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Abstract: Facial palsy caused by nerve damage results in loss of facial symmetry and expression.
A reliable palsy grading system for large-scale applications is still missing in the literature. Although
numerous approaches have been reported on facial palsy quantification and grading, most employ
hand-crafted features on relatively smaller datasets which limit the classification accuracy due to
non-optimal face representation. In contrast, convolutional neural networks (CNNs) automatically
learn the discriminative features facilitating the accurate classification of underlying tasks. In this
paper, we propose to apply a typical deep network on a large dataset to extract palsy-specific features
from face images. To prevent the inherent limitation of overfitting frequently occurring in CNNSs,
a generative adversial network (GAN) is applied to augment the training dataset. The deeply learned
features are then used to classify the palsy disease into five benchmarked grades. The experimental
results show that the proposed approach offers superior palsy grading performance compared to
some existing methods. Such an approach is useful for palsy grading at large scale, such as primary
health care.

Keywords: convolutional neural networks; facial palsy grading; datasets; generative adversial
networks; primary health care

1. Introduction

The classification of facial palsy is an important yet challenging problem in health care informatics
owing to its diversity, varying symptoms and complex underlying mechanisms. Adequate feature
learning plays a vital role to enhance the accuracy of classification systems. The previous methods to
encode facial palsy in terms of asymmetric facial features can be broadly classified as hand-crafted
features based or learning-based methods. The hand-crafted methods rely on prior knowledge to
extract the underlying asymmetrical features. The representative works in this category include [1-4].
Kim et al. [1] proposed an automatic diagnosis system for facial nerve palsy. The authors suggested
facial landmarks to be tracked by a regression model. The asymmetry index is then calculated
for different facial regions for distinct facial motions. Normal and palsy-affected subjects are then
classified on a private dataset using support vector machine (SVM), and linear discriminant analysis
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(LDA) as classifiers. But this study is suggested for smart-phone based smaller applications and
thus not suitable for large applications such as diagnosis systems required for primary health care [5].
Wang et al. [2] used an active shape model and local binary patterns to encode actions for palsy-affected
faces. He et al. [3] demonstrated a facial palsy grading system employing multiresolution local binary
patterns along with SVM as classifier. Delannoy and Ward [4] used an active appearance model lo
localize facial landmarks. The authors then used facial astrometric distances and smile as discriminative
features. Apart from face palsy, hand-crafted features have also been used in other facial disease
analysis, such as [6-9]. Sumithra et al. [6] used a region-growing strategy for automatic lesion
segmentation. Facial skin color and texture was used for feature extraction. SVM and k-nearest
neighbor (k-NN) classifiers were used to classify diseases into five distinct categories. Yuan et al. [7]
proposed a narrow band graph partitioning approach to segment skin lesions. The authors also
suggested how to achieve invariance like topological variations, asymmetry and false contours of
lesions. In [8], Manoorkar et al. used clinical features including magnitude, phase, and real and
imaginary parts of an impedence-based index to classify human skin diseases. El abbadi et al. [9]
developed a skin disease diagnostic system based on skin color and texture. The authors employed a
gray level co-occurrence matrix (GLCM) to extract texture features.

