Article

Symmetric Identities for Fubini Polynomials

Taekyun Kim ${ }^{\text {1,2 }}$, Dae San Kim ${ }^{3}$, Gwan-Woo Jang ${ }^{2}$ and Jongkyum Kwon ${ }^{\text {4,* }}$
1 Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin 300160, China; tkkim@kw.ac.kr or kwangwoonmath@hanmail.net
2 Department of Mathematics, Kwangwoon University, Seoul 139-701, Korea; gwjang@kw.ac.kr
3 Department of Mathematics, Sogang University, Seoul 121-742, Korea; dskim@sogang.ac.kr
4 Department of Mathematics Education and ERI, Gyeongsang National University, Jinju, Gyeongsangnamdo 52828, Korea
* Correspondence: mathkjk26@gnu.ac.kr

Received: 20 April 2018; Accepted: 13 June 2018; Published: 14 June 2018
Abstract: We represent the generating function of w-torsion Fubini polynomials by means of a fermionic p-adic integral on \mathbb{Z}_{p}. Then we investigate a quotient of such p-adic integrals on \mathbb{Z}_{p}, representing generating functions of three w-torsion Fubini polynomials and derive some new symmetric identities for the w-torsion Fubini and two variable w-torsion Fubini polynomials.

Keywords: Fubini polynomials; w-torsion Fubini polynomials; fermionic p-adic integrals; symmetric identities

1. Introduction and Preliminaries

In recent years, various p-adic integrals on \mathbb{Z}_{p} have been used in order to find many interesting symmetric identities related to some special polynomials and numbers. The relevant p-adic integrals are the Volkenborn, fermionic, q-Volkenborn, and q-fermionic integrals of which the last three were discovered by the first author T. Kim (see [1-3]). They have been used by a good number of researchers in various contexts and especially in unfolding new interesting symmetric identities. This verifies the usefulness of such p-adic integrals. Moreover, we can expect that people will find some further applications of these p-adic integrals in the years to come. The present paper is an effort in this direction. Assume that p is any fixed odd prime number. Throughout our discussion, we will use the standard notations $\mathbb{Z}_{p}, \mathbb{Q}_{p}$, and \mathbb{C}_{p} to denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of the algebraic closure of \mathbb{Q}_{p}, respectively. The p-adic norm $|\cdot|_{p}$ is normalized as $|p|_{p}=\frac{1}{p}$. Assume that $f(x)$ is a continuous function on \mathbb{Z}_{p}. Then the fermionic p-adic integral of $f(x)$ on \mathbb{Z}_{p} was introduced by Kim (see [2]) as

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f(x) d \mu_{-1}(x)=\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(x)(-1)^{x} \tag{1}
\end{equation*}
$$

where $\mu_{-1}\left(x+p^{N} \mathbb{Z}_{p}\right)=(-1)^{x}$.
We can easily deduce from (1) that (see [2,3])

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f(x+1) d \mu_{-1}(x)+\int_{\mathbb{Z}_{p}} f(x) d \mu_{-1}(x)=2 f(0) \tag{2}
\end{equation*}
$$

By invoking (2), we easily get (see [2,4])

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} e^{(x+y) t} d \mu_{-1}(y)=\frac{2}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!} \tag{3}
\end{equation*}
$$

where $E_{n}(x)$ are the usual Euler polynomials.
As is known, the two variable Fubini polynomials are defined by means of the following (see [5,6])

$$
\begin{equation*}
\sum_{n=0}^{\infty} F_{n}(x, y) \frac{t^{n}}{n!}=\frac{1}{1-y\left(e^{t}-1\right)} e^{x t} \tag{4}
\end{equation*}
$$

When $x=0, F_{n}(y)=F_{n}(0, y),(n \geq 0)$, are called Fubini polynomials. Further, if $y=1$, then $O b_{n}=F_{n}(0,1)$ are the ordered Bell numbers (also called Frobenius numbers). They first appeared in Cayley's work on a combinatorial counting problem in 1859 and have many different combinatorial interpretations. For example, the ordered Bell numbers count the possible outcomes of a multi-candidate election. From (3) and (4), we note that $F_{n}(x,-1 / 2)=E_{n}(x),(n \geq 0)$. By (4), we easily get (see [6]),

$$
\begin{equation*}
F_{n}(y)=\sum_{k=0}^{n} S_{2}(n, k) k!y^{k},(n \geq 0) \tag{5}
\end{equation*}
$$

where $S_{2}(n, k)$ are the Stirling numbers of the second kind.
For $w \in \mathbb{N}$, we define the two variable w-torsion Fubini polynomials given by

$$
\begin{equation*}
\frac{1}{1-y^{w}\left(e^{t}-1\right)^{w}} e^{x t}=\sum_{n=0}^{\infty} F_{n, w}(x, y) \frac{t^{n}}{n!} \tag{6}
\end{equation*}
$$

In particular, for $x=0, F_{n, w}(y)=F_{n, w}(0, y)$ are called the w-torsion Fubini polynomials. It is obvious that $F_{n, 1}(x, y)=F_{n}(x, y)$.

