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Abstract: In recent years, group theory has been gradually adopted for computational problems of 

solid and structural mechanics. This paper reviews the advances made in the application of group 

theory in areas such as stability, form-finding, natural vibration and bifurcation of novel prestressed 

structures. As initial prestress plays an important role in prestressed structures, its contribution to 

structural stiffness has been considered. General group-theoretic approaches for several problems 

are presented, where certain stiffness matrices and equilibrium matrices are expressed in symmetry-

adapted coordinate system and block-diagonalized neatly. Illustrative examples on structural 

stability analysis, force-finding analysis, and generalized eigenvalue analysis on cable domes and 

cable-strut structures are drawn from recent studies by the authors. It shows how group theory, 

through symmetry spaces for irreducible representations and matrix decompositions, enables 

remarkable simplifications and reductions in the computational effort to be achieved. More 

importantly, before any numerical computations are performed, group theory allows valuable and 

effective insights on the behavior or intrinsic properties of a prestressed structure to be gained. 
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1. Introduction 

Symmetry is one of the most common and important features in nature. Different forms of 

symmetry can be easily observed from a microscopic view to macroscopic view, from atoms and 

crystals to large-scale space structures. At the same time, innovative methods that consider the 

inherent symmetry of a system will be systematic and effective [1–3]. As an important branch of 

mathematics and vector algebra, group theory is a powerful tool for systematic analysis on symmetric 

systems. It simplifies the complex computation process. Moreover, it has a direct and qualitative 

understanding on the intrinsic properties of the system. Thus, group theory has been extensively 

applied in many fields such as computational physics, electromagnetics, crystal chemistry [4,5] and 

molecular vibration [6,7]. 

Notably, applying group theory into structural analysis can significantly improve computational 

efficiency [8,9]. In recent years, group theory has been gradually adopted by some researchers from 

structural engineering to solve the involved computational mechanics of symmetric structures [10–14]. 

Based on group theory, Zlokoviâc [15] and Zingoni [16] showed how to evaluate irreducible 

representations and symmetry subspaces for symmetric structures. They also summarized the main 

advantage of group theory through its applications in structural stability, vibration and control. 

Kangwai et al. [3] briefly described how to utilize group theory to establish a symmetry-adapted 

coordinate system and perform static analysis on symmetric structures. They concluded that the 

Fourier method was a special case of the symmetry method using group theory. During nonlinear 

buckling analysis or frequency analysis of a symmetric structure, if symmetry subspaces associated 
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with certain irreducible representations are established, the tangential stiffness matrix and mass 

matrix of the structure would be neatly block-diagonalized, and also different types of buckling 

modes and vibration shapes can be predicted without further computations [10,16]. Pandia Raj and 

Guest [17] successfully introduced group theory to the form-finding analysis of tensegrity structures. 

According to the distribution patterns of the symmetry-adapted equilibrium matrices, analytic 

solutions for the internal forces of different types of members were effectively obtained. Then, Zhang 

et al. [18,19] combined group theory and the force-density method to investigate prestress stability 

and super stability of symmetric tensegrity structures. Subsequently, considerable progress has been 

made, and important applications have arisen in areas such as vibration, stability, bifurcation and 

finite element analysis [20–24]. 

Unfortunately, group theory has not been widely adopted in structural analysis because it is 

abstract (i.e., mathematically represented) and not commonly used by most structural engineers. In 

addition, conventional symmetry mentioned in structural mechanics generally refers to mirror 

symmetry or cyclic symmetry [25]. However, many prestressed space structures are neither cyclically 

symmetric nor mirror-symmetric, such as the dihedral star tensegrity structures [19] and the two-

orbit switch-pitch deployable structures [26]. It should be explained that, in this study, novel 

prestressed structures refer to a type of engineering structures whose stiffness would be 

dominated/improved by initial prestresses or similar measures. For example, cable-strut structures, 

tension structures, tensegrity and cable domes. In fact, many seemingly asymmetric structures still 

retain a number of symmetry operations [14,27], including proper rotations, reflections, improper 

rotations, and the inverse [28]. It should be pointed out that using group theory to investigate novel 

prestressed structures can make full use of all the inherent symmetry. Importantly, group-theoretic 

approaches can simplify the involved computations [23], and also get fruitful and effective 

conclusions that might be difficult to obtain from conventional methods [16,29]. Here, through 

different areas of structural mechanics and illustrative examples drawn from recent work of the 

authors, this study will describe important developments and applications of group theory for novel 

prestressed structures. As initial prestress plays an important role in prestressed structures, its 

contribution to structural stiffness is considered. General group-theoretic approaches for the 

involved problems are presented, where certain stiffness matrices and equilibrium matrices are 

expressed in symmetry-adapted coordinate system and block-diagonalized. 

