
symmetryS S

Article

Lossless and Efficient Polynomial-Based Secret Image
Sharing with Reduced Shadow Size

Xuan Zhou ID , Yuliang Lu, Xuehu Yan *, Yongjie Wang and Lintao Liu

National University of Defense Technology, Hefei 230037, China; xzhou@secpol.net (X.Z.);
publicLuYL@126.com (Y.L.); w_yong_j@aliyun.com (Y.W.); liuta1989@163.com (L.L.)
* Correspondence: publictiger@126.com; Tel.: +86-551-86402861

Received: 10 May 2018; Accepted: 19 June 2018; Published: 1 July 2018
����������
�������

Abstract: Thien-and-Lin’s polynomial-based secret image sharing (PSIS) is utilized as the basic
method to achieve PSISs with better performances, such as meaningful shares, two-in-one property
and shares with different priorities. However, this (k, n) threshold PSIS cannot achieve lossless
recovery for pixel values more than 250. Furthermore, current solutions to lossless recovery for PSIS
have several natural drawbacks, such as large computational costs and random pixel expansion.
In this paper, a lossless and efficient (k, n) threshold PSIS scheme with reduced shadow size is
presented. For lossless recovery and efficiency, two adjacent pixels are specified as a secret value,
the prime in the sharing polynomial is replaced with 65,537, and then the additional screening
operation can ensure each shared value in the range [0, 65,535]. To reduce shadows size and improve
security, only the first k − 1 coefficients are embedded with secret values and the last coefficient
is assigned randomly. To prevent the leakage of secrets, generalized Arnold permutation with
special key generating strategy is performed on the secret image prior to sharing process without
key distribution. Both theoretical analyses and experiments are conducted to demonstrate the
effectiveness of the proposed scheme.

Keywords: secret sharing; polynomial-based secret image sharing; lossless recovery; reduced
shadow size

1. Introduction

In a secret image sharing (SIS) scheme, the secret image is divided into several shadow images
(or shares) without any secret information leakage, and it can be recovered only when a sufficient
number of shadow images are combined together. In comparison with other cryptographic techniques,
such as symmetric cryptography, asymmetric encryption and information hiding, SIS have a unique
property, namely loss-tolerance, which means the secret information can still be recovered even
though parts of shares are lost or destroyed. Therefore, it is beneficial in certain application scenarios,
such as access control, distributed storage system, communications in unreliable public channels and
electronic voting.

Currently, there are two main categories in the field of SIS: visual cryptography scheme (VCS) [1–3]
and polynomial-based SIS (PSIS). The best advantage of VCS is the stack-to-see property, which means
the secret information can be visually recognized by human visual system (HVS) just with sufficient
shares stacking. This natural property of VCS is based on OR operation, so it has several drawbacks,
such as lossy recovery and low visual quality of recovered images. In comparison with VCS, PSIS is
more suitable for digital images, which can achieve secret image recovery with high visual quality.

In 1979, Shamir [4] first proposed a (k, n) threshold polynomial-based secret sharing (PSS) scheme
on number field. In the scheme, the secret is divided into n shares, any k or more of them can reveal the
original secret, while any less than k shares can obtain nothing about the secret. Although the scheme
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is secure in theory, each participant requires relatively large storage space for the reason that the size of
each share is equal to that of the secret [5]. Therefore, when using the scheme to share image or video
at the pixel level, huge communication burden will be introduced.

In 2002, Thien and Lin [6] first introduced polynomial-based secret image sharing based on
Shamir’s (k, n) threshold PSS scheme. In the scheme, firstly, a k− 1 degree polynomial is generated by
setting the k coefficients to grayscale values of the permuted secret image. Then, the corresponding
shadow image according to the polynomial is computed. The main difference between their scheme
and Shamir’s scheme is that they do not use random coefficients, thus their scheme can reduce the size
of each shadow image to 1

k of the secret image’s. The small shadow size is a good property in practice.
From then on, plenty of PSIS schemes based on Thien-and-Lin’s scheme have been emerged to achieve
more interesting performances, such as meaningful shares [7–9], two-in-one recovery [10,11] and
shares with different priorities [12–17]. However, there exists a disadvantage in Thien-and-Lin’s PSIS
scheme that it cannot actually recover a lossless secret image, which is described in detail in Section 2.

Lossless recovery is one of the most significant properties in the field of SS [18–20];
many researchers attempted to design SS or SIS schemes with both lossless recovery and other
properties. Based on PSIS, there exist several solutions to lossless recovery for PSIS [21,22], and three
primary lossless solutions are discussed in detail as follows. In Thien-and-Lin’s scheme with lossless
recovery [6], they divided pixel values more than 250 into two parts, and then shared two parts
with respective sharing phases. Yang et al. [23] utilized polynomial-based operations on Galois Field
GF(28) instead of integer computations in the finite field. In Ding and coworkers’ scheme [24], pixel
values more than 250 also need to be divided, but then both parts are embedded into another two
coefficients of the constructed polynomial during one single sharing phase. However, these solutions
bring in some other negative effects, such as random shape changes, large shadow size and high
computational complexity.