Although hand-crafted feature-based approaches are successful in classifying facial skin and nerve
diseases, their strong dependence on prior knowledge and non-optimal feature representation limits
the classification accuracy. Recently, a number of deep learning-based approaches have been devised
to learn automatically the discriminative features for accurate classification. Convolutional neural
networks (CNNs) have been widely used in related applications and can even surpass the human-level
performance in recognition and classification tasks [10,11]. The most prominent representative works
used in computing devices for facial palsy disease include the study presented in [12]. Wang and
McGrenary et al. [12] proposed to train artificial neural networks on bilateral displacements and
regional mean intensities to quantify facial palsy disease. But their work has certain limitations. First,
the results are reported on quite a small dataset consisting of 43 video sequences of only 14 subjects.
Second, the study relies on bilateral facial displacements which require accurate landmark detection
which is not a trivial task, especially when palsy affects certain facial parts thus dislocating the vital
facial landmarks. Apart from facial palsy, the CNNs have been actively utilized in other facial disease
analysis such as [13-16]. Wang and Luo [13] proposed to use a semi-supervised strategy combined with
visual features extracted from normal face images to detect and classify abnormal disease symptoms.
The authors reported classification results on University of California, San Diego (UCSD) [17], Primary
Care Dermatology Society PCDS [18], and a private dataset acquired through online sources [19].
Liao et al. [14] applied CNNss to classify both the disease and lesions for computer-assisted skin disease
diagnosis on a large scale dataset. A combination of local and global features has been employed
by Ge et al. [15] for skin-lesion classification. The authors suggested a deep residual network and
bilinear pooling technique to learn global and local features, respectively. Competitive results have
been reported on two standard datasets. Despite their tremendous performance, the CNNs with
deeper architectures represent a large number of parameters. This results in frequently occurring
phenomenon called “overfitting” in the training. Overfitting means small training errors but large test
errors. More precisely, the network becomes biased towards training data. To fight overfitting, certain
strategies are applied such as dropout, transfer learning and data augmentation [20-22].

The above presented methods show three main limitations. First, most of the related studies
use hand-crafted features which are not useful for optimal facial representation and thus limit the
classification accuracy. Second, the existing datasets are small and thus lack the disease diversity
and thus are not suitable for large-scale applications. Third, most of the existing methods report
classification accuracies using a limited number of evaluation metrics. This may lead to inconsistent
classification results. Moreover, the evaluation metrics results reported on such datasets may
lead to inappropriate conclusions due to unbalanced classes. Finally, the existing methods on
palsy grade classification reveals that inherent in these methods is a major limitation in terms of
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repeatability. Contrary to the existing methods, in this paper CNNs have been proposed to learn
facial palsy-specific features automatically. To this end, a CNN-based model is proposed which is
capable of automatic feature learning and grading palsy-affected face images into five categories
including mild, moderate, moderately-severe, severe and total paralysis benchmarked by House and
Brackmann [23]. The presented work uses CNN as a classifier which is capable of distinguishing
between the different facial palsy categories based on the learned features during the training process.
An inherent limitation of CNNs is overfitting, which means that the model shows a small training
error but large validation errors. To prevent the overfitting, a generative adversial network (GAN) [24]
is applied to augment the training dataset. More precisely, the deep CNN will facilitate the automatic
feature learning, while application of GAN will automatically augment the training dataset. With the
novel data augmentation, more samples are available to train the deep architecture for the underlying
classification problem. In the experiments, the performance of VGG-16 features is compared with
the proposed data augmentation with that obtained with data augmentation and transfer-learning
approach. The experimental results suggest the robust performance of our method in the skin disease
classification problem of patients’ faces.
The aims of this study are as follows.

e  Build a large facial palsy dataset;

e  Demonstrate a deep learning based facial palsy-specific features extraction strategy in conjunction
with CNNs;

e  Address the problem of overfitting of CNNs by generating additional face images using GANS;

e  Show that such a method tested on a large dataset will be suitable for large scale facial palsy
grading applications, such as primary health care.

The remainder of this paper is structured as follows. The proposed methodology is presented in
Section 2. Experiments and results are given in Section 3. Results related discussion is presented in
Section 4, while the last section concludes this study.

2. Proposed Methodology

The automatic process of palsy grading using face images with CNNs is shown in Figure 1.
There are five steps: (1) image acquisition or dataset collection; (2) preprocessing; (3) data augmentation;
(4) feature learning; and (5) classification of facial palsy to one of the five grades. Each of these steps is
explained in the following subsection.