2. Group Theory and Its Matrix Representations 

A symmetry group G describes all the inherent symmetry of a structure by a set of elements 

 , [1, ]i i =  G g , where each element ig  denotes an independent symmetry operation, and   

denotes the total number of symmetry operations. This group must obey the following four group 

properties: 

i. Identity: E G  , for any element ig G , it satisfies i i iE E =  =g g g . 

ii. Inverses: 1 1,i i i i Eg G g G g g
− −      = . 

iii. Closure: ,i j i jg g G g g G     . 

iv. Associativity: , ,i j kg g g G   ( ) ( )i j k i j k  =  g g g g g g . 

where  denotes the multiplication between different elements. In fact, each element ig  in the 

symmetry group describes an independent symmetry operation for the structure [2]. Under every 

symmetry operation, the structure can be transformed into a new configuration that is equivalent or 

indistinguishable from the original configuration. For structures with finite nodes and members, all 

symmetry operations can be divided into the following five types [14,30]: (a) the identity E ; (b) 

rotation nC  about an n-fold symmetry axis; (c) reflection n  along a symmetry plane; (d) inverse 

2S ; and (e) improper rotation nS . 

Mathematically speaking, each symmetry operation can be taken as a linear transformation in 

2D/3D space, and thus the configuration can be expressed as a matrix form: 
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S S= X R X  (1) 

where the matrices X  and 
SX  are the generalized nodal coordinates for the initial configuration 

and the transformed configuration by the symmetry operation S , and SR  is the corresponding 

transformation matrix. As the base vectors are variable for different coordinate systems, the 

transformation matrix SR  is not unique. Fortunately, group theory can be utilized to neatly 

construct a symmetry-adapted coordinate system, and to decompose the reducible transformation 

matrix SR  into a series of irreducible representations [23,29]: 

(1) (2)

1 2S  =    +R  (2) 

where the parameters 
1  and 

2  are the coefficients for the first and second irreducible 

representations (1)  and (2) . Generally, a symmetry group G has 1   independent irreducible 

representations, ( )i  ( [1, ]i  ). The character ( )( )i   for each irreducible representation keeps 

constant in different coordinate systems. Specific values associated with different kinds of symmetry 

operations can be directly read from group theory books [15,28]. 

3. Stability Analysis on Prestressable Pin-Jointed Structures 

Note that novel prestressed structures described in this study refer to various types of 

prestressable pin-jointed structures, including cable domes, cable nets, tensegrity structures and 

cable-strut tension structures [31–33]. These structures have innovative and attractive geometries, 

and often contain internal mechanism modes. Thus, the stability of a prestressable pin-jointed 

structure, that is, whether it can keep a stable state by the initial prestresses, is the basic and key 

problem that structural engineers need to solve [29,34,35]. 

3.1. Positive Definiteness of the Tangent Stiffness Matrix for a Prestressed Pin-Jointed Structure 

It is known that the potential energy R  of a stable structure states at a minimum [36]. In other 

words, for an arbitrary virtual nodal displacement vector d , the second-order variation of the 

potential energy 2

R   should satisfy 

2 T 0 for allR T    = d K d d
 (3) 

which is expressed by the quadratic form of the tangent stiffness matrix TK  of the structure. 

Therefore, stability analysis of the structure is transformed into the positive definiteness problem of 

the tangent stiffness matrix [34,35,37]. Guest [38,39] has established a unifying approach for the 

tangent stiffness matrix of a general prestressed pin-jointed structure: 

T E G= +K K K  (4) 

In Equation (4), EK  is the elastic stiffness matrix, and GK  is the geometric stiffness matrix 

contributed by the initial prestresses. Unlike conventional prestressed structures with positive 

definite matrix EK , novel prestressed structures have internal mechanisms M , which come from 

the null space of the positive semi-definite matrix EK  and satisfy 

E = 0K M  (5) 

For a symmetric structure, the tangent stiffness matrix TK  can be block-diagonalized in the 

symmetry-adapted coordinate system. According to the great orthogonal theorem [3], the 

transformation matrix U  for expressing generalized nodal displacements and external loads is 

established: 

( )

