 [21] in Tomcat are exposed allowing some of their implementation defects to
upload malicious class files and trigger their execution to be exploited. In some cases, this is due to the
incapability of the self-defined classloaders implemented by third-party middlewares, which could
not provide a mechanism to differentiate between benign code and malicious code.

public Class<?> getClass(selfClassLoader scl,
        String name, byte[] buf) {
    URL url = new URL("file:///xxxx");
    Certificate[] certs = new Certificate[0];
    Permissions perm = new Permissions();
    perm.add(new AllPermission());     
    ProtectionDomain pd = new ProtectionDomain(new
        CodeSource(url, certs), perm);
    Class<?> cls = scl.defineClass(name, buf, 0,
        buf.length, pd)
    return cls;
}

Listing 1: Modified excerpt for CVE-2012-0507.

public Class<?> getClass(byte[] classFile){
/*Field theUnsafe = Unsafe.class.
        getDeclaredField("theUnsafe");
    theUnsafe.setAccessible(true);
    Unsafe unsafe = (Unsafe) theUnsafe.get(null);
*/
    sun.misc.Unsafe unsafe = sun.misc.Unsafe.
        getUnsafe();
    Class<?> cls = unsafe.defineClass(null, classFile, 0,  
        classFile.length, null, null);
    return cls;
}

Listing 2: Modified excerpt for CVE-2012-5076.

public Class<?> getClass(String name) {
    MethodHandles.Lookup lookup = MethodHandles.
        publicLookup();
    MethodType methodType = MethodType.methodType(
        Class.class, String.class);
    MethodHandle methodHandle = lookup.findStatic(
        Class.class, "forName", methodType);
    Class<?> cls = (Class<?>) methodHandle.
        invokeWithArguments(new Object[] { name });
    return cls;
}

Listing 3: Modified excerpt for CVE-2012-5088.

public Class<?> getClass(String name) {
    JmxMBeanServer beanServer = (JmxMBeanServer)
        new JmxMBeanServerBuilder().newMBeanServer("
        ", null, null);
    MBeanInstantiator beanInstantiator = beanServer
        .getMBeanInstantiator();
    ClassLoader classLoader = null;
    Class<?> cls = beanInstantiator.findClass(name,
        classLoader);
    return cls;
}

Listing 4: Modified excerpt for CVE–2013-0422.
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Last but not least, the improper use of the powerful sun.misc.Unsafe API is highlighted as a
risky feature to circumvent Java’s safety guarantees [9]. This API was originally introduced to access
low-level, unsafe features of the JVM and underlying hardware, which are unavailable in safe Java
bytecode. As described in [9], the Unsafe operation enables third-party frameworks and libraries to
achieve better performance or implement functionality not otherwise available in the Java language.
As the operation Unsafe is too low-level, it also allows undermining the safety guarantees provided by
the Java language and the JVM. With the use of this powerful API, an adversary can directly execute
its untrusted bytecode without any classloader and any check of security permissions. The obvious
example is CVE-2012-5076 [24], in which the adversary loads the malicious class into the memory
through the defineClass method of the Unsafe, as shown in Listing 2. Note that the use of the getUnsafe
method, which assists with gaining an instance of the Unsafe, is limited in the Java core class libraries.
However, it is possible to bypass such a restriction through reflection, as depicted in the comments
of Listing 2.

5. Runtime Integrity Measurement

5.1. Java Bytecode Runtime Measurement

As noted in Section 2.1, a series of classes or interfaces constitutes a Java application. A class
or interface that has a binary representation (a class file) is loaded into the memory through a
built-in or self-defined classloader. A Java platform supports a set of built-in classloaders, namely
BootStrap ClassLoader, Extension ClassLoader and System ClassLoader. Furthermore, it provides
enough flexibilities for third-party middlewares to design their classloaders with a particular purpose.
For example, Tomcat developers created the WebappX classloader to isolate web applications. As an
interface is a more abstract class, we do not distinguish interfaces from classes, meaning that we view
an interface as a class for simplicity in this paper. In the Java world, everything is represented as
an object, even though an array or a primitive type. Note that an array or a primitive type does not
have an external binary representation, and a JVM instance directly creates and associates it with the
Bootstrap ClassLoader to meet the object-oriented principle.

Figure 3 shows the layout of classloaders and managed classes in the memory of JVM. A JVM
arranges classloaders into a chain that originates from BootStrap Classloader and associates a class
with a classloader, which is responsible for the loading and isolation of this class. Note that all
classloaders except the BootStrap Classloader are implemented as Java classes and need to be measured.
The BootStrap Classloader is comprised of platform-specific machine instructions that kick off the
whole classloading process. This classloader loads the very first Java classloader to start process. It also
is in charge of loading all of the bytecode required to support the basic Java runtime, including classes
in the java.util and the java.lang packages.