We represent the generating function of w-torsion Fubini polynomials by means of a fermionic p-adic integral on \mathbb{Z}_{p}. Then we investigate a quotient of such p-adic integrals on \mathbb{Z}_{p}, representing generating functions of three w-torsion Fubini polynomials and derive some new symmetric identities for the w-torsion Fubini and two variable w-torsion Fubini polynomials. Recently, a number of researchers have studied symmetric identities for some special polynomials. The reader may refer to [7-11] as an introduction to this active area of research. Some symmetric identities for q-special polynomials and numbers were treated in [12-15], including q-Bernoulli, q-Euler, and q-Genocchi numbers and polynomials. While some identities of symmetry for degenerate special polynomials were discussed in the more recent papers [6,16,17]. Finally, interested readers may want to have a glance at $[18,19]$ as general references on polynomials.

2. Symmetric Identities for w-torsion Fubini and Two Variable w-torsion Fubini Polynomials

From (2), we note that

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}}(-1)^{x}\left(y\left(e^{t}-1\right)\right)^{x} d \mu_{-1}(x)=\frac{2}{1-y\left(e^{t}-1\right)}=2 \sum_{n=0}^{\infty} F_{n}(y) \frac{t^{n}}{n!} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{x t} \int_{\mathbb{Z}_{p}}(-1)^{z}\left(y\left(e^{t}-1\right)\right)^{z} d \mu_{-1}(z)=\frac{2}{1-y\left(e^{t}-1\right)} e^{x t}=2 \sum_{n=0}^{\infty} F_{n}(x, y) \frac{t^{n}}{n!} \tag{8}
\end{equation*}
$$

From (7) and (8), we note that

$$
\left.\begin{array}{rl}
\left(\sum_{l=0}^{\infty} x\right. & \left.x \frac{t^{l}}{l!}\right)\left(\sum_{m=0}^{\infty} 2 F_{m}(y) \frac{t^{m}}{m!}\right) \tag{9}
\end{array}\right)=e^{x t} \int_{\mathbb{Z}_{p}}(-1)^{z}\left(y\left(e^{t}-1\right)\right)^{z} d \mu_{-1}(z) .
$$

Thus, by (9), we easily get

$$
\begin{equation*}
\sum_{l=0}^{n}\binom{n}{l} x^{l} F_{n-l}(y)=F_{n}(x, y),(n \geq 0) \tag{10}
\end{equation*}
$$

Now, we observe that

$$
\begin{align*}
\frac{1-y^{k}\left(e^{t}-1\right)^{k}}{1-y\left(e^{t}-1\right)} & =\sum_{i=0}^{k-1} y^{i}\left(e^{t}-1\right)^{i}=\sum_{i=0}^{k-1} \sum_{l=0}^{i}\binom{i}{l}(-1)^{i-l} y^{i} e^{l t} \\
& =\sum_{n=0}^{\infty}\left(\sum_{i=0}^{k-1} \sum_{l=0}^{i}\binom{i}{l}(-1)^{i-l} y^{i} l^{n}\right) \frac{t^{n}}{n!} \tag{11}\\
& =\sum_{n=0}^{\infty}\left(\sum_{i=0}^{k-1} y^{i} \Delta^{i} 0^{n}\right) \frac{t^{n}}{n!}
\end{align*}
$$

where $\Delta f(x)=f(x+1)-f(x)$.
For $w \in \mathbb{N}$, the w-torsion Fubini polynomials are represented by means of the following fermionic p-adic integral on \mathbb{Z}_{p} :

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}}\left(-y^{w}\left(e^{t}-1\right)^{w}\right)^{x} d \mu_{-1}(x)=\frac{2}{1-y^{w}\left(e^{t}-1\right)^{w}}=\sum_{n=0}^{\infty} 2 F_{n, w}(y) \frac{t^{n}}{n!}, \tag{12}
\end{equation*}
$$