In this paper, a lossless and efficient (k, n) threshold PSIS scheme with reduced shadow size is
presented. In our method, we firstly utilize two adjacent pixel values to form a secret value which
can be represented as a 16-bit integer from 0 to 65,535, and then specify 65,537 as the prime in the
sharing polynomial with the help of a screening operation, to avoid generating share values larger
than 65,535 which is the maximum of a 16-bit integer. These operations guarantee to achieve lossless
recovery and high efficiency in our scheme. Subsequently, k− 1 secret values are embedded into k− 1
out of k coefficients of the sharing polynomial, so that it can achieve reduced shadow size. Besides,
generalized Arnold permutation with special key generating strategy is performed on the secret image
prior to sharing to prevent the leakage of secret information and key distribution. Theoretical analyses
and experiments are conducted to show the effectiveness of the proposed scheme.

The rest of the paper is organized as follows. Some basic background and preliminary techniques
are introduced in Section 2. The proposed PSIS is explicitly presented in Section 3. Furthermore,
theoretical analyses of its performance are given in Section 4. The experiments and comparisons are
shown in Section 5. Finally, we conclude our contributions in Section 6.

2. Preliminaries

2.1. Polynomial-Based Secret Image Sharing

Based on k− 1 degree polynomial as shown in Equation (1), Shamir [4] proposed (k, n) threshold
PSS, which has been widely used in various practical applications. In Equation (1), the modulus p
must be a prime to guarantee the recoverability. Furthermore, the coefficient a0 is utilized to embed
the secret value, while the other k− 1 coefficients including a1, a2, · · · , ak−1 are randomly assigned
during each sharing phase. Therefore, the function value f (x) is unrelated to a0, which is the shared
value corresponding to one certain serial number x. With n different serial numbers, n shared values
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f (x1), · · · , f (xn) are generated for distribution. When obtaining any k shared values, the secret value
a0 will be precisely decrypted by the Lagrange interpolation.

f (x) = (a0 + a1x + a2x2 + · · ·+ ak−1xk−1) mod p (1)

Shamir’s PSS scheme can be directly utilized for the encryption of images, where the prime
p is generally 251. Experimental results of (3, 4) threshold PSIS based on Shamir’s proposed PSS
are given in Figure 1. Secret image S is shown in Figure 1a. One out of four shadow images SC1

(Figure 1b) reveals nothing secret, as well as the recovered image S′t=2 with insufficient shares, where
S′t=2 denotes recovery with any 2 shares. Images S′t=3 and S′t=4, which are similar to the original one,
can be recovered with any 3 or more shares.

(a)S (b)SC1 (c)S′t=2 (d)S′t=3 (e)S′t=4

Figure 1. Experimental results of Shamir’s proposed (3, 4) threshold polynomial-based secret image
sharing: (a) secret image S; (b) one shadow image SC1; (c) recovered image S′t=2 with two shares;
(d) recovered image S′t=3 with three shares; and (e) recovered image S′t=4 with four shares.

However, there exist some errors in the recovered images, as shown in Figure 1d,e, e.g., the top
right surface of the left object and the top surface of the right object should be recovered to white as
the original secret image, but they are wrongly restored into black. Since p = 251, all the values in
Equation (1), such as x, f (x), a0, a1, · · · , ak−1, are limited in the range [0, 250]. However, the grayscale
image includes 256 gray levels from 0 to 255. As a result, some pixel values more than 250 cannot be
processed, so classic PSISs are lossy recovery. Currently, many researchers ignore this kind of error
in PSIS by truncating values more than 250 to 250. Although the recovered images by this technique
look similar to the secret image, they cannot satisfy the requirement of lossless recovery in certain
application scenarios.

Thien and Lin [6] proposed (k, n) threshold PSIS with reduced shadow size based on Shamir’s
PSS in 2002, which is more beneficial for storage and transmission of shares. In Thien-and-Lin’s
scheme, all the coefficients a0, a1, · · · , ak−1 in Equation (1) are used to embed secret values, so k times
more secret information is processed than that of Shamir’s scheme during a sharing phase. Therefore,
the size of the generated shadow images is 1

k times that of the secret image. However, parts of secret
information will reveal in these reduced shadow size without pre-encryption for the secret image,
as shown in Figure 2b–f. Due to the lack of randomness during each sharing phase, k secret values
a0, a1, · · · , ak−1 as a whole group have a one-to-one mapping to shared values f (x1), f (x2), · · · , f (xn).
Therefore, adjacent shared values in each shadow image change a little, while pixel values in the secret
image have a little changes. As a result, outlines of the secret image leak out in shares and recovered
images with insufficient shares. Currently, pre-encryption needs to be done for security before the
sharing process, so Thien-and-Lin’s scheme must be an integrated scheme which is a combination of
PSIS and encryption.
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(a)S (b)SC1 (c)SC2 (d)SC3 (e)SC4

(f)S′t=2 (g)S′t=3 (h)S′t=4

Figure 2. Experimental results of Thien-and-Lin’s proposed (3, 4) threshold with shadow size-reduced
PSIS without pre-encryption: (a) secret image S; (b–e) four shadow images SC1, SC2, SC3, and SC4;
(f) recovered image S′t=2 with two shares; (g) recovered image S′t=3 with three shares; and (h) recovered
image S′t=4 with four shares.