1 1

il
i h

i h



= =

−= U U  (6) 
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where ( )i h−
U  denotes the symmetry subspace associated with the irreducible representation ( )i , 

  is the number of irreducible representations of a symmetry group, and il  is the dimension of the 

irreducible representation ( )i . Then, the symmetry-adapted tangent stiffness matrix TK  of the 

structure is 

(1 1) ( ) ( )
T

(1 1)

( )

( )

diag , , , ,

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

i h l

T T T TT

T

i h

T

l

T

K U K U K K K

K

K

K









− − −

−

−

−

 = =
  

 
 
 
 
 =
 
 
 
 
 

 (7) 

where diag [ ] denotes a diagonal matrix, and 
( )i h

T

−

K  represents a typical small-sized block matrix 

along the diagonal of the matrix TK . Equation (7) shows that the original tangential stiffness matrix 

is decomposed into a series of block matrices, and the total number of the block matrices is computed 

by 

1

i

i

q l


=

=   (8) 

On condition that the structural configuration and initial prestresses are fully symmetric, the 

stiffness matrices EK  and GK  can be similarly decomposed into the block-diagonalized ones: 

(1 1) ( ) ( )
T diag , , , ,

i h l

E E E EE

− − − = =
  

K U K U K K K  (9) 

(1 1) ( ) ( )
T diag , , , ,

i h l

G G G GG

− − − = =
  

K U K U K K K  (10) 

where EK  and GK  are symmetry-adapted elastic stiffness matrix and geometric stiffness matrix. 

For a positive integer [1, ]ih l , the block stiffness matrices 
( )i h

T

−

K , 
( )i h

E

−

K , and 
( )i h

G

−

K  are associated 

with the irreducible representation ( )i . 

Therefore, to evaluate the positive definiteness of the original tangent stiffness matrix TK , each 

block matrix 
( )i h

T

−

K  can be independently evaluated by numerical approaches, e.g., the eigenvalue 

decomposition 

( ) ( ) ( ) ( )i h i h i h i h

T

− − − −

K Ψ =Ψ λ , [1, ], [1, ]ii h l    (11) 

where 
( )i h−

λ  and 
( )i h−

Ψ  are the eigenvalue and eigenvector extracted from the symmetry subspace 

associated with the irreducible representation ( )i . Because any similarity transformations do not 

alter the eigenvalues of a matrix [16,40], the eigenvalues obtained from Equation (11) belong to the 

eigenvalues λ  of the original tangent stiffness matrix 

( )i h−

λ λ , [1, ], [1, ]ii h l    (12) 

and the corresponding eigenvector ( )i h−
Ψ  can be expressed as 

( )
( ) ( )

i h
i h i h

−
− −=Ψ U Ψ , [1, ], [1, ]ii h l    (13) 

where the symmetry subspace (see Equation (6)) reveals that the eigenvector ( )i h−
Ψ  holds the same 

symmetry associated with the irreducible representation ( )i . Subsequently, the full eigenvector 

matrix Ψ  can be obtained by 
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( )

1 1

il
i h

i h



= =

−= Ψ Ψ  (14) 

Hence, by using group theory, the positive definiteness problem of the original tangent stiffness 

matrix is transformed into many independent sub-problems. Consequently, the computational 

complexity required for eigenvalue decomposition will be significantly reduced. 

3.2. Necessary Conditions for Structural Stability of Prestressed Pin-Jointed Structures 

In the symmetry-adapted coordinate system, Equation (3) can be rewritten as 

( )
T T T

T T 0T E G G  = + d K d α M K K Mα = α M K Mα  (15) 

where  =d Mα  is the symmetry-adapted nodal displacement vector, M  is the symmetry-

adapted mechanism mode, and E = 0K M  (refer to Equation (5)). To satisfy the structural stability, 

the matrix GK  should be positive definite or positive semi-definite, i.e., ( ) 0G  K . Then, a 

necessary condition for stability of the symmetric prestressed structure can be obtained [36]. The 

structure must have at least a single state of self-stress with full symmetry, given by 

(1)

s    (16) 

where s  is the symmetry representation of the self-stress states. On the other hand, when the 

structure has only self-stress states without full symmetry ( (1)

s   ), the symmetry of the self-stress 

states is associated with the i-th type irreducible representation ( )i , where 1 i   . Thereafter, the 

symmetry-adapted geometric stiffness matrix GK  cannot be decomposed into block-diagonalized 

matrices. However, it has certain regularity, and all the diagonal blocks are zero matrices. At this 

point, the trace of the matrix GK  is 0, ( ) 0G = K . Therefore, this matrix is neither a positive 

definite nor a negative definite matrix, and does not satisfy the necessary condition for the stability 

(see Equations (3) and (15)). In this case, the structure must be an unstable (finite) structure. 