From (7) and (12), we have

$$
\begin{align*}
\frac{\int_{\mathbb{Z}_{p}}\left(-y\left(e^{t}-1\right)\right)^{x} d \mu_{-1}(x)}{\int_{\mathbb{Z}_{p}}\left(-y^{w_{1}}\left(e^{t}-1\right)^{w_{1}}\right)^{x} d \mu_{-1}(x)} & =\frac{1-y^{w_{1}}\left(e^{t}-1\right)^{w_{1}}}{1-y\left(e^{t}-1\right)}=\sum_{i=0}^{w_{1}-1} y^{i}\left(e^{t}-1\right)^{i} \tag{13}\\
& =\sum_{n=0}^{\infty}\left(\sum_{i=0}^{w_{1}-1} y^{i} \Delta^{i} 0^{n}\right) \frac{t^{n}}{n!},\left(w_{1} \in \mathbb{N}\right) .
\end{align*}
$$

For $w_{1}, w_{2} \in \mathbb{N}$, we let

$$
\begin{equation*}
I=\frac{\int_{\mathbb{Z}_{p}}\left(-y^{w_{1}}\left(e^{t}-1\right)^{w_{1}}\right)^{x_{1}} d \mu_{-1}\left(x_{1}\right) \int_{\mathbb{Z}_{p}}\left(-y^{w_{2}}\left(e^{t}-1\right)^{w_{2}}\right)^{x_{2}} d \mu_{-1}\left(x_{2}\right)}{\int_{\mathbb{Z}_{p}}\left(-y^{w_{1} w_{2}}\left(e^{t}-1\right)^{w_{1} w_{2}}\right)^{x} d \mu_{-1}(x)} . \tag{14}
\end{equation*}
$$

Here it is important to observe that (14) has the built-in symmetry. Namely, it is invariant under the interchange of w_{1} and w_{2}.

Then, by (14), we get

$$
\begin{equation*}
I=\left(\int_{\mathbb{Z}_{p}}\left(-y^{w_{1}}\left(e^{t}-1\right)^{w_{1}}\right)^{x} d \mu_{-1}(x)\right) \times\left(\frac{\int_{\mathbb{Z}_{p}}\left(-y^{w_{2}}\left(e^{t}-1\right)^{w_{2}}\right)^{x} d \mu_{-1}(x)}{\int_{\mathbb{Z}_{p}}\left(-y^{w_{1} w_{2}}\left(e^{t}-1\right)^{w_{1} w_{2}}\right)^{x} d \mu_{-1}(x)}\right) \tag{15}
\end{equation*}
$$

First, we observe that

$$
\begin{align*}
\frac{\int_{\mathbb{Z}_{p}}\left(-y^{w_{2}}\left(e^{t}-1\right)^{w_{2}}\right)^{x} d \mu_{-1}(x)}{\int_{\mathbb{Z}_{p}}\left(-y^{w_{1} w_{2}}\left(e^{t}-1\right)^{w_{1} w_{2}}\right)^{x} d \mu_{-1}(x)} & =\frac{1-y^{w_{1} w_{2}}\left(e^{t}-1\right)^{w_{1} w_{2}}}{1-y^{w_{2}}\left(e^{t}-1\right)^{w_{2}}}=\sum_{i=0}^{w_{1}-1} y^{w_{2} i}\left(e^{t}-1\right)^{w_{2} i} \\
& =\sum_{i=0}^{w_{1}-1} y^{w_{2} i} \sum_{l=0}^{w_{2} i}\binom{w_{2} i}{l}(-1)^{w_{2} i-l} e^{l t} \tag{16}\\
& =\sum_{n=0}^{\infty}\left(\sum_{i=0}^{w_{1}-1} y^{w_{2} i} \Delta^{w_{2} i} 0^{n}\right) \frac{t^{n}}{n!}
\end{align*}
$$

From (15) and (16), we can derive the following equation.