2.2. PSIS with Lossless Recovery

Currently, there are three typical solutions to PSIS with lossless recovery, while some integrated
schemes [22,25] with lossless recovery are not mentioned due to much larger costs.

In Thien-and-Lin’s scheme with lossless recovery [6], secret values equal to and more than 250
are divided into two parts, including 250 and the remainder modulo 250. Then, two parts are shared
with two sharing phases separately. During recovery, if the first recovered value s′1 is 250, the second
value s′2 also needs to be recovered. The original secret value s′ is equal to s′1 + s′2. By this technique,
lossless recovery is achieved, but there exists an obvious drawback that it results in random pixel
expansion of shadow images due to the random number of secret pixel values in [250, 255], so shares
should be treated as data rather than images.

Yang et al. [23] proposed a solution based on Galois Field GF(28), where the basic polynomial
is changed into Equation (2). In Yang and coworkers’ scheme, all computations of integers are
replaced with operations of polynomials in GF(28), and there are 256 polynomials in corresponding
to integers from 0 to 255. Therefore, lossless property can be achieved in this scheme. Afterwards,
several researchers [11,26] referred Yang’s proposed PSIS with lossless recovery to build schemes
with other properties. However, its detailed algorithm is not given yet, and further a proof for its
effectiveness does not exist. More importantly, the sharing and recovery phases based on Galois Field
have much larger costs than classic PSIS schemes.

f (x) = (a0 + a1x + a2x2 + · · ·+ ak−1xk−1) mod (28) (2)

Ding et al. [24] introduced a new solution to lossless recovery. Similar to Thien-and-Lin’s scheme,
integers from 250 to 255 are divided into two parts, but both parts are shared during one sharing
phase. For example, in (2, 2) threshold scheme, a0 and a1 are utilized to embed 250 and the remainder,
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respectively. To guarantee the security, it needs a technique to increase the randomness: a1 should be
random integer multiples of the remainder r, which is no more than 250. Therefore, the secret value
can be recovered with k shared values after recombination. However, the size of shadow images is
equal to that of the secret image, as shown in Figure 3.

(a)S (b)SC1 (c)S′t=2 (d)S′t=3 (e)S′t=4

Figure 3. Experimental results of Ding’s proposed (3, 4) threshold PSIS with lossless recovery: (a) secret
image S; (b) one shadow image SC1; (c) recovered image S′t=2 with two shares; (d) recovered image
S′t=3 with three shares; (e) recovered image S′t=4 with four shares.

2.3. Generalized Arnold Permutation

Arnold map was proposed by Russian mathematician Vladimir I. Arnold in 1968. Generalized
Arnold map, which is shown in Equation (3), is the generalization of Arnold map. α and β are integers,
N is the dimension of an image matrix, and (x, y) is the original position that is mapped to the new
position (x′, y′). This permutation randomizes the original order of pixels or bits in an image. However,
after sufficient iterations, the original image is reconstructed. Inverse mapping using Equation (4) is
a phase in decryption process to transform the shuffled image into the input image. The number of
iterations in the permutation step must be equal to that of the inverse transformation.

Γ :

[
x′

y′

]
=

[
1 α

β αβ + 1

] [
x
y

]
mod N (3)

Γ′ :

[
x
y

]
=

[
αβ + 1 −α

−β 1

] [
x′

y′

]
mod N (4)

If M denotes the conversion matrix and θ denotes the number of iterations, it can be proven
that θ iterations of Arnold permutation using the matrix M is equivalent to one single iteration of
Arnold permutation using the matrix Mθ [27]. The three parameters α, β, and θ can serve as the key of
encryption and decryption.

3. The Proposed Scheme

3.1. Design Concept

In the classic PSIS, one pixel, which can be represented as 8 bits or a byte, is specified as a secret
value or shared value. Our method specifies two adjacent pixel values to form a secret value or shared
value, which can be represented as a 16-bit integer from 0 to 65,535. Therefore, the number of secret
values is decreased by half. As a result, the total number of sharing phases or recovery phases will be
decreased, and the efficiency of sharing and recovery will be improved.

In the classic PSIS, 251, the largest prime less than 255, is specified as the prime p, so all
generated shared values are limited in [0, 250], which cannot cover 256 gray levels. In our scheme,
when the secret values are 16-bit integers, 65,537, the smallest prime more than 65,535, can be selected
as p. Most importantly, when the shared value is equal to the only integer 65,536 which cannot be
represented as 16 bits in shadow image, a screening operation can be performed to give up the value
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and redoing the sharing phase to guarantee all shared values can be represented as 16 bits. As a result,
all secret values in [0, 65,535] can be processed by the new sharing polynomial as Equation (5), and the
secret pixel values from 0 to 255 can be recovered losslessly.

f (x) = (a0 + a1x + a2x2 + · · ·+ ak−1xk−1) mod 65,537 (5)

In Thien-and-Lin’s PSIS, all coefficients are used to embed the secret values. As mentioned
in Section 2, the lack of randomness causes the leakage of secret information, so pre-encryption is
necessary to guarantee the security. Our method is to utilize the first k− 1 coefficients in Equation (5)
to embed secret values while randomly selecting the last coefficient ak−1 in [0, 65,536] to increase the
randomness and thus security. As a result, the size of each shadow images is only 1

k−1 of the secret
image(k = 2, 3, · · · , n), at the same time the one-to-one mapping between secret values and shared
values are destroyed by ak−1, and then no secret information will be leaked out in shares. However,
some recovered images with insufficient shares may still leak secret information by specific strategy.
Therefore, to increase the security, we also permute the secret image before doing sharing process by
generalized Arnold permutation without key distributing separately.