3.3. Example: C2v Symmetric Cable-Strut Structures 

Stability analysis on two simple two-dimensional symmetric cable-strut structures is presented, 

to explain the basic group-theoretic process. As shown in Figure 1, both of the structures consist of 

two vertical struts and six cables. The length of struts is Lc = 2000 mm, the distance between the struts 

is 2000 mm, and the minimum distance from the boundary nodes (nodes 5 and 6) to the struts is 1000 mm. 

The elastic modulus of the cables and that of the struts is 51.9 10tE =   MPa  and 52 10cE =   MPa ; 

the cross-sectional area of the cables and that of the struts is 500tA =  2mm  and 3000cA =  2mm . 

Both structures have a single mechanism mode ( 1m = ) and a self-stress state ( 1s = ). Note that the 

initial prestress of the vertical struts is −100 kN, and prestresses of other members can be uniquely 

determined by the self-stress state. 

 
(a) (b) 

Figure 1. Two-dimensional 2vC  symmetric cable-structures (a) with horizontal cables; (b) with cross 

cables. 
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The structures are 
2vC  symmetric as they keep equivalent by the following four symmetry 

operations: Identity, rotation by π , and the reflections along X and Y axes. These four symmetry 

operations constitute a 2vC = 2{ , , , }X YE C    symmetry group. The 2vC  group has 4 =  one-

dimensional irreducible representations, (1)

1A = , (2)

2A = , (3)

1B = , (4)

2B = , and 

1 2 3 4 1l l l l= = = = . Through Equations (6) and (7), the tangential stiffness matrices can be decomposed 

into four 2  block matrices, as listed in Table 1. 

Table 1. Different blocks 
( )i

TK  of symmetry-adapted tangent stiffness matrix /c c cE A L  ( ) . 

Irreducible Representation ( )i  1A  
2A  

1B  
2B  

Figure 1a 
2.1121 0.1118

0.1118 0.4288

 
 
 

 0.1125 0.1118

0.1118 0.1121

 
 
 

 2.1125 0.1118

0.1118 0.1121

 
 
 

 0.1121 0.1118

0.1118 0.4285

 
 
 

 

Figure 1b 
2.2241 0

0 0.2241

 
 
 

 0.2241 0

0 0.2238

 
 
 

 2.1120 0.1119

0.1119 0.1120

 
 
 

 0.1120 0.1119

0.1119 0.1117

 
 
 

 

Therefore, the eigenvalues and eigenvectors can be independently extracted from each of the 

block matrices. Figure 2 plots the eigenvalue decomposition results of the tangent stiffness matrix of 

the structure shown in Figure 1a. The endpoints of the polyline and the discrete dots are the solutions 

obtained by the symmetry method and the conventional method, respectively. 

 

Figure 2. Eigenvalues extracted from different symmetry subspaces for of the cable-strut structure 

shown in Figure 1a. 

As the minimum eigenvalue is positive, min ( ) 0T K , this structure is stable. However, the 

minimum eigenvalue is much smaller than the others, as shown in Figure 2. This is because the 

structure has an internal and infinitesimal mechanism mode, and the first-order eigenvalue is mainly 

determined by the initial prestress [40,41]. Besides, the results obtained by the symmetry method are 

exactly the same as those of the conventional method. Because the tangent stiffness matrix has been 

diagonalized into four small-sized blocks, computation cost of the symmetry method is only 0.004 s. 

However, the conventional method concerns the original matrix and takes 0.0156 s. 

In Figure 2, the first, third, sixth, and eighth modes of the eigenvectors obtained from different 

symmetry spaces are also plotted, where A1 indicates full symmetry and the others indicate lower-

order symmetry. The short arrows indicate the motion trend of the free nodes. It turns out the 

eigenvectors keep consistent with the inherent symmetry properties of specific symmetry subspaces. 

For instance, the fifth and eighth eigenvectors come from the full symmetry subspace and thus they 

have full symmetry of C2v. Similarly, since the first and fourth eigenvectors are from the symmetry 
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subspace A2, they exhibit rotational symmetry of C2v. The third and seventh eigenvectors keeps Cv 

symmetry along the X axis, while the second and the sixth eigenvectors keeps Cv symmetry along the 

Y axis. 