[ Grade [ ]
[ Grade 11 ]
Image o . Palsy
acquisition Preprocessing Classification { gjraje ;2 %
rade
[ Grade V ]

Data Feature

augmentation learning

Figure 1. The process of facial palsy grading.
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2.1. Image Acquisition or Dataset Collection

A dataset consisting of 2000 face images with varying amount of facial palsy has been collected.
The dataset includes palsy-affected face images collected from UCSD [17], PCDS [18], and through
online sources. The data is annotated and labeled using the facial palsy assessment characteristics
originally set by the House and Brackmann scale [23]. This scale is a widely accepted system that
grades the facial function from normal (grade 0) to total paralysis (grade V). In this study, we use
grade I to grade V for mild, moderate, moderately-severe, severe and total paralysis, respectively.
Table 1 displays the salient characteristics of each grading scale. The resulting dataset presented in
this study is composed of face images for 2000 subjects belonging to five grades. Some example face
images from our collected dataset are shown in Figure 2.

Figure 2. Example face images with palsy disease.

Table 1. Facial palsy grades according to severity level [23].

Palsy Grade Severity Description

The forehead, eyes and mouth show moderate to good

I Mild function with slight facial asymmetry.
I Moderate Slight to mod.erate‘ change's around mouth and eyes,
with slight facial asymmetry.
I Moderately severe Eyes are nolt c.ompletely closecll desplt.e efforts, and mouth
exhibits asymmetry with maximum effort.
v Severe Eyes show incomplete closure and mouth shows asymmetry.
\Y Total paralysis Remarked facial asymmetry without movement.

2.2. Preprocessing

All the face images are preprocessed as follows:

e  Face images are aligned such that these are upright;

e  Color face images are converted into gray scale to eliminate unwanted color cast;

e Histogram equalization is used to remove shadows and illumination variations;

e  Finally, the face images are cropped to 200 x 200 pixels with a 100 pixel interpupillary distance [25].
A binary elliptical mask is then applied to remove unwanted hair and background variations.

2.3. Data Augmentation

An inherent limitation of CNNSs is overfitting during the testing stage [21]. Overfitting means
the CNNs have a small training error but large validation errors. To prevent overfitting, a data
augmentation strategy has been proposed. Many approaches have been reported in the literature
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that can generate augmented data. For example, a built-in method has been suggested in [26] to
randomly generate an augmented dataset using transformations like flipping, cropping, rotation and
scaling. But all of these methods are not suitable to augment the datasets if they are used “blindly” [27].
Keeping in view the significance of the choice of augmentation strategy, we propose to use GAN to
synthesize face images with varying facial palsy. More precisely, for each original face image, face
images are generated with 5 types of palsy including mild, moderate, moderately-severe, severe
and total paralysis. This type of augmentation is quite useful to train the CNNs for underlying the
classification task. The GAN framework typically employs a generator and a discriminator in an
adversarial environment. The discriminator aims to differentiate between samples from model and
training data. In contrast, the generator aims to maximally confuse the discriminator. Following [24],
the objective function is to minimize the value function as:

minmax(E;-.pora(i) (1087 ()] + Ejrepj (/) flog (1 — d(g(j))]) @

where, j is noise space, i is data space which represents output from the generator or input to the
discriminator, and pdata is the density model.

The face synthesis method is based on a generative model to synthesise face images within
the desired range of palsy severity ranging from mild to total paralysis, as shown in Figure 3.
More precisely, the synthesis process is done as follows.

Reconstructed face image

3 Reconstructed face image
with grade TT palsy : =

with grade TV palsy

o o R o R T pa

Input face Fwith Reconstructed face image Reconstructed face image Reconstructed face image
arbitrary palsy pv with grade T palsy with grade 11T palsy with grade V palsy

E

P P s Ps Ps

Figure 3. Face synthesis using GAN.

Given a preprocessed input face image f with an arbitrary palsy p,, a generator G is used which
allows the generation of a reconstructed face with different palsy levels, such that the reconstructed
face is as close as possible to the original face image. Five distinct face images are generated with palsy
grade I to V by simply switching the palsy levels P; to P5 at the input of the generator. The examples
of generated faces with five distinct severity levels of facial palsy are shown in Figure 4.