In Thien-and-Lin’s PSIS, to permute the pixels of secret image, a permutation sequence is
generated by a key. The key is kept by the system owner or shared among the owners of shadows,
which indicates it is fixed or needs to be distributed extra. The key of generalized Arnold permutation
is a set of three parameters including α, β and θ, as mentioned in Section 2.3. In our scheme,
the parameters are generated based on the statistical feature of all pixel values in the secret image.
We first count the numbers of each grayscale pixel value and sort them in ascending order. Then,
we select three small numbers represented as l1, l2 and l3 (l1 ≤ l2 ≤ l3) and three large numbers
represented as h1, h2 and h3 (h1 ≥ h2 ≥ h3) according to a certain formula. For example, l1, l2 and l3
can be the numbers at the position of 5%, 10% and 15% in the order, while h1, h2 and h3 can be the
three largest numbers. Thus, we can get the parameters as Equation (6). The modular operations
make the generated parameters not too large, which can decrease computational costs of permutation
to the acceptable range. Besides, the generated parameters depended on the secret image need no
extra distribution.

θ = h1 mod l1
α = h2 mod l2 (6)

β = h3 mod l3

3.2. The Permutation Process

The permutation process includes two phases, one is the permutation phase to permute the
original secret image and obtain the permuted secret image before the sharing process, and the other is
the inverse permutation phase after the recovery process. Suppose that we want to permute an image
I with size of N × N, the permutation process is given in Algorithm 1. We remark that:

• In Step 2, the formula to select the six numbers is fixed in advance.
• In Step 4, if in permutation phase before the sharing process, we evaluate M as Equation (7);

else, in inverse permutation after the recovery process phase, we evaluate M as Equation (8).

M =

[
1 α

β αβ + 1

]θ

mod N (7)

M =

[
αβ + 1 −α

−β 1

]θ

mod N (8)

[
x′

y′

]
= M

[
x
y

]
mod N (9)
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Algorithm 1 The permutation process

Input: An image I with size of N × N.
Output: A permuted image Î with size of N × N

Step 1. Count the numbers of each grayscale pixel value in the image I and sort them in ascending order.
Step 2. Select three small numbers l1, l2, l3 (l1 ≤ l2 ≤ l3) and three large numbers h1, h2, h3 (h1 ≥ h2 ≥ h3)
from the order according to a certain formula.
Step 3. Generate the three parameters α, β and θ as Equation (6).
Step 4. Evaluate the conversion matrix M as Equation (7) or Equation (8).
Step 5. For each pixel P with the position (x, y) in the image I, map P to a new position (x′, y′) according to
Equation (9).
Step 6. Output the permuted image Î.

3.3. The Sharing Process

Suppose that we want to divide a permuted secret image Ŝ with size of N × N into n shadow
images SC1, SC2, · · · , SCn, the sharing process of our (k, n) threshold PSIS scheme is given in
Algorithm 2. We remark that.

• In Step 1, each section consists of 2(k− 1) pixels due to the first k− 1 coefficients in Equation (5)
are utilized to embed secret values in Step 2 and each value consists of two adjacent pixel values
in Step 3. Besides, to guarantee all pixels can be processed, the width of the image, N, should be
an integer multiple of 2(k− 1).

• In Step 4, the last coefficient ak−1 is randomly assigned to improve the security.
• In Steps 5–7, we evaluate n shared values of each section. The screening operation occurs in Step

7 to guarantee none of the shared values is larger than 65,535.
• In Step 8, we obtain 2n shared pixels of each section.
• A sharing phase consists of Steps 3–8. In total, there are N× N

2(k−1) sharing phases, and N × N
k−1

shared pixels for each shadow image are generated.

To illustrate the sharing phase of our method more intuitively, we give Example 1 as follows.

Example 1. Given four grayscale pixels {99, 56, 138, 235} as a section of a permuted secret image,
threshold parameters (3, 4) and serial numbers {1, 2, 3, 4}.

Firstly, we assign the coefficients a0 = 99× 256 + 56 = 25,400 and a1 = 138× 256 + 235 = 35,563.
Secondly, coefficient a2 is generated randomly, we suppose that a2 = 4573. Then, shared values f (1),
f (2), f (3) and f (4) can be evaluated. Because f (1) = 25,400 + 35,563 + 4573 mod 65,537 = 65,536 >

65,535, so we re-generate another random integer, supposing that it is 17,386. Thus,
f (1) = 25,400 + 35,563 + 17,386 mod 65,537 = 12,812,
f (2) = 25,400 + 35,563× 2 + 17,386× 22 mod 65,537 = 34,996,
f (3) = 25,400 + 35,563× 3 + 17,386× 32 mod 65,537 = 26,415,
f (4) = 25,400 + 35,563× 4 + 17,386× 42 mod 65,537 = 53,606.