From the viewpoint of JVM specification [36], a class is identified by a fully-qualified name,
PackName.ClsName. Notations PackName and ClsName denote the name of a package and the name
of a class, respectively. A class is determined not by its name alone, but by a pair: the name and the
associated classloader. The same class loaded by distinct classloaders is allowed to be executed inside
a virtual machine. If a class C in the package p is loaded by a classloader L1, the class is keyed as
<p.C, L1> in a JVM instance. This means that two classes <p.C, L1> and <p.C, L2> are not the same.
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Extension System 
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Normal Loaded Class ClassloaderDynamically-generated Class

Figure 3. Classloaders and managed classes layout.

In this paper, we enforce a runtime integrity measurement of a Java application at class-level
granularity. As noted in Section 2.1, the core part of a class is comprised of ConstantPool and Methods.
Making a measurement of a class means computing a hash value of the ConstantPool and Methods.
The runtime measurement of Java bytecode is the job of the Measurement Agent in Figure 2. The agent
is designed as a plugin to achieve portability, which means that the agent only brings into full play its
measuring role inside a target JVM until an integrity measurement occurs. When online, the agent
would first traverse every alive classloader from the Bootstrap ClassLoader through which we can
obtain all in-memory classes. The algorithm for this operation is shown in Algorithm 1 with the input
of the classloader root (Bootstrap ClassLoader).

Algorithm 1: Bytecode runtime measurement.
Input : Classloader root Lr
Output : Runtime measurement list Mr

1 for every alive classloader reached from the root Lr do
2 traverse this classloader to obtain relevant in-memory classes;
3 store in a set of classes Cs;
4 end
5 for each class ∈ Cs do
6 if class is not Primitiveor Array then
7 parse class to extract bytecode bc;
8 measure bytecode bc to generate an integrity hv;
9 gain class name cn and loader name ln from class;

10 add a tuple <cn, ln, hv> into Mr;
11 end
12 end

On account of the fact that a class is only associated with a classloader, all in-memory classes are
found by the traversal of alive classloaders and stored into the Cs. Due to the object-oriented principle,
the JVM also represents primitive data types and arrays as classes, but they do not have any executive
logic, just an abstract representation. As a result, it is necessary to exclude them from a set of classes to
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be measured. The detailed measurement procedure refers to these operations in Lines 6–9. In order
to compute a hash value as an integrity value of a class, the first thing to do is to extract bytecode
from class using our efficient parsing scheme. When obtaining bytecode bc and generating a value hv,
we also need the class name cn and the classloader name ln as a unique identifier to constitute a tuple
<cn, ln, hv> and to be added into a measurement list Mr.

Note that the time complexity of the algorithm is O(nc) where nc represents the number of the
loaded classes (the length of the set Cs). During the analyses of the algorithm, we mostly consider
the worst case scenario, i.e., when class is not a primitive type or an array. In this worst case, the If
condition will run nc times. In addition, the first For will run nl times where nl is the number of alive
classloaders. Therefore, the total execution time T will be O(nc + nl) where we use O-notation to denote
the asymptotic upper bound. However, we find that in practice, the number of classloaders is far less
than the number of classes (nl � nc). We then ignore the lower term and let T = O(nc + nl) = O(nc).
We can see clearly that the total time linearly depends on the length of the set Cs. If the length of the
set were to increase, the execution time of the algorithm would also increase.

5.2. Dynamically-Generated Bytecode

With the ongoing programming-language evolution, new techniques and mechanisms are
disseminated in the Java landscape, such as Java Proxy, CGLIB, annotation, reflective invocation
and lambda expressions. They are implemented using dynamically-generated bytecode at runtime.

When we want to add or modify some functionality of an already existing class, we can
dynamically create a proxy class instead of the original delegating one through Java Proxy or CGLIB at
runtime. However, there are some differences between Java Proxy and CGLIB. The Java Proxy requires
that the delegating class implement any set of interfaces; however, the CGLIB extends the original
class without the final modifier.

Annotations are metadata for the code to provide information about the attribute (class/method/
package/field) on which it is defined. However, an annotation is a particular kind of interface type,
meaning that annotation does not contain any executive logic. Therefore, it needs to create an instance
of obtaining attribute information, which is precisely implemented by using Java Proxy.

It is true that the Java Reflection API comes with a perceptible runtime overhead, which is mainly
called forth by the lookup of a method. However, if calling this method often enough, the JVM will
take care of genuinely optimizing these reflective invocations. This concept is labeled inflation and is
incidentally implemented by code generation at runtime.