=

€ [

Figure 4. Data augmentation by generated face images using a generative adversial network (GAN)

=i e ==

representing (a) mild, (b) moderate (c) moderately severe, (d) severe, (e) total paralysis.

2.4. Feature Learning

The CNNSs can learn to discriminate features automatically for an underlying task. In this work,
a typical deep model is used consisting of 2 CNNs, and a pre-trained deep CNN called VGG-16 [28].
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The networks C1 and C2 consist of 2 convolutional and 2 max pooling layers each, while the pre-trained
VGG-16 network, hereinafter called C3, is used as a deep architecture for palsy grading classification.
The VGG-16 network consists of 16 convolutional and 5 pooling layers. The top layers consist of 2 fully
connected layers. Originally, the pre-trained deep network was trained on ImageNet dataset [29] and
is designed for 1000 neurons in the softmax layer (one for each class). In this paper, we replace the
softmax layer with 5 neurons to output 5 posterior probabilities, each representing a particular palsy
grade. The choice of this deep architecture is motivated by its superior performance as reported in the
literature [28]. Since the severity of face palsy depends upon the difference between the symmetry of
the left and right half of the face, to encode palsy-specific features the procedure described in [30] has
been followed. However, different from [30], the preprocessed face image and its mirror image are
applied to two separate CNNs. More specifically, a given input face image is applied to network C1,
and its mirror face image to network C2. Using convolutional layers of CNNs, max pooling maps are
obtained both for the input face image and its mirror image. The max pooling maps are then applied
to a deep network C3 which is trained to classify face palsy into one of the five grades. This procedure
is shown in Figure 5.

Nerwork C1

@

Conv Max Conv Max
pool pool Network C3
Input face image
3. r 8 -In
e G Palsy grade
i ﬁ a & Q Q # . classification
% 3o
Network 2 Sofimax
W il
Convy ] ™ Conv .

peol

Mirror face image

Figure 5. The procedure of feature learning using convolutional neural networks (CNNs).

2.5. Classification

After training on the augmented dataset, the deep CNN can classify a given face image into
one of the five grades of facial palsy. The classification task is performed by the softmax layer of
deep network C3. This layer updates the network weights through a process called back propagation.
Back propagation is based on the loss function used in the training stage. Keeping in view the
underlying classification problem, the categorical cross entropy has been used as the loss function, as
shown in Equation (2).

L(Y, g Zgzlogxl )
i=1

where, x; is the probability that the network assigns to the label f; and five palsy grades
g={LILIIIIV,V}.

3. Experiments and Results

3.1. Experimental Protocol

The dataset consisting of 2000 face images is split into 3 subject-exclusive subsets including
training, validation and testing subsets. One thousand face images are used to build an augmented
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training dataset such that for each original face image, five synthesized face images are generated
using the process illustrated in Section 2.3. Thus there are 6000 face images in the augmented training
subset. The remaining 1000 face images are further split into a validation and a testing subset such
that each subset contains 500 images. It is worthwhile to note that the data augmentation is performed
using the training dataset only as suggested in [27]. The subject-exclusive validation set is then used to
analyze how the deep model works on real face images. Thus the validation subset contains only the
real face images without data augmentation.

Table 2 displays the number of face images in each subset. To ensure the robust performance
of our proposed classification model, the training and the testing subsets include face images with
varying facial palsy disease. For example, there are 2066 face images with grade 1 palsy disease in the
training subset, 151 in the validation subset, and 144 in testing subset.

Table 2. Data subsets used in the classification task.