Finally, we obtain four pairs of shared pixels in SC1, SC2, SC3 and SC4 at positions (1, 1) and
(1, 2), which are

SC1(1, 1) = 12,812/256 = 50, SC1(1, 2) = 12,812 mod 256 = 12,
SC2(1, 1) = 34,996/256 = 136, SC1(1, 2) = 34,996 mod 256 = 180,
SC3(1, 1) = 26,415/256 = 103, SC1(1, 2) = 26,415 mod 256 = 47,
SC4(1, 1) = 53,606/256 = 209, SC1(1, 2) = 53,606 mod 256 = 102.
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Algorithm 2 The proposed (k, n) threshold PSIS scheme

Input: A permuted secret image Ŝ with size of N× N; Threshold parameters (k, n); n different serial numbers
x1, x2, · · · , xn.
Output: n shadow images SC1, SC2, · · · , SCn.

Step 1. Divide the image S into N × N
2(k−1) non-overlapping sections, each of which consists of 2(k− 1)

adjacent pixels.
Step 2. For each 2(k − 1)-pixel section Sec(i, j) = {Pm(i, j)|m ∈ [1, 2(k− 1)]}, i ∈ [1, N], j ∈

[
1, N

2(k−1)

]
,

repeat Steps 3–8 until all sections have been processed.
Step 3. Assign the coefficients a0, a1, · · · , ak−2 as follows.

a0 = P1(i, j)× 256 + P2(i, j)
a1 = P3(i, j)× 256 + P4(i, j)

· · ·
ak−2 = P2(k−2)+1(i, j)× 256 + P2(k−2)+2(i, j)

Step 4. Generate a random integer from [0, 65,536] as the coefficient ak−1.
Step 5. For each serial number xt, t ∈ [1, n], repeat Steps 6–7 until all n shared values have been evaluated.
Step 6. Evaluate the shared value f (xt) as follows.

f (xt) = (a0 + a1xt + a2x2
t + · · ·+ ak−1xk−1

t ) mod 65,537

Step 7. If f (xt) > 65,535, return to Step 4 and redo Steps 4–7. Else continue.
Step 8. For each shared value f (xt), t ∈ [1, n], generate two adjacent pixels in shadow image SCt as follows.

SCt(i, 2j− 1) = f (xt)/256

SCt(i, 2j) = f (xt) mod 256

Step 9. Output n shadow images SC1, SC2, · · · , SCn.

3.4. The Recovery Process

Without loss of generality, suppose that we want to reconstruct a permuted secret image Ŝr with k
shadow images SC1, SC2, · · · , SCk, the recovery process is described in Algorithm 3. We remark that:

• In Step 1, we take the first two non-used adjacent pixels from each of the k shadow images,
to form a set with k pairs of shared pixels. The number of all sets is N × N

2(k−1) .
• Steps 2, 3 and 4 are the inverse operations of Steps 8, 6 and 3 in Algorithm 2, respectively.
• A recovery phase consists of Steps 2–4. In each recovery phase, we retrieve a 2(k− 1)-pixel section

of the permuted secret image as mentioned in Algorithm 2. In total, there are N × N
2(k−1) recovery

phases.

Here, we also give Example 2 to illustrate how to retrieve a 2(k− 1)-pixel section.

Example 2. Given three pairs of pixels {50, 12}, {136, 180} and {103, 47} at positions (1, 1) and (1, 2) in
each of three shadow images, threshold parameters (3, 4) and serial numbers {1, 2, 3}.

Firstly, we evaluate the three shared values share1(1, 1) = 50× 256 + 12 = 12,812, share2(1, 1) =
136× 256 + 180 = 34,996 and share3(1, 1) = 103× 256 + 47 = 26,415. Thus, three polynomials can be
constructed as follows. 

a0 + a1 × 1 + · · ·+ ak−1 × 1 = 12,812 mod 65,537

a0 + a1 × 2 + · · ·+ ak−1 × 22 = 34,996 mod 65,537

a0 + a1 × 3 + · · ·+ ak−1 × 32 = 26,415 mod 65,537
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Then, we solve the equations to obtain a0 = 25,400, a1 = 35,563. Finally, we retrieve a 4-pixel
section {99, 56, 138, 235} corresponding to a0 and a1.

a0 + a1 × x1 + · · ·+ ak−1 × xk−1
1 = share1(i, j) mod 65,537

a0 + a1 × x2 + · · ·+ ak−1 × xk−1
2 = share2(i, j) mod 65,537

· · ·
a0 + a1 × xk + · · ·+ ak−1 × xk−1

k = sharek(i, j) mod 65,537

(10)

Algorithm 3 Secret image recovery of the proposed scheme

Input: k shadow images SC1, SC2, · · · , SCk with size of N × N
k−1 ; Threshold parameters (k, n); k different

serial numbers x1, x2, · · · , xk.
Output: A reconstructed permuted secret image Ŝr.