Lambda expressions are designed to dramatically raise abstraction to make Java code more
generic, flexible and reusable. Lambda expressions can only appear in places where they will be
assigned to a variable, and the type of variable is a functional interface. JVM developers came up with
an approach to implement lambda expression so as to maximize flexibility for future optimization and
provide stability in the class file representation. It translates lambda expression into the bytecode until
runtime by the use of invokedynamic. When invoked, the JVM generates an instance of the functional
interface to which the lambda expression is converted.

The use of dynamically-generated bytecode promotes the implementation of these above
mechanisms in the Java world. From the view of a JVM instance, there does not yet seem to be
much of a difference between a normal loaded class and a generated class. However, these generated
classes have a set of features in a class name (shown in Table 1) or may be associated with a class
loader. The features can be leveraged to differentiate dynamically-generated classes from normal
loaded classes. For example, the name of a class generated from Java Proxy contains $Proxy; a new
Delegating ClassLoader defines a class generated due to the reflective invocation.

The strength of the protection provided by RIM4J is determined by the measurement it enforces.
The accuracy of a measurement approach is determined by the relationship between false negatives
and false positives. The possibility of protection failure (false negatives) relies upon the scope of the
measurement. It is possible for an adversary to implement its malicious intention in the generated
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bytecode. Prior works [43,44] do not measure dynamically-generated bytecode, leading to high false
negatives. The avoidance of false alarms (false positives) is a stringent requirement for any practical
solution. Faults in normal operation are unacceptable in production environments. Consequently, it
is necessary to identify the generated bytecode and make a more accurate analysis for subsequent
verification. It is for this reason that we take the dynamically-generated bytecode into the scope of
the measurement. We expect that enforcing this type of measurement could discover legal generated
bytecode to restrain protection failure situations and unnecessary incorrect operation.

Table 1. A dynamically-generated class name feature.

Mechanism Class Name Feature

Java Proxy package name of a non-public proxy interface + “.” + “$Proxy” + num
“com.sun.proxy” + “.” + “$Proxy” + num

CGLIB delegating-class name + “$$” + class-generator name + “ByCGLIB$$” + num

Annotation package name of a non-public proxy interface + “.” + “$Proxy” + num
“com.sun.proxy” + “.” + “$Proxy” + num

Reflective Invocation
“sun.reflect.GeneratedSerializationConstructorAccessor” + num
“sun.reflect.GeneratedConstructorAccessor” + num
“sun.reflect.GeneratedMethodAccessor” + num

Lambda expressions calling-class name + “$$Lambda$” + num

6. Evaluation

In this section, we evaluate RIM4J by examining its effectiveness, as well as measuring both its
performance and other aspects. In this section, we first describe our experimental setup, followed by
effectiveness evaluation, performance study and portability evaluation.

6.1. Experimentation Setup

Our testbed is a Lenovo ThinkPad T440s, featuring a 1.7-GHz Intel (R) Core i5-4210U CPU,
12 GB of RAM with Xen 4.10. We integrated the TPM-emulator and leveraged it to emulate the
functions of the trusted module in the hardware. The Host VM is the privileged domain of the Xen
virtualization platform with a Linux Mint 18.3 OS (4.8.0 Linux kernel). The Guest VM is used to deploy
Java applications by a tenant, running CentOS 7.4 OS (3.10.0 Linux kernel).

6.2. Effectiveness Evaluation

We have used RIM4J to detect a set of Java shellcodes for known CVE vulnerabilities, classifying
them into three categories: excess sandbox permission, Java loading flaws in core class libraries and
third-party middlewares and sun.misc.Unsafe API abuse, as shown in Table 2. For excess sandbox
permission, a shellcode often relies on RuntimePermission “createClassLoader” to create some self-defined
controlled classloader. For Java loading flaws, either Java libraries or third-party middlewares
manipulate existing classloaders to execute arbitrary bytecode. For sun.misc.Unsafe API abuse, it is
hard to distinguish between benign core classes and bad ones, which are loaded by the same
primordial Bootstrap ClassLoader. In this case, RIM4J needs to not only compare two different
views of classloaders, but also perform an integrity measurement and verify them.

For brevity, we show the detailed experiment about Apache ActiveMQ’s CVE-2016-3088 [22]
in the following part of this section. We construct this experiment using the shellcode to test our
system’s capability to detect possible attacks. First, we start with a perfectly trusted state of ActiveMQ
middleware, which is also a Java application, and enforce the bytecode measurement at runtime.
Second, we launch an attack by exploiting security breaches in ActiveMQ’s HTTP put and move
implementation. We then upload malicious bytecode (a web shell for executing commands in the
parameter of an HTTP request). After that, we take another measurement.
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Table 2. Category of Java exploits to execute arbitrary bytecode.