On the other hand, stability of the structure shown in Figure 1b is also studied, where the upper 

and lower horizontal cables are replaced by two cross cables. As shown in Figure 3, this structure has 

a single state of self-stress with full symmetry (i.e., C2v symmetry) and an internal mechanism mode 

with lower-order symmetry (i.e., Cv symmetry). However, it has been verified that the internal 

mechanism mode cannot be rigidified by prestressing (see Figure 3), as the minimum eigenvalue 

min ( ) 0.037 0T = − K . Consequently, this structure is unstable, although it satisfies the necessary 

conditions given by Equation (16). It should be pointed out that the results for this structure are 

consistent with the reported ones [42]. 

 
(a) (b) 

Figure 3. Static and kinematic indeterminacy of the cable-strut shown in Figure 1b: (a) C2v symmetric 

self-stress state; (b) Cv symmetric mechanism mode. 

4. Form-Finding Analysis on Tensegrity Structures 

A significance of novel prestressed structures mentioned in this study is that these structures 

rely on initial prestresses to obtain or enhance the structural stiffness. Therefore, form-finding (or 

force-finding) analysis on these structures is important [43,44]. For a structure with multiple self-

stress states and complex geometry, Yuan et al. [45] considered the symmetry of the structure and 

proposed the concepts of integral self-stress state and feasible prestress to seek an effective and 

proper distribution for initial prestresses. They proposed the double singular value 

decomposition(DSVD) method for form-finding, which manually classified the members into 

different types and imposed symmetry constraints on the internal forces in the members. Zhang et 

al. [46] have utilized the energy method to obtain the integral self-stress state. Recently, some 

researchers [17,18,32] have combined the force density method with the structural symmetry to 

simplify the form-finding analysis for novel prestressed structures. 

Admittedly, these methods rely on the correct classification for the members. When the 

configuration becomes complicated or the number of members rises [47], the involved form-finding 

becomes difficult. Notably, in a symmetry-adapted coordinate system, each block matrix is associated 

with a certain symmetry subspace, and thus the null space of the block with full symmetry necessarily 

contains independent self-stress states that satisfy the requirements of full symmetry [36,48]. In this 

section, the authors will describe how to adopt group theory for computing the integral self-stress 

states.  

4.1. Integral Self-Stress State Obtained from the Block with Full Symmetry 

According to the force equilibrium condition for each node of a structure, the equilibrium 

equation of the structure can be established: 

=Ht P  (17) 
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where H  is the equilibrium matrix, t  is the internal force vector, and P  is the external load 

vector. Because most novel prestressed structures are statically indeterminate, the self-stress states S 

come from the null space of the singular matrix H  (i.e., = 0HS ). In the symmetry-adapted 

coordinate system, the symmetry-adapted equilibrium matrix H  can be transformed from the 

original matrix H : 

(1 1) ( ) ( )
T diag , , , ,

i h l

P t

− − − = =
  

H V HV H H H  (18) 

where 
PV  is the transformation matrix associated with the load vector P , and 

tV  is the 

transformation matrix associated with the internal force vector t ; the positive integer [1, ]i  , 

[1, ]ih l , and 
il  and l  are the dimensions of the irreducible representations ( )i  and ( ) . 

Equation (18) indicates that each block matrix 
( )i h−

H  corresponds to a symmetry subspace 

associated with the irreducible representation ( )i . The first block matrix is associated with full 

symmetry, while the last block indicates the lowest-order symmetry. Thus, integral self-stress states 

necessarily come from the first block matrix of the matrix H . Notably, as each block matrix is 

independent, the first block matrix 
(1 1)−

H  can be directly computed by 

( )
T(1 1)

(1 1) (1 1)

P t

−
− −=H V HV  (19) 

where (1 1)

P

−
V  and (1 1)

t

−
V  are the full symmetry subspaces for the load vector and the internal force 

vector, respectively. Both matrices are associated with the first irreducible representation (1 1)− . 

Then, the null space 
(1 1)−

S  of the block matrix 
(1 1)−

H  can be solved, which satisfies 

(1 1) (1 1)− −

= 0H S  (20) 

The integral self-stress state of the structure is given by [48] 

(1 1)
(1 1)

t

−
−S = V S  (21) 

Note that the integral self-stress state in Equation (21) has considered the whole symmetry of 

the structure, which allows the members of the same type to retain equal prestress. Thus, the solution 

space for the form-finding problem of prestressed structures can be effectively reduced, especially 

for the structures with multiple self-stress states [48,49]. Moreover, this symmetry method does not 

need to manually classify the members into different groups in advance, and it avoids repeating 

calculations of conventional methods. Thus, the involved computation process is simple and 

convenient, and particularly suitable for structures with complex geometry [50]. 