Step 1. For each two non-overlapping adjacent pixels SCt(i, 2j− 1) and SCt(i, 2j) in each shadow image SCt,

i ∈ [1, N], j ∈
[
1, N

2(k−1)

]
, t ∈ [1, k], repeat Steps 2–4 until all pairs pixels of the k shadow images have been

processed.
Step 2. Evaluate the k shared values sharet(i, j), t ∈ [1, k], as follows.

sharet(i, j) = SCt(i, 2j− 1)× 256 + SCt(i, 2j)

Step 3. Use the k serial numbers, k shared values and the Lagrange’s interpolation to obtain the k − 1
coefficients a0, a1, · · · , ak−2 in the the linear equations as Equation (10).
Step 4. Obtain the 2(k− 1) pixels {Pm(i, j)|m ∈ [1, 2(k− 1)]} corresponding to a0, a1, · · · , ak−2 as follows.

P1(i, j) = a0/256

P2(i, j) = a0 mod 256

· · ·
P2(k−1)−1(i, j) = ak−2/256

P2(k−1)(i, j) = ak−2 mod 256

Step 5. Obtain all N × N pixels and reconstruct the permuted secret image Ŝr.
Step 6. Output Ŝr.

4. Performance Analyses

This section introduces the performances of the proposed scheme by theoretically analyzing the
image quality, valid threshold construction and security.

4.1. Lossless Recovery Analysis

In a sharing phase, a secret value is represented as two adjacent pixel values, thus the range of a
secret value is [0, 65,535]. In Equation (5), k− 1 secret values are utilized as coefficients a0, a1, · · · , ak−2,
while the last coefficients ak−1 is randomly assigned in [0, 65,536] during one sharing phase. Therefore,
with a certain serial number x, the shared value f (x) is generated in [0, 65,536], and there might exist
a certain value of ak−1 that makes f (x) equal to 65,536. When f (x) is equal to 65,536, the screening
operation will assign another value to ak−1, and the value of f (x) will be changed too. Thus, each
shared value can be limited in [0, 65,535] and represented as two adjacent shared pixel values.

In a recovery phase, with k shared values, the linear equations as Equation (10) can be
constructed. By solving the linear equations, the k coefficients a0, a1, · · · , ak−1 are uniquely determined.
Among them, a0, a1, · · · , ak−2 are the k− 1 secret values, each of which is represented as two adjacent
secret pixel values. Hence, the secret value is recovered losslessly and the proposed scheme is a lossless
scheme. Furthermore, we can conclude that any k or more shared values can reveal the k− 1 secret
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values losslessly. Therefore, it is easy to conclude that any k or more shadow images can disclose the
secret image losslessly.

4.2. Threshold Analysis

Without losing of generality, suppose that only k− 1 shared values are given. From Equation (5),
we can construct only k− 1 polynomials as Equation (11). To solve for k unknowns using these k− 1
equations, there are 65,537 possible solution sets. The possibility of guessing the secret values is only
about 1

65,537 , and we cannot uniquely determine them. It indicates that any k− 1 or less shared values
cannot reveal the secret values. Therefore, it is easy to conclude that any k− 1 or less shadow images
cannot get sufficient information to reveal the secret image. Furthermore, as analyzed in Section 4.1,
we have concluded that any k or more shadow images can disclose the secret image losslessly.

a0 + a1 × x1 + · · ·+ ak−1 × xk−1
1 = share1(i, j) mod 65,537

a0 + a1 × x2 + · · ·+ ak−1 × xk−1
2 = share2(i, j) mod 65,537

· · ·
a0 + a1 × xk−1 + · · ·+ ak−1 × xk−1

k−1 = sharek−1(i, j) mod 65,537

(11)

Given the above discussion, it can be concluded that the proposed scheme is a (k, n) threshold
PSIS scheme.

4.3. Security Analysis

For the proposed (k, n) threshold PSIS, there are totally 65,537k sets of shared values before
screening, and further there are 65,537 sets of shared values corresponding to every set of k− 1 secret
values from 0 to 65,536. If k− 1 secret values are given, the last coefficient ak−1 is randomly assigned in
[0, 65,536], so there must exist a certain value of ak−1 which makes f (xi) equal to 65,536. Furthermore,
there are totally 65,537k−1 sets of a0, · · · , ak−1 which make f (xi) equal to 65,536. For n shares, there are
at most n× 65,537k−1 sets of shared values, which include one or more 65,536 that need to be deleted
during the sharing process. Considering that several shared values may be equal to 65,536 at the same
time, the sum of deleted sets Sumscreening is less than 65,537k−1. Besides, secret values belong to the
range from 0 to 65,535 for two adjacent pixel values in 8-bit grayscale image, so 65,537k−1 sets including
the secret value 65,536 need to be deleted from the final sets. Therefore, there are at least Sumsharing =

65,537k− Sumscreening− 65,537k−1 = (65,537− n− 1)× 65,537k−1 sets for sharing. There are 65,536k−1

sets of k− 1 secret values, so there are at least
Sumsharing

65,536k−1 = (65,537− n− 1)× 65,537k−1

65,536k−1 ≈ 65,537− n− 1
sets corresponding to each set of k − 1 secret values. In other words, there are at most n + 1 sets
screened by the screening operation, so that the randomness of sharing remains to guarantee the
security and effectiveness of the proposed PSIS.

Moreover, before sharing process, the secret image will be permuted by generalized Arnold
permutation; therefore, there is no correlation between polynomials. In other words, the lack of
information cannot be supplied from the image property, as the neighboring pixels are usually similar.
In addition, note that the parameters of generalized Arnold permutation is generated based on the
feature of secret image, which will increase the randomness of key; thus, the security of the scheme is
further enhanced.