CVE ID Software Category

CVE-2018-1000146 Jenkins Java Loading Flaws
CVE-2017-12617 Apache Tomcat Java Loading Flaws
CVE-2017-12615 Apache Tomcat Java Loading Flaws
CVE-2016-3088 Apache ActiveMQ Java Loading Flaws
CVE-2014-0116 Apache Struts Java Loading Flaws
CVE-2014-0114 Apache Commons BeanUtils Java Loading Flaws
CVE-2014-0113 Apache Struts Java Loading Flaws
CVE-2014-0112 Apache Struts Java Loading Flaws
CVE-2014-0094 Apache Struts Java Loading Flaws
CVE-2013-4444 Apache Tomcat Java Loading Flaws
CVE-2013-0422 Oracle Java Unsafe API Abuse
CVE-2012-5088 Oracle Java Java Loading Flaws
CVE-2012-5076 Oracle Java Java Loading Flaws
CVE-2012-0507 Oracle Java Excess sandbox permission
CVE-2010-1622 Spring Framework Java Loading Flaws

Figure 4a lists partial measurements of the good application, and Figure 4b gives the
corresponding measurement list of the same application that is compromised by a web attack.
The italicized entries imply that there are extra classes after carrying out an attack. This example
illustrates how to detect such attacks by RIM4J successfully. Note that the second italicized entry
states clearly that a command from a remote adversary was executed, which is implemented by
the dynamically-generated bytecode during runtime. This is the reason why we must take runtime
measurements of this generated bytecode. Other regular entries show that the classes could be defined
by various class loaders, some of which were implemented by third-party middlewares, such as
java.net.URLClassLoaderand WebAppClassLoader. From this point of view, it is a better option to
carry out bytecode measurements at runtime rather than load-time to ensure the accuracy of our
measurement system.

...

com.sun.proxy.$Proxy0                       BootstrapClassLoader     E2CFC0DF7564CEACCB970F0356EEECCE1412FB2F

org.apache.activemq.console.Main            AppClassLoader           66C377EC9D584B142B20374126399B3C0ED1D191

sun.reflect.GeneratedMethodAccessor7        DelegatingClassLoader    88DFE3874561F5070F69F10725BE03C3D1E95837

com.sun.proxy.$Proxy5                       java.net.URLClassLoader  E18A3630350239D882CA69A31B8DCBC02DCDEBEF

org.eclipse.jetty.webapp.WebAppClassLoader  java.net.URLClassLoader  52C756A759210EC9619291840225E09479AC0190

org.apache.activemq.web.WebConsoleStarter   WebAppClassLoader        F2D7EECC74DCF981A338E9723DD59EFC3E8CB0C0

...

(a)

...

com.sun.proxy.$Proxy0                       BootstrapClassLoader     E2CFC0DF7564CEACCB970F0356EEECCE1412FB2F

org.apache.activemq.console.Main            AppClassLoader           66C377EC9D584B142B20374126399B3C0ED1D191

sun.reflect.GeneratedMethodAccessor7        DelegatingClassLoader    88DFE3874561F5070F69F10725BE03C3D1E95837

com.sun.proxy.$Proxy5                       java.net.URLClassLoader  E18A3630350239D882CA69A31B8DCBC02DCDEBEF

org.eclipse.jetty.webapp.WebAppClassLoader  java.net.URLClassLoader  52C756A759210EC9619291840225E09479AC0190

org.apache.activemq.web.WebConsoleStarter   WebAppClassLoader        F2D7EECC74DCF981A338E9723DD59EFC3E8CB0C0

...

org.apache.jsp.test_jsp                     JasperLoader             7F07A52153F3824A8622FE0DB60A7F91E667B14C

...

java.lang.UNIXProcess$$Lambda$9             BootstrapClassLoader     7BCF5DF4504917E2CDD610C6C59295EF259C6FA2

...

(b)

Figure 4. Measurement list example consisting of the class name, class loader, and SHA-1 hash value.
(a) Measurement example; (b) measurement after installing malicious bytecode.

6.3. Performance Evaluation

While our architecture reduces the risks of security-relevant malicious exploitations, these changes
have a performance overhead cost. We evaluated RIM4J in the dimensions of performance (as measured
by runtime overhead and memory overhead). We have also compared the bytecode resolving overhead
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of RIM4J with that of DTEM [43,44]. We were restricted from comparing against other bytecode
measurement systems, as many were unavailable for downloading and did not use standardized
benchmarks in their evaluations. For all experiments, no other applications were running, and the
system was otherwise at rest. For the macro- and micro-benchmarks, we used two JVMs: Oracle
HotSpot JVM, Version 1.8.0_151, and the OpenJDK IcedTea JVM, of the same version.