4.2. Example: A 3D  Symmetric Tensegrity Structure 

Figure 4 shows the geometric configuration and symmetry rotations for a simple prismatic 

tensegrity structure, which consists of six pin-joints, six tension cables and three compression struts. 

The twist angle between the bottom and top triangles is π/6 ; the radius of the circumcircle of the 

triangles is unit length, and the vertical height of the structure is unit length. 

This symmetric structure has 6 =  independent symmetry operations: the identity, two 

rotations around the vertical 3C  axis, and three two-fold rotations 2C  around the axes connecting 

the center of the structure and the mid-points of the diagonal cables (indicated by the dotted lines in 

Figure 4a). Thus, this structure belongs to the 3D  group [34,51]. Thereafter, the full symmetry 

subspaces corresponding to the internal force vector and the load vector are 

(1 1)

t

− =V

T
0.41 0.41 0.41 0.41 0.41 0.41 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0.58 0.58 0.58

0 0 0 0 0 0 0.58 0.58 0.58 0 0 0

 
 
 
  

 (22) 
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(1 1)

P

− =V

T
0.41 0 0 0.2 0.35 0 0.2 0.35 0 0.41 0 0 0.2 0.35 0 0.2 0.35 0

0 0.41 0 0.35 0.2 0 0.35 0.2 0 0 0.41 0 0.35 0.2 0 0.35 0.2 0

0 0 0.41 0 0 0.41 0 0 0.41 0 0 0.41 0 0 0.41 0 0 0.41

− − − − 
 

− − − − − 
 − − − 

 (23) 

Then, the first block matrix 
(1 1)−

H  of the symmetry-adapted equilibrium matrix is obtained by 

Equation (19) 

( )
T(1 1)

(1 1) (1 1)

0.447 0.562 0

1.669 0.324 1.253

0 1.267 0.656

P t

−
− −

− 
 

= = − − −
 
  

H V HV  (24) 

Because this 3 3  matrix 
(1 1)−

H  is a rank-deficient (its rank 
(1 1)

2r
−

= ), it has a 
(1 1)

1s
−

= -

dimensional null space 

 
(1 1) T

0.500 0.398 0.769
−

= −S  (25) 

Therefore, the integral self-stress state of the structure is: 

T(1 1)
(1 1)

1 6 7 9 10 12

T

0.204 0.204 0.230 0.230 0.444 0.444

t t t t t t t
−

−   = =  

=  − −  

S V S
 (26) 

As shown in Figure 4b, the obtained integral self-stress state satisfies the feasibility condition for 

the members, where six horizontal cables, three vertical cables, or three struts respectively belong to 

the same type. All the cables are in tension while the struts are in compression. It should be pointed 

out that this symmetry method just computes the null space of the first block matrix and extract 

integral self-stress states from all the independent self-stress. Because the dimension of the first block 

matrix is significantly smaller than that of the original matrix, the computational complexity is 

effectively reduced. In comparison with the conventional DSVD method, this method avoids manual 

classification on the members and repeated computations on the matrices. As far as a highly 

symmetric structure with many self-stress states and members is concerned, the computational 

efficiency of this symmetry method is considerably improved [48]. 

 

Figure 4. A simple tensegrity structure with 3D  symmetry [48]: (a) three two-fold rotations; (b) 

integral prestress mode with full symmetry. 

5. Generalized Eigenvalue Problems of Symmetric Prestressed Structures 

5.1. Symmetry-Adapted Frequency Analysis 

Generalized eigenvalue problems can be frequently found among structural analysis [16,40], 

which generally is a challenge from a computational perspective. For example, frequency analysis 
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can be taken as a well-known generalized eigenvalue problem in terms of the tangent stiffness matrix 

TK  and the mass matrix M 

2 0T − =K Ψ MΨ  (27) 

which describes free vibrations of a general structure. In Equation (27),   denotes a circular 

frequency and Ψ  is the corresponding mode shape. On condition that this structure is symmetric, 

group-theoretic process considers smaller block matrices rather than the full matrices. Using the 

transformation matrix U in Equation (7), the mass matrix M can be decomposed into similar block-

diagonalized forms 

(1 1) ( ) ( )
T diag , , , ,

i h l− − − = =
  

M U MU M M M  (28) 

where M  is a symmetry-adapted mass matrix. For any positive integer [1, ]ih l , the block matrices 
( )i h

T

−

K  and 
( )i h−

M  come from the specific symmetry subspace associated with the irreducible 

representation ( )i . Therefore, to analyze the vibration characteristics of the structure, eigenvalue 

problems with smaller matrices can be independently solved. For the block matrices 
( )i h