5. Experiments and Comparisons

In this section, experiments and comparisons are presented to evaluate the effectiveness of the
proposed scheme.
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5.1. Image Illustration

Figure 4 is an experimental result of our proposed (k, n) threshold PSIS, where k = 3 and n = 4.
Figure 4a is the original secret image and Figure 4c is the permuted image, and their statistical
histograms of each pixel value are drawn in Figure 4b,d respectively. Figure 4e is the first one out of
four shadow images SC1 without any secret information revealed; its size is 1

2 of the secret image, that
its histogram follows the uniform distribution providing effective proof of its security. Note that, for the
recovery process, the sharing polynomials are reconstructed based on the number of collected shares t
if t < k, as shown in Equation (12). Therefore, when t(t < k) shares are collected in (k, n) threshold
scheme, the recovered image is t − 1 times the shadow images, e.g., S′t=2, as shown in Figure 4g,
has the same size of SC1. There is no leakage of secret information in S′t=2, which is noise-like similar
to SC1. With k or more shadow images, the secret image can be reconstructed losslessly, as shown in
Figure 4i,k.

f (x) = (a0 + a1 × x + · · ·+ at−1 × xt−1) mod 65,537 (12)
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Figure 4. Experimental results of Our (3, 4) threshold PSIS: (a) secret image S; (b) statistical histogram
of S; (c) permuted image Ŝ; (d) statistical histogram of Ŝ; (e) one shadow image SC1; (f) statistical
histogram of SC1; (g) recovered image S′t=2 with two shares; (h) statistical histogram of S′t=2;
(i) recovered image S′t=3 with three shares; (j) statistical histogram of S′t=3; (k) recovered image
S′t=4 with four shares; and (l) statistical histogram of S′t=4.

Figure 5 shows a further experimental result of our proposed (k, n) threshold PSIS. As mentioned
in Section 4, there are at least 65,537− n− 1 sets of shared values for each set of k− 1 secret values.
Therefore, the security of the proposed PSIS decreases with the increase of the number of shares n.
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To prove whether the decrease of the security will result in the leakage of secret information, four
shadow images of (2, n) threshold PSIS with different n and their statistical histograms of each pixel
value are provided in Figure 5. Obviously, all these shares are noise-like, and their histograms follow
the uniform distribution. As a result, it is considered that the proposed (k, n) threshold PSIS scheme is
secure when n is not too large.
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Figure 5. Experimental results of Our (2, n) threshold PSIS: (a) one shadow image SC(2,2)
1 of (2, 2)

threshold PSIS; (b) statistical histogram of SC(2,2)
1 ; (c) one shadow image SC(2,4)

1 of (2, 4) threshold PSIS;

(d) statistical histogram of SC(2,4)
1 ; (e) one shadow image SC(2,6)

1 of (2, 6) threshold PSIS; (f) statistical

histogram of SC(2,6)
1 ; (g) one shadow image SC(2,8)

1 of (2, 8) threshold PSIS; and (h) statistical histogram

of SC(2,8)
1 .

From experimental results above, the properties of the proposed PSIS are concluded as follows:

• Lossless recovery: The secret image can be reconstructed losslessly with k or more shadow
images.

• Security: The shadow images are noisy-like, thus every single shadow is secure. Furthermore,
there is no leakage of secret information from recovered images with less than k shadow images,
which shows security of our scheme.

• Reduced shadow size: In the proposed (k, n) threshold PSIS, the size of each shadow image is
1

k−1 of that of the secret image.

In addition, when we skip the permutation process but do sharing process directly,
the experimental result is shown in Figure 6. Similar to experimental result in Figure 4, the four
shadow images SC1, SC2, SC3, and SC4 are noisy; and no leakage of secret information in S′t=2 exists,
which is noise-like similar to SC1; the secret image can be losslessly reconstructed with k or more
shadow images, as shown in Figure 4g,h. In fact, when sharing natural secret image or secret data,
we can also use our (k, n) threshold PSIS without permutation in general application scenarios.
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(a)S (b)SC1 (c)SC2 (d)SC3 (e)SC4

(f)S′t=2 (g)S′t=3 (h)S′t=4

Figure 6. Experimental results of Our (3, 4) threshold PSIS without permutation: (a) secret image S;
(b–e) four shadow images SC1, SC2, SC3, SC4; (f) recovered image S′t=2 with two shares; (g) recovered
image S′t=3 with three shares; (h) recovered image S′t=4 with four shares.

5.2. Comparisons with Related Works

Herein, we provide some comparisons between our proposed scheme and other related typical
schemes [4,6,23,24].

According to experimental results shown in Figures 1–4 and 6, we can distinguish differences
between our proposed scheme and other schemes intuitively, such as lossless recovery, reduced shadow
size and security. Meanwhile, more comparisons of significant properties are shown in Table 1,
including random pixel expansion, pre-encryption before sharing for security, and computational
complexity. Comparisons of these properties are discussed in detail as follows.

Table 1. Comparisons of significant properties.