6.3.1. Bytecode Measurement Overhead

Our first performance evaluation focuses on the measurement overhead. This overhead contains
the bytecode resolving and measurement overhead. As shown in Table 3, we utilized several popular
open source applications to evaluate the performance overhead.

Table 3. Description of the popular open source application workloads used in our experiments.

Workload Version Description

Cassandra 3.11.1 Distributed NoSQL database system
Hadoop 3.0.0 Distributed storage and processing framework
Maven 3.5.2 Build automation tool used for Java projects
Lucene 7.2.1 Information retrieval software library
Tomcat 9.0.4 Http web server with Java Servlet Container
ActiveMQ 5.15.3 Message broker together with a full JMSclient
Netty 4.1.21 Non-blocking I/O client-server framework
XWiki 9.5 Wiki software platform with extensibility

First, we analyzed and resolved these applications to gain the resolving time separately using the
bytecode resolving algorithm of DTEM and JCLOUDATT in the same test environment. This procedure
was repeated 20 times, starting a new process to run each experiment, and we then averaged
these results.

Figure 5 shows the normalized resolving overhead in each bytecode measurement architecture.
The figure shows that our RIM4J achieves the lowest resolving overhead in these real-world
applications in comparison to DTEM. Compared with RIM4J, the average resolving overhead of DTEM
is 17× that of RIM4J for Hadoop and XWiki in the best case, but 35× for Lucene in the worst case.
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Figure 5. Bytecode resolving overhead comparison between DTEM [43,44] and RIM4J (the Y-axis is the
overhead normalized to RIM4J).

We also used the same eight applications described above to evaluate the runtime overhead and
memory overhead when introducing our bytecode measurement approach. To compare broadly to the
measurement of the entire class (named Class Measurement), we computed the runtime overhead of
bytecode measurement in various hash algorithms (SHA-1, SHA-256, SHA-512), respectively. Figure 6
shows the relative runtime overhead of bytecode measurement in each hash algorithm in comparison
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with the measurement of the entire class. We describe the relative memory overhead of bytecode
measurement in Figure 7. From the two figures, we make three observations.
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Figure 6. Runtime overhead with various hash algorithms (SHA-1, SHA-256, and SHA-512) in the
bytecode measurement (the Y-axis is the runtime overhead of the bytecode measurement relative to the
measurement for the entire class).
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Figure 7. Memory overhead in the bytecode measurement based on the SHA-1 algorithm (the Y-axis is
the memory overhead of the bytecode measurement relative to the measurement for the entire class).

(1) From Figure 6, we see the runtime overhead of our bytecode measurement approach
approximately reduced from 1% to 21% in various hash algorithms. We see the best case for Hadoop,
reduced by about 21% in each hash algorithm, but the worst case for Tomcat, reduced by about 1% in
the SHA-512 algorithm. From our inspection, Tomcat contains 3325 classes, one of the least, and Hadoop
has 130,835 classes (the most). The time taken by hash algorithms is actually in proportion to the
space of the measured applications. The more classes an application has, the more space it occupies.
We believe that this is the prime reason for the above observation.

(2) As depicted in Figure 7, the memory overhead of bytecode measurement is reduced by at
least 24% in comparison with the class measurement. Figure 7 shows the best in Netty and the
worse in Hadoop; however, there is little difference between the two cases, roughly 5%. As presented
above, the bytecode (ConstantPool and Methods) makes up approximately 72% of a class on average.
As our observation conforms to the actual statistic, our bytecode measurement approach has less
memory overhead.

(3) Figure 6 shows that the relative runtime overhead is higher with the increased intensity of
hash algorithms, except for the Maven. In the SHA-256 algorithm, it has higher overhead than the
SHA-512. The discrepancy results from nearly the same runtime overhead between the two types
of measurements of Maven. The exception is also attributed to a factor: Maven contains 6024 classes,
meaning that it occupies less space to have less runtime overhead.
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6.3.2. Performance Effect on Macro-Benchmarks

Our first evaluation of the performance effect focuses on macro-benchmarks, from the
SPECjvm2008 [45] benchmark suite. The SPECjvm2008 benchmark suite contains 10 benchmarks that
consist of a variety of common general purpose application computations designed to be representative
of real-world usage. In all cases, we used the “base” category of the benchmark suite without any
warm-up phase.