$$
\begin{align*}
I & =\left(\int_{\mathbb{Z}_{p}}\left(-y^{w_{1}}\left(e^{t}-1\right)^{w_{1}}\right)^{x} d \mu_{-1}(x)\right) \times\left(\frac{\int_{\mathbb{Z}_{p}}\left(-y^{w_{2}}\left(e^{t}-1\right)^{w_{2}}\right)^{x} d \mu_{-1}(x)}{\int_{\mathbb{Z}_{p}}\left(-y^{w_{1} w_{2}}\left(e^{t}-1\right)^{w_{1} w_{2}}\right)^{x} d \mu_{-1}(x)}\right) \\
& =\left(\sum_{m=0}^{\infty} 2 F_{m, w_{1}}(y) \frac{t^{m}}{m!}\right) \times\left(\sum_{k=0}^{\infty}\left(\sum_{i=0}^{w_{1}-1} y^{w_{2} i} \Delta^{w_{2} i} 0^{k}\right) \frac{t^{k}}{k!}\right. \tag{17}\\
& =\sum_{n=0}^{\infty}\left(2 \sum_{k=0}^{n} \sum_{i=0}^{w_{1}-1} y^{w_{2} i} \Delta^{w_{2} i} 0^{k} F_{n-k, w_{1}}(y)\binom{n}{k}\right) \frac{t^{n}}{n!} .
\end{align*}
$$

Interchanging the roles of w_{1} and w_{2}, by (14), we get

$$
\begin{equation*}
I=\left(\int_{\mathbb{Z}_{p}}\left(-y^{w_{2}}\left(e^{t}-1\right)^{w_{2}}\right)^{x} d \mu_{-1}(x)\right) \times\left(\frac{\int_{\mathbb{Z}_{p}}\left(-y^{w_{1}}\left(e^{t}-1\right)^{w_{1}}\right)^{x} d \mu_{-1}(x)}{\int_{\mathbb{Z}_{p}}\left(-y^{w_{1} w_{2}}\left(e^{t}-1\right)^{w_{1} w_{2}}\right)^{x} d \mu_{-1}(x)}\right) . \tag{18}
\end{equation*}
$$

We note that

$$
\begin{align*}
\frac{\int_{\mathbb{Z}_{p}}\left(-y^{w_{1}}\left(e^{t}-1\right)^{w_{1}}\right)^{x} d \mu_{-1}(x)}{\int_{\mathbb{Z}_{p}}\left(-y^{w_{1} w_{2}}\left(e^{t}-1\right)^{w_{1} w_{2}}\right)^{x} d \mu_{-1}(x)} & =\frac{1-y^{w_{1} w_{2}}\left(e^{t}-1\right)^{w_{1} w_{2}}}{1-y^{w_{1}}\left(e^{t}-1\right)^{w_{1}}}=\sum_{i=0}^{w_{2}-1} y^{w_{1} i}\left(e^{t}-1\right)^{w_{1} i} \tag{19}\\
& =\sum_{n=0}^{\infty}\left(\sum_{i=0}^{w_{2}-1} y^{w_{1} i} \Delta^{w_{1} i} 0^{n}\right) \frac{t^{n}}{n!}
\end{align*}
$$

Thus, by (18) and (19), we get

$$
\begin{align*}
I & =\left(\int_{\mathbb{Z}_{p}}\left(-y^{w_{2}}\left(e^{t}-1\right)^{w_{2}}\right)^{x} d \mu_{-1}(x)\right) \times\left(\frac{\int_{\mathbb{Z}_{p}}\left(-y^{w_{1}}\left(e^{t}-1\right)^{w_{1}}\right)^{x} d \mu_{-1}(x)}{\int_{\mathbb{Z}_{p}}\left(-y^{w_{1} w_{2}}\left(e^{t}-1\right)^{w_{1} w_{2}}\right)^{x} d \mu_{-1}(x)}\right) \\
& =\left(\sum_{m=0}^{\infty} 2 F_{m, w_{2}}(y) \frac{t^{m}}{m!}\right) \times\left(\sum_{k=0}^{\infty}\left(\sum_{i=0}^{w_{2}-1} y^{w_{1} i} \Delta^{w_{1} i} 0^{k}\right) \frac{t^{k}}{k!}\right. \tag{20}\\
& =\sum_{n=0}^{\infty}\left(2 \sum_{k=0}^{n} \sum_{i=0}^{w_{2}-1} y^{w_{1} i} \Delta^{w_{1} i} 0^{k} F_{n-k, w_{2}}(y)\binom{n}{k}\right) \frac{t^{n}}{n!} .
\end{align*}
$$