Schemes Lossless
Recovery

Shadow
Size

Random Pixel
Expansion

Pre-Encryption
and Decryption

Computational
Complexity

Shamir et al. [4] No 1 No No O(k log2 k)
Thien-and-Lin (lossy) [6] No 1

k No Yes O(k3)
Thien-and-Lin (lossless) [6] Yes ≥ 1

k Yes Yes O(k3)
Yang et al. [23] Yes 1 No No High
Ding et al. [24] Yes 1 No No O(k3)

Our PSIS Yes 1
k−1 No Yes O(k3)

Our PSIS (without permutation) Yes 1
k−1 No No O(k3)

• Lossless recovery: Classic PSISs can only achieve lossy recovery, while several other PSISs
including our scheme with different solutions can achieve lossless recovery.

• Shadow size: Except Thien-and-Lin’s and Our proposed PSISs, shadow size generated by other
PSISs are the same or more than that of the secret image. The size of our PSIS is a little larger than
that of Thien-and-Lin’s, but the security and lossless recovery can be guaranteed. Furthermore,
we can also utilize partial bits of the coefficient ak−1 to embed more secret values and assign
remainder bits randomly, to further reduce the shadow size as well as to improve the efficiency.
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• Random pixel expansion: Random pixel expansion may occur in Thien-and-Lin’s lossless PSIS,
so its generated shares can only be stored as data rather than images. In our scheme, n noise-like
shares with size of 1

k−1 of that of the secret image are generated, which can be still stored as images.
• Pre-encryption and decryption: Thien-and-Lin’s PSIS needs extra pre-encryption to avoid the

leakage of secret information, so it results in more costs. Our scheme needs no extra permutation
if there is no higher level of security requirement in general application scenarios.

• Computational complexity: In some PSISs, there is extra recombination or decryption after the
recovery process, so only the complexity of secret recovery process is calculated here. Only the
constant coefficient needs to be calculated by the Lagrange interpolation as the secret value in
Shamir’s PSISs, while two or more coefficients as secret values in Thien-and-Lin’s, Ding and
coworkers’ and Our PSISs should be computed by solving equations. Therefore, the complexity
of the latter PSISs is larger than that of the former PSISs. Yang and coworkers’ PSIS is based
on Galois Field GF(28), which lacks the theoretical calculation of computational complexity.
However, the complexity of computations based on Galois Field GF(28) is much larger than that
of computations based on integers.

In addition, in our scheme, two adjacent pixel values are specified as a secret value; thus, the total
number of secret values is decreased by half, and the total number of sharing phases or recovery phases
will also be decreased. It can be inferred that the efficiency of our scheme will be improved. However,
it is difficult to give the theoretical proof of this inference because efficiency could be influenced by
many other factors. Thus, to evaluate the efficiency of the proposed scheme, we set up additional
experiments with the 512× 512 grayscale image “Cameraman” as shown in Figure 7. The algorithms
of Shamir’s, Thien-and-Lin’s, Ding and coworkers’ and our PSISs are implemented using Python on a
virtual machine with 32-bit Windows XP OS, Core i5 CPU, and 1 GB installed RAM.

Figure 7. 512× 512 grayscale image “Cameraman”.

Table 2 presents the average running time for sharing and recovery in (3, 4) threshold PSIS.
According to experimental results, comparisons are given as follows.

Table 2. Comparisons of running time.

Schemes Sharing Time (s) Recovery Time (s)

Shamir et al. [4] 7.721 7.831
Thien and Lin (lossy) [6] 1.792 2.764

Ding et al. [24] 138.219 10.585
Our PSIS 2.213 2.694

Our PSIS (without permutation) 1.732 2.424
Our PSIS (mod 257) 2.714 3.205

• The running time of our scheme is much shorter than that of Shamir’s and Ding and coworkers’
schemes, which indicates our scheme is more efficient than Shamir’s and Ding and coworkers’
schemes.
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• The running time of our scheme is little longer than Thien-and-Lin’s scheme. However, if the
permutation process is removed in our scheme, the running time is approximately equal to or even
slightly shorter than that of Thien-and-Lin’s scheme. In fact, our scheme without permutation is
sufficient to ensure security in general application scenarios.

• We can modify our scheme, specifying one pixel value as a secret value and 257 as the prime,
with the same principle. As a result, the running time becomes longer than our original scheme’s.
Therefore, to a certain degree, decreasing the number of secret values has improved the efficiency
of sharing and recovery.

In other words, according to the experimental results and analyses above, it can be conclude that
the proposed scheme has the feature of efficiency.

6. Conclusions

A lossless and efficient (k, n) threshold PSIS scheme with reduced shadow size is proposed in this
paper. For lossless recovery and efficiency, two adjacent pixel values are specified as a secret value,
65,537 is selected as the prime in the sharing polynomial, and then the additional screening operation
can ensure each of shared values in the range [0, 65,535]; furthermore, the first k− 1 coefficients are
embedded with secret values to achieve reduced shadow size, while the last coefficient is assigned
randomly to improve security. To prevent the leakage of secret information, generalized Arnold
permutation is used before sharing processes. In comparison with other solutions to lossless recovery,
the proposed scheme is achieved with no side effects, such as large computational costs and random
pixel expansion. By theoretical analyses and experiments, the security, efficiency and effectiveness of
our scheme are proven. Our future work is to utilize the proposed scheme to achieve PSIS with other
interesting properties.
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