First, we ran the benchmarks using both the Oracle HotSpot JVM and the OpenJDK IcedTea
JVM in our test environment to measure baseline execution performance (ops/m metric). Then, we
started our RIM4J to initiate the Measurement Agent in both JVMs, which were executing all of the
benchmarks to separately perform periodic runtime measurement at a frequency of 5 s, 10 s, 30 s and
60 s; we obtained the resulting execution performance. This process was repeated 20 times, starting a
new JVM to run each experiment, and we then averaged these results.

Figure 8 shows the performance effect of our JCLOUDATT architecture in OpenJDK IcedTea 8 by
varying the frequency. It gives the results of the SPECjvm2008 benchmark suite. Figure 9 shows the
results in Oracle HotSpot 8. From the two figures, we make the following observations:

(1) When JCLOUDATT is turned on to enforce runtime measurement, it induces a performance
degradation on the execution of a benchmark. In Figure 8, we see the lowest effect in the scimark
benchmark and the highest effect in the compiler benchmark. For the scimark benchmark, it is down
to 93% when at a frequency of 60 s. The compiler benchmark has a 94% reduction of performance at a
frequency of 5 s. The observation is also made in Figure 9, except for the lowest: in Oracle HotSpot 8,
it is down to 95% of the application performance for the scimark benchmark.

(2) At the same frequency, RIM4J always imposes the least reduction of application performance
for the compress benchmark, but for the compiler benchmark, it yet induces the most significant
reduction from Figures 8 and 9. When enforcing a measurement, JCLOUDATT needs to execute the
VM operation about class redefinition to obtain the bytes of all loaded classes. This operation requires
Stop-the-Worldpause for consistency. Due to a high object allocation rate [46], the compiler benchmark
has the most significant reduction of execution performance.

(3) From Figures 8 and 9, the lower the periodic measurement frequency is, the less reduction
RIM4J induces. Compared to other frequencies, each benchmark has the least reduction at a frequency
of 60 s. We believe that the performance effect will be negligible if the measurement frequency is
low enough.
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Figure 8. Performance effect of periodic runtime measurement for macro benchmarks in OpenJDK
IcedTea 8 (the Y-axis is the performance relative to the baseline test; the same benchmarks, but with
no measurement).
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Figure 9. Performance effect of periodic runtime measurement for macro benchmarks in Oracle
HotSpot 8 (the Y-axis is the performance relative to the baseline test; the same benchmarks, but with
no measurement).

6.3.3. Performance Effect on Micro Benchmarks

To further analyze the runtime performance effect, we performed a series of micro benchmarks,
JavaGrande [47]. The benchmark suite consists of nine benchmarks: “Arith” (execution of arithmetic
operations), “Assign” (different types of variable assignment), “Cast” (casting between different
primitive types), “Create” (creating objects and arrays), “Loop” (for, reverse for, while loop), “Math”
(execution of math library operations), “Method” (method invocation), “Serial” (serialization) and
“Exception” (exception handling).

Each benchmark was executed 20 times (each time in a separate JVM) and the results of each
trial averaged. This entire process is similar to the experiment of the performance effect on macro
benchmarks. In all cases, we ran the benchmark suite with no warm-up phase, as JavaGrande’s
benchmark runner does not support warm-up.

Figures 10 and 11 show the performance effect of our RIM4J architecture in OpenJDK IcedTea 8
and Oracle HotSpot 8, respectively, by varying the measurement frequency to 5 s, 10 s, 30 s and 60 s.
From the two figures, we make the following observations:

(1) From Figure 10, we see that the lower the measurement frequency is, the lower the performance
effect is. The same observation is almost made in Figure 11, as well. For each benchmark, it has the
shortest reduction of performance at a frequency of 60 s except for the Arith benchmark in Figure 11.
For the Arith, RIM4J imposes a 68% reduction at a frequency of 60 s, but a 60% reduction when at a
frequency of 5 s. We attribute these small differences mostly to the instabilities of the JVM rather than
the impact from our RIM4J [48].

(2) We see that RIM4J has a negligible performance effect on Cast and Loop in the two figures.
Cast consists of four operations, and the result of each operation (casts/s metric) is infinity regardless
of the measurement frequency. An operation of the type casting takes such a negligible amount of
time that our RIM4J has little impact on this benchmark. Although the While in the Loop benchmark
generates a finite result, they are very nearly equal no matter what the measurement frequency is.