Data Subset Palsy Grades
I II III v A% Total
Training (augmented subset) 2066 1756 912 894 372 6000
Validation 151 109 111 81 56 500
Testing 144 116 103 78 51 500
Total 2361 1981 1126 1053 479 7000

3.2. Experimental Results and Evaluation

It is common to use the transfer learning approach in CNNs to apply the knowledge learned
while classifying natural images to classify face images with palsy. The transfer learning employed
in this paper involves replacing and retraining the softmax layer and also fine-tuning the weights of
the pre-trained network. More precisely, the pre-trained network is trained by the stochastic gradient
descent (SGD) using the standard backward propagation as gradient computing technique [31]. SGD is
an iterative optimization algorithm used to calculate the parameters that minimizes the loss function
of the deep network. The conventional optimization algorithms like gradient descent take into account
the cost of each training sample for each iteration while calculating the gradient of the cost function.
Thus, the larger the training set, the slower our algorithm updates the weights and it will take a long
time to converge to the global cost minimum. In contrast, SGD takes in account the cost gradient of
only one training sample for each iteration, instead of using the sum of the cost gradient of the entire
training dataset. Thus, learning can be fast to achieve a global cost minimum using SGD compared to
conventional methods such as gradient descent. Backward propagation can compute the gradients in
SGD in linear time compared to naive gradient computation methods which scale exponentially with
the depth of the network.

Since SGD is an iterative method, it has a parameter called learning rate to reach the cost minimum.
Specifically, the learning rate determines the influence of each updating step on the current value of
the weights. Initially, the learning rate is set to a higher value and as the cost function starts decreasing,
the learning rate becomes smaller following a shorter step size. Updating the weights using a single
dataset pass (called one epoch) by SGD and backward propagation is, therefore, not sufficient as it
leads to under-fitting the deep model. To prevent the under-fitting and to get the optimal performance,
the deep network is trained using multiple epochs. The repeated weight updating results in optimal
model fitting. The total number of training examples in a single epoch is called a batch. In case of large
training sets, an entire epoch is too big to be passed through a network, and therefore the dataset is
divided into batches, while the number of batches present in one epoch is called iterations. Weight
decay is an additional term used while updating the weights and it prevents the weights grow too
large after each update. In all of our experiments, we set the initial learning rate of our deep model at
0.001 which is decreased by a factor of 10 after every 50 epochs. The weight decay is 0.0005 with a
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mini batch size of 100. Finally, the best model is chosen after 500 epochs by evaluating the network
performance in classifying face images across five palsy types.

Commonly, to evaluate the performance of a given algorithm, a single evaluation metric is not
appropriate due to the presence of some imbalanced classes in the dataset or a large number of
training labels [32]. Therefore, the performance of the deep model is reported in terms of four distinct
metrics including accuracy, precision, sensitivity and F1 score [33]. Before further analysis, first a brief
explanation of each of the four measures is given as follows.

e  Accuracy: The metric which represents correct predictions out of total predictions, i.e.,

TP+ FN

A =
Uy = TPy EN+FP+ TN

®)

where, TP, TN, FP, and FN represent true positive, true negative, false positive and false
negatives respectively.
e  Precision: The precision metric represents the correctly predicted labels out of total true predictions as:

TP

Precision = TP—+PP

(4)

e  Sensitivity: The recall metric is used to quantify the cases that are predicted correctly; predicted
labels over all positive observations, i.e.,

TP

Sensitivity = TP+ EN 5)
e  F1score: The weighted average of precision and sensitivity is called F1 score as:
Fl— Precision x sensitivity ©)

" Precision + sensitivity

The accuracy of our proposed model on the test set is expressed in terms of a confusion matrix as
shown in Figure 6.

T 0.891

L 0.004

2

]

Eqi 0.920 B0k 0.006
5

0.003 0.001

=

Y 0.1 0.012 0.969

| I 111 IV V
Predicted labels

Figure 6. Confusion matrix with actual and predicted labels.
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By analyzing the confusion matrix, one can observe that the proposed method can predict the
palsy types well. The highest classification accuracy is 0.969 attributed to the face palsy type 6 while
the lowest classification accuracy is 0.891 attributed to the type 1 facial palsy. The average accuracy
achieved by the VGG-16 network for underlying task is 0.926.