T

−

K  and 
( )i h−

M , it satisfies 

2
( ) ( ) ( ) ( ) ( )

0
i h i h i h i h i h

T 
− − − − − − =

  
K Ψ M Ψ , [1, ], [1, ]ii h l    (29) 

where 
( )i h


−

 and 
( )i h−

Ψ  are the eigenvalues and eigenvectors extracted from the symmetry 

subspace associated with the irreducible representation ( )i . Since the similarity transformation does 

not change the eigenvalues of the matrix, the obtained generalized eigenvalues are included in the 

solutions to the original eigenvalue problem [40], 

( )i h

 
−

 , [1, ], [1, ]ii h l    (30) 

The corresponding mode shape can be expressed as 

( )
( ) ( )

i h
i h i h

−
− −=Ψ U Ψ , [1, ], [1, ]ii h l    (31) 

where the symmetry subspace ( )i h−
U  associated with ( )i  indicates the symmetry of the eigenvector 

( )i h−
Ψ . It is helpful for predicting the vibration modes for a symmetric structure. In addition, the 

complete vibration mode matrix Ψ  can be obtained from 

( )

1 1

il
i h

i h



= =

−= Ψ Ψ  (32) 

In summary, using the symmetry method based on group theory, the original frequency analysis 

has been transformed into a series of independent sub-problems. 

5.2. Symmetry-Adapted Buckling Analysis 

Buckling analysis of a structure is essentially about the generalized eigenvalue problem of the 

tangent stiffness matrix and the geometric stiffness matrix: 

( , ) ( ) 0T Gf = + =Φ λ K λK Φ  (33) 

where the function f is defined to describe the buckling problem of the structure, λ  is the eigenvalue 

and Φ  is the corresponding eigenvector. According to the inherent symmetry of the structure, the 

above equation satisfies [52]: 

( , ) ( , )s sf f=RΦ λ R Φ λ , [1, ]s    (34) 

where sR  is the transformation matrix for a symmetry operation S. According to the external loads 

and their symmetries, symmetry subspaces need to be established in a certain subgroup 1G G . 
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Then, the stiffness matrices 
TK  and 

GK  in Equation (33) can be decomposed into a similar block-

diagonal form: 

1 2(1 1) (1 ) (2 1) (2 ) ( 1) ( )
T diag , , , , , , , , ,

l l l

T T T T T T T T

 − − − − − − = =
  

K V K V K K K K K K  (35) 

1 2(1 1) (1 ) (2 1) (2 ) ( 1) ( )
T diag , , , , , , , , ,

l l l

G G G G G G G G

 − − − − − − = =
  

K V K V K K K K K K  (36) 

where the matrix V is an orthogonal transformation matrix for expression in the symmetry-adapted 

coordinate system. Because each block matrix is independent, the original buckling problem can be 

solved by solving the subproblems in parallel [52] 

( ) ( ) ( ) ( )

( ) 0
i j i j i j i j

T G
− − − −

+ =K K Φ , [1, ], [1, ]ii j l    (37) 

Recall that similarity transformations do not alter the generalized eigenvalues of the original 

matrix, the eigenvalues 
( )i j


−

 obtained from Equation (37) are included in the solutions to the 

original buckling problem, 

( )i j

 
−

 , [1, ], [1, ]ii j l    (38) 

and the corresponding buckling shape can be expressed as 

( )
( ) ( )

i j
i j i j

−
− −= Φ V Φ , [1, ], [1, ]ii j l    (39) 

5.3. Illustrative Example: A 12vC  Symmetric Cable Dome Structure 

The well-known Levy cable dome is a typical prestressed cable-strut structure [40,53]. Figure 5 

shows a highly symmetric Levy cable dome with a diameter of 100 m. This structure is composed of 

84 pin-joints, 36 compression struts and 168 tension cables, where the boundary nodes 1–12 are 

constrained in three directions. Note that cross-sectional areas and initial prestresses of different 

types of members of this cable dome structure have been reported [40]. 

  

(a) (b) 

Figure 5. A 12vC  symmetric cable dome structures [40]: (a) twelve rotations and twelve reflections 

indicated in the plan view; (b) 3D geometric configuration. 