(3) For Assign, there is little difference in performance at any frequency. We also achieve the
same observation in Method except for the frequency of 5 s, in which it is down to 0.3% of the baseline
performance in both the Oracle HotSpot JVM and the OpenJDK IcedTea JVM. In two cases, RIM4J
has significantly high overhead, likely since it performs Stop-the-World pause. However, the metric
of Assign is reduced from 1.4× 1010 to 9.5× 108 and the Method is reduced from 7× 1010 to 3× 109,
which are considered acceptable in practice.
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Figure 10. Performance effect of periodic runtime measurement for micro benchmarks in OpenJDK
IcedTea 8 (the Y-axis is the performance relative to the baseline test; the same benchmarks, but with
no measurement).
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Figure 11. Performance effect of periodic runtime measurement for micro benchmarks in Oracle
HotSpot 8 (the Y-axis is the performance relative to the baseline test; the same benchmarks, but with
no measurement).

6.4. Portability

We further studied the portability of RIM4J by attempting to apply it to two completely different
JVMs (Oracle HotSpot and OpenJDK IcedTea). For each VM, we attempted to execute two benchmark
suites, the DaCapo [49] benchmark suite (9.12-MR1-bach) and the JavaGrande [47] benchmark suite
(Sequential Version 2.0), as an indicator of whether RIM4J would work.

First, we use the DaCapo benchmark suite containing 14 benchmarks, which exercise popular open
source applications with workloads designed to be representative of real-world usage. RIM4J passed
all of these tests except for two benchmarks batik and eclipse because their execution led to errors on
the OpenJDK whenever our RIM4J was turned on or off. batik fails with a ClassNotFoundException,
and eclipse fails during its checksum validation.

To add additional validity to our claim that RIM4J is portable, we also utilized the JavaGrande,
designed to be representative of scientific and other numerically-intensive computation. RIM4J passed
all of these tests.

However, we were unable to successfully apply RIM4J to other JVMs, for example, IBM J9 VM
and Jikes RVM. This is due to our inherent design limitation that our RIM4J rely on the specific API
provided by Oracle’s HotSpot and OpenJDK’s IcedTea during the runtime measurement. We believe



Symmetry 2018, 10, 253 18 of 23

that it is possible to modify RIM4J to be compatible with J9 and Jikes, but have not investigated this
further.

7. Discussion and Limitation

Enforce security: Our RIM4J architecture is non-intrusive and does not protect a Java application
from malicious bytecode injection attacks at runtime. However, our approach can also be retrofitted
to enforce security within a cloud computing environment. In this case, when compromised or
under-attack behaviors of a hosted application are detected, we can directly terminate this application
to stop from further attacks and report the illegal status to the cloud customer. Note that the
enforcement requirements in an attesting cloud party may not be the same as those of cloud customers,
and consequently, the customers still need to perform an integrity validation for the current attestation.

Missed measuring time window: RIM4J might miss some attacks that happen between two adjacent
measurements. For example, an adversary executes malicious bytecode after the current measurement,
but the bytecode would automatically perform self-destruction to cover the tracks before the next.
It is a fundamental limitation with the RIM4J using a periodic mechanism. Fortunately, it is rare in
practice, as an adversary usually seeks persistent access to the targeted system and furthermore needs
to find out the frequency in advance. Even though, it can be still detected if the RIM4J works at a
random frequency.

Interference from kernel rootkits: Our architecture is restricted to measuring bytecode inside a
JVM instance at runtime. It requires that the virtual machine and the underlying systems (such as
hypervisorand OS) are trustworthy. As a result, kernel rootkits might interfere with RIM4J, e.g.,
aborting a normal measurement. In this case, we leverage the IMA module [25] at the OS level
to protect the RIM4J against the rootkits. Given the strong isolation supported by the hypervisor,
it may be a better option to build our architecture in an out-of-the-box way through virtual machine
introspection [50].

8. Related Work

Application measurement: Integrity measurement in trusted computing is intended to generate an
integrity proof of an attested target, and an attesting party would send this proof to a cloud customer
to validate whether the target is trustworthy. There are numerous approaches to address integrity
challenges at the application level, as depicted in Table 4.

Table 4. Qualitative comparison of integrity measurement approaches for applications. A symbol (3)
in the term “Portability” indicates that it is not needed for any modification of the underlying systems
or access to the source code.

Approaches
Content Measurement Portability

Binary Bytecode Runtime Periodic Hypervisor OS JVM Source Code

IMA [25] 3 3 3 3 3

SRA [51] 3 3 3 3

PRIMA [26] 3 3 3

DR@FT [27] 3 3 3

TBVMM [52] 3 3 3 3

DTEM [43,44] 3 3 3 3 3 3

JMF [29] 3 3 3 3

OB-IMA [28] 3 3 3 3

CloudMonatt [30] 3 3 3 3 3 3

Ta-TCS [31] 3 3 3 3 3

Linux IMA [25] is the first to extend TCG’s measurement scope to the application level.
IMA intercepts some critical system calls to measure the code before being executed (load-time
measurement). As the extension of IMA, PRIMA [26] is based on the CW-Lite integrity model [53]
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to eliminate many needless measurements. DR@FT [27] was further proposed to describe the
different trustworthiness through a ranking scheme to give much richer semantic information in
an attestation. OB-IMA [28] is an out-of-the-box approach to rely on system call interception to
measure security-critical files, such as the executable content of applications. CloudMonatt [30] and
Ta-TCS [31] leverage Virtual Machine Introspection (VMI) [50,54] to implement a hypervisor-level
monitor to examine the code integrity of an application process in a guest virtual machine (VM)
at runtime.