The precision, sensitivity and F1 score metrics for our proposed method are displayed in Table 3,
where the performance comparison of VGG-16 net with [1,34] is presented. Precision and recall
metrics represent the cases that are predicted correctly over all positive predictions and observations,
respectively. The precision value of our method is 92.91% compared to 89.11% and 89.23% for [1,34]
respectively. This indicates that the prediction accuracy of our classification model is better than the
existing models. Similarly, the sensitivity of 93.14% implies better performance of the proposed method
compared to the existing methods in classifying the facial palsy into one of the 5 grades. Finally, a F1
score of 93.00% is achieved compared to 89.66% and 90.00% for existing methods [1,34], respectively.

Table 3. Performance comparison of VGG-16 and existing methods in classifying palsy types.

Average Classification

Approach Features Precision  Sensitivity F1 Score

Accuracy (%)
Bilateral facial landmarks with
Reference [1] ~ Support vector machine (SVM) 88.90 87.11 90.07 86.66
and linear discriminant analysis
(LDA) as classifiers
Emergent self-organizing map
Reference [34] and SVM dlassifier 89.00 89.23 88.49 88.00
VGG-16 Net Deep feature learning on
(Our method) augmented dataset 92.60 9291 93.14 93.00

4. Results and Related Discussion

Based on the experimental results presented in this study, the following key observations are made.

o  Compared with traditional hand-crafted features, the palsy grading method in this paper is more
effective and robust. This is because CNNs have been used to encode palsy-specific face features
automatically. In traditional methods such as [1-4], both the landmark detection and feature
extraction strategies are hand-crafted which limit the classification accuracy owing to non-optimal
feature representation and landmark detection. In contrast, this method uses automatic face
features to encode face representation and thus achieve superior classification accuracy across a
range of facial palsy severity.

e To the best of our knowledge, this is the first study to perform palsy grade classification on
a large dataset containing 2000 face images. In contrast, the existing methods performed the
similar task on quite smaller datasets. For example only 36 subjects have been analyzed in [1]
for palsy classification. The smaller datasets have two main limitations. First, these datasets are
less diverse in representing severity of palsy disease. Second they are not suitable to perform
classification task using CNNs, owing to inherent problem of overfitting for small datasets. Recall
that overfitting means lower training loss and higher validation loss due to poor generalization of
the CNN models. Since our model is designed for large dataset, such an approach is useful for
large scale applications such as primary health care, where smart-phones based palsy grading
systems are not adequate.

o To prevent overfitting, a data augmentation strategy suitable for the underlying task of palsy
grading has been proposed. To analyze the impact of the proposed data augmentation on
classification accuracy, the training and validation losses for 500 epochs have been traced as
shown in Figure 7. One can observe that the rate of overfitting is greatly reduced when the data
augmentation strategy is applied compared to the scenario when no data augmentation was
applied to train our classification model. The smaller difference between training and test losses
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caused by data augmentation shows how this strategy is useful for the classification model to
learn the most discriminative features for the desired task. More precisely, the model works across
a variety of palsy grades and preserves the discriminative information in the training stage. In the
testing stage, a face image with arbitrary level of palsy severity can be easily classified into the
true grading level. This suggests the efficacy of our method to prevent the classification model
from overfitting and provides robustness for classification accuracy against varying nature of
facial palsy disease.

e  Generally speaking, a single evaluation metric can lead to inappropriate classification results due
to the presence of some imbalanced classes in the dataset or too small or large a number of training
labels. To this end, some existing methods such as [1] expressed relevant classification performance
in terms of accuracy metric only. In contrast, we reported the classification performance of our
model using four distinct evaluation metrics including accuracy, precision, sensitivity and F1
score. The experimental results displayed in Table 3 show the consistent performance of our
model in palsy grade classification across a variety of evaluation metrics, i.e., accuracy, precision,
sensitivity and F1 score. This suggests the effectiveness of our method for underlying task in the
presence of a wide variety of palsy disease ranging from mild to total paralysis of face.