In the view of symmetry, this cable dome structure keeps unshifted by twelve rotations along 

the 12-fold rotation axis 12C , and twelve reflections 1 12  − , as shown in Figure 5a. Thus, this 

structure is 12vC  symmetric. According to the point-group theory table [28], the 12vC  symmetry 

group has four one-dimensional ( [1,4] 1il ) irreducible representations 1 2 1, ,A A B  and 2B , and five 
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two-dimensional ( [5,9] 2il ) irreducible representations 1E  − 
5E . To establish the symmetry-

adapted coordinate system, the 216 216  orthogonal transformation matrix U  for the cable dome 

is obtained from Equation (6). This matrix is composed by independent vectors associated with 

fourteen symmetry subspaces, where the first vector 1( )A
U  for the full symmetry subspace is a 

  matrix, 2( )A
U  is a   matrix, 1( )B

U  is a   matrix, 2( )B
U  is a matrix, and all 

the vectors 11( )E
U – 52( )E

U  for the lower-order symmetry subspaces are   matrices. These 14 

independent symmetry subspaces are utilized to decompose the 216 216  stiffness matrix or the 

mass matrix into 14 block matrices with smaller dimensions. For example, the distribution patterns 

of nonzero entries of the original tangent stiffness matrix and the block-diagonalized matrix are 

shown in Figure 6. As shown in Figure 6b, all the block matrices are independent and distribute along 

the main diagonal. 

 
(a) (b) 

Figure 6. Distribution patterns of nonzero entries of stiffness matrices of the 12vC  symmetric cable 

dome: (a) original tangent stiffness matrix TK ; (b) block-diagonalized stiffness matrix 
TK . 

As far as the frequency analysis is concerned, the original problem is neatly simplified into 

fourteen sub-problems involved with small-sized matrices. Figure 7 shows the first 100 frequencies 

obtained by the proposed symmetry method, which is compared with the results by the conventional 

numerical method. In addition, to study the influence of initial prestresses on the natural frequencies, 

the C12v symmetric cable dome with different prestress levels are analyzed by the proposed method 

(the symmetry subspaces keep invariant). The prestress levels are respectively 0, 0.25t, 0.5t, 2t and 4t, 

and the initial prestresses t are determined by the feasible prestress modes [40]. 

 

Figure 7. First 100 frequencies of the C12v symmetric cable dome with different prestress levels [40]. 
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It can be noticed from Figure 7 that the obtained results are in good agreement with those of the 

numerical method, where the maximum error is 910 . Lower-order natural frequencies are low and 

intensively distributed. Notably, the first 14 frequencies are dominated by the prestress level, as they 

are associated with 14m  infinitesimal mechanism modes. In fact, the initial prestresses also 

improve the structural stiffness of the cable dome. After increasing the initial prestress level, the first 

50 frequencies of this structure increase significantly. 

On the other hand, Figure 8 depicts the first eight vibration shapes of the C12v symmetric cable 

dome [40]. It can be noticed that this symmetric dome structure has many repeated eigenvalues and 

equivalent eigenvectors, such as modes 1–2, modes 3–4, and modes 5–6. In fact, this phenomenon is 

ubiquitous for most symmetric structures. This is because the roots computed from the symmetry 

spaces for multi-dimensional irreducible representations are identical, and the generalized 

eigenvalues for these symmetry subspaces are exactly the same. In addition, each vibration shape 

obtained from lower-order symmetry subspace ( )i h−
U  does not maintain its full symmetry (i.e., 12vC ). 

Then, it may be reduced to a low-order symmetry. Because the seventh vibration shape is obtained 

from the symmetry subspace (2 1)

2A− = , it has rotational symmetry (i.e., 12C ). In other words, the 

symmetry of all the vibration modes can be predicted from symmetry subspaces in advance [16,29], 

without numerical computing. 

 

Figure 8. First eight vibration shapes of the C12v symmetric cable dome [40]. 

6. Conclusions 

This paper has described some new developments of symmetry analysis on novel prestressed 

structures using group theory. Through theoretical group-theoretic approaches and illustrative 

examples, basic process and key features of group-theoretic approaches in stability analysis, form-

finding analysis, frequency analysis and buckling analysis have been identified. A significant 

advantage of these group-theoretic approaches is that the involved large-sized matrices can be neatly 

block-diagonalized into many smaller-sized and independent matrices. Thus, the computational 

complexity for dealing with the original problem will be significantly reduced. More importantly, 

these methods can qualitatively reveal certain physical meanings and obtain effective insights into 

the involved problems. It is worth mentioning that group-theoretic approaches are systematic and 

general. When a structure has only the lowest-order symmetry, the method still works and 

degenerates into a conventional method. This research is helpful for enriching developments in the 

field of symmetric structures. 
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