These approaches focus primarily on the integrity of binary code, the majority of which are
load-time measurements [25–28]. Practically all modern CPU and OSes support setting non-writable
page permissions, which is simple and efficient to ensure code runtime integrity [5]. Unfortunately,
the runtime integrity does not support bytecode, as OSes view bytecode as data, meaning that the
bytecode resides in writable heap areas. Although CloudMonatt [30] and Ta-TCS [31] provide runtime
measurements in cloud computing, they aim to enable code integrity rather than bytecode integrity.

RIM4J leverages the existing application measurement approach [25] and commodity hardware
feature to guarantee the load-time code integrity of the JVM and enforce the W

⊕
Xpolicy for its runtime

integrity. Additionally, we extend the scope of the measurement to the level of bytecode and support
the runtime measurement to detect undesirable behaviors of Java bytecode.

Bytecode measurement: Semantic Remote Attestation (SRA) [51] verifies the property integrity of
high-level programs by using a high-level language virtual machine. It needs access to the source code
to collect properties, and TBVMM [52] also needs this. Thober [29] describes the Java Measurement
Framework (JMF) to detect an integrity violation of Java applications at runtime. However, it also
requires modifications for JVM, which restricts its widespread usage. DTEM [43,44] implements
load-time and runtime measurements for bytecode integrity, but it still modifies the class loadersof the
Java platform.

As a bytecode measurement, RIM4J leverages modern virtual machine features to instrument the
measurement agentinto the JVM dynamically at the level of the bytecode, meaning that RIM4J gains
the portable capability to be easily deployed and adopted for real-world purposes.

Dynamically-generated bytecode: The measurement systems as mentioned above do not support
the measurement of dynamically-generated bytecode, although it is common that JVM developers
implement some favorite language features through dynamically-generated bytecode. The underlying
JVM directly creates the dynamically-generated bytecode inside the native heap, which is the pre-
allocated memory due to the performance optimization. As such, the approaches as mentioned above
cannot perform any measurement by using system call interception or virtual machine introspection.
To the best of our knowledge, RIM4J is the first measurement approach for this type of bytecode integrity.

Java security: RIM4J continues the line of research of protecting Java applications from malicious
behaviors, including access-control checks [55,56], taint analysis [57,58] and Java cryptography
security [59]. RIM4J adds to the literature by showing that the portable integrity measurement approach
can be leveraged for the detection and verification of undesirable behaviors from malicious adversaries,
such as uploading arbitrary files and remote code execution.

9. Conclusions

Memory-safety JVM provides an efficient way to secure cloud applications due to the control
flow integrity. However, there is still another violation of bytecode integrity. It results primarily from
the given excess sandbox permission, loading flaws in Java libraries and third-party middlewares
and sun.misc.Unsafe API abuse. In this paper, we propose a language-supported architecture,
called RIM4J, to further secure Java applications within a cloud system. RIM4J enforces a runtime
measurement of Java bytecode and attests this to a cloud customer in an unforgeable manner. To the
best of our knowledge, our RIM4J is the first to measure dynamically-generated bytecode. RIM4J
leverages language-supported features to be entirely portable to be applied seamlessly to other
platforms. We apply our runtime measurement system to a messaging server application where
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we show how RIM4J can detect undesirable invocations, such as uploading arbitrary files and
remote code execution. Evaluations show that RIM4J achieves as low as a 1/35-bytecode resolving
overhead for DTEM (1/17 at worst). We evaluate RIM4J’s performance effect on the SPECjvm2008
macro-benchmark suite and JavaGrande micro benchmark suite in two commonly-used JVMs, finding
the best performance to approach 95% and 100% of the baseline, respectively.

We plan to extend our work in several directions. First, RIM4J only does periodic runtime
measurement for the bytecode. We plan to extend RIM4J to enforce an active measurement for malicious
bytecode discovery in a real-time manner, but with lower overhead. Second, we expect to provide a
property-based attestation for other cloud customers rather than just tenants, such as end users. Third,
we intend to deploy RIM4J to mobile platforms to see the performance implications.
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