e The confusion matrix displayed in Figure 6 shows that if the facial palsy is more obvious,
the classification ability of our model is also stronger. For example, the classification accuracy for
grade V palsy is the highest (96.90%) among all grades. This is because this type of facial palsy can
be expressed more effectively by the underlying model. In contrast, the classification performance
for mild and moderate facial palsy for grade I and II respectively, is relatively lower (89.10% and
89.50%) owing to lesser palsy-specific discriminative information presented to the model.

o  The literature review of the existing methods on palsy grade classification reveals that inherent in
these methods is a major limitation in terms of repeatability. Repeatability is a very important
factor for a reliable classification system and can be evaluated through an experiment under
repeated measurements of the same subject over a short period. For example, the study presented
in [1] describes the unavailability of repeatability as one of its main limitations. This issue has
been addressed in this study by leveraging the advantage of the data augmentation strategy
suitable for a particular scenario of palsy grade classification. More precisely, face photos of a
given image are generated across a variety of palsy severities ranging from mild to total paralysis.
This type of data augmentation makes our model capable of learning varying palsy severities
which can substitute the repeated measurements and thus helpful in the repeatability of the
classification system.

e The CNN-based classification model is the core of this article with GAN-based face image
generation as the necessary step to achieve the overall robust classification of palsy grades.
The proposed model has managed to classify facial palsy into one of the five major types
benchmarked by House and Brackmann [23]. The practical significance is proved through the
performance indicators in Figure 6 and Table 3. Compared with existing methods, we break the
restrictions of dividing face images into regions for classification purposes. For example, the study
presented in [12] proposed to train artificial neural networks on bilateral displacements and
regional mean intensities to quantify the damage caused by facial palsy. In contrast, our model
achieves the palsy grade classification based on the automatic asymmetry feature extraction.
The most important advancement is the integral analysis of patients’ faces instead of regions on a
large dataset.



Symmetry 2018, 10, 242 11 of 13

0.7
0.6
0.5
;‘3 0.4
= 03 [
02 |
%
0.1 %
0 Wikl Vo L b WL
0 50 100 150 200 250 300 350 400 450 500
Epochs
Training loss without augmentation —— Training loss with augmentation
Validation loss with augmentation Validation without augmentation

Figure 7. Training and test losses showing reduced overfitting when data augmentation is used
compared to the scenario when data augmentation is not used.

5. Conclusions

In this paper a CNN-based model was presented to classify face images carrying palsy into five
distinct grades benchmarked by House and Brackmann [23]. The study offers a unique mechanism
for learning palsy-specific asymmetric face features and configuring CNN capabilities through
an appropriate data augmentation strategy to accurately classify face images with palsy disease.
The experimental results achieved on a large dataset suggest that, firstly, it is more appropriate to use
CNN-based asymmetrical features instead of hand-crafted features for the palsy grade classification
task. Secondly, the data augmentation can add to the repeatability of the grading system which is
imperative for robust classification. Thirdly, the proposed model evaluates the classification results
across a variety of evaluation metrics showing its efficacy in classifying face images against five distinct
palsy grades. Fourthly, the proposed model offers an integral analysis of whole face image instead
of different facial parts. This offers the advantage of analyzing the effects of palsy on the entire face
image. Finally, our model is more adaptable for palsy classification on large-scale applications such as
primary health care systems.

In the future research, the current dataset will be extended into a more standardized one,
by including a greater number of face images labelled with demographic information including
age, gender and race. As the data set grows stronger with additional information, we will consider
analyzing the effects of different populations on palsy disease and its grading. Additionally,
the performance comparison of different pre-trained CNN models in classifying face images with
palsy disease will be considered as a potential research problem.
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