The following theorem is now obtained by Equations (17) and (20).
Theorem 1. For $w_{1}, w_{2} \in \mathbb{N}$ with $w_{1} \equiv 1(\bmod 2), w_{2} \equiv 1(\bmod 2), n \geq 0$, we have

$$
\begin{equation*}
\sum_{k=0}^{n} \sum_{i=0}^{w_{1}-1}\binom{n}{k} F_{n-k, w_{1}}(y) y^{w_{2} i} \Delta^{w_{2} i} 0^{k}=\sum_{k=0}^{n} \sum_{i=0}^{w_{2}-1}\binom{n}{k} F_{n-k, w_{2}}(y) y^{w_{1} i} \Delta^{w_{1} i} 0^{k} \tag{21}
\end{equation*}
$$

Remark 1. In particular, for $w_{1}=1$, we have

$$
\begin{equation*}
F_{n}(y)=\sum_{k=0}^{n} \sum_{i=0}^{w_{2}-1}\binom{n}{k} F_{n-k, w_{2}}(y) y^{i} \Delta^{i} 0^{k} . \tag{22}
\end{equation*}
$$

By expressing I in a different way, we have

$$
\begin{align*}
I & =\left(\int_{\mathbb{Z}_{p}}\left(-y^{w_{1}}\left(e^{t}-1\right)^{w_{1}}\right)^{x} d \mu_{-1}(x)\right) \times\left(\frac{\int_{\mathbb{Z}_{p}}\left(-y^{w_{2}}\left(e^{t}-1\right)^{w_{2}}\right)^{x} d \mu_{-1}(x)}{\int_{\mathbb{Z}_{p}}\left(-y^{w_{1} w_{2}}\left(e^{t}-1\right)^{w_{1} w_{2}}\right)^{x} d \mu_{-1}(x)}\right) \\
& =\left(\int_{\mathbb{Z}_{p}}\left(-y^{w_{1}}\left(e^{t}-1\right)^{w_{1}}\right)^{x} d \mu_{-1}(x)\right) \times\left(\frac{1-y^{w_{1} w_{2}}\left(e^{t}-1\right)^{w_{1} w_{2}}}{1-y^{w_{2}}\left(e^{t}-1\right)^{w_{2}}}\right) \\
& =\left(\sum_{i=0}^{w_{1}-1} y^{w_{2} i}\left(e^{t}-1\right)^{w_{2} i}\right) \times\left(\frac{2}{1-y^{w_{1}}\left(e^{t}-1\right)^{w_{1}}}\right) \tag{23}\\
& =\sum_{i=0}^{w_{1}=1} \sum_{l=0}^{w_{2} i}\binom{w_{2} i}{l} y^{w_{2} i}(-1)^{l} \frac{2}{1-y^{w_{1}}\left(e^{t}-1\right)^{w_{1}} e^{\left(w_{2} i-l\right) t}} \\
& =2 \sum_{n=0}^{\infty}\left(\sum_{i=0}^{w_{1}-1} \sum_{l=0}^{w_{2} i}\binom{w_{2} i}{l} y^{w_{2} i}(-1)^{l} F_{n, w_{1}}\left(w_{2} i-l, y\right)\right) \frac{t^{n}}{n!} .
\end{align*}
$$

Interchanging the roles of w_{1} and w_{2}, by (14), we get

$$
\begin{align*}
I & =\left(\int_{\mathbb{Z}_{p}}\left(-y^{w_{2}}\left(e^{t}-1\right)^{w_{2}}\right)^{x} d \mu_{-1}(x)\right) \times\left(\frac{\int_{\mathbb{Z}_{p}}\left(-y^{w_{1}}\left(e^{t}-1\right)^{w_{1}}\right)^{x} d \mu_{-1}(x)}{\int_{\mathbb{Z}_{p}}\left(-y^{w_{1} w_{2}}\left(e^{t}-1\right)^{w_{1} w_{2}}\right)^{x} d \mu_{-1}(x)}\right) \\
& =\left(\int_{\mathbb{Z}_{p}}\left(-y^{w_{2}}\left(e^{t}-1\right)^{w_{2}}\right)^{x} d \mu_{-1}(x)\right) \times\left(\frac{1-y^{w_{1} w_{2}}\left(e^{t}-1\right)^{w_{1} w_{2}}}{1-y^{w_{1}}\left(e^{t}-1\right)^{w_{1}}}\right) \\
& =\left(\sum_{i=0}^{w_{2}-1} y^{w_{1} i}\left(e^{t}-1\right)^{w_{1} i}\right) \times\left(\frac{2}{1-y^{w_{2}}\left(e^{t}-1\right)^{w_{2}}}\right) \tag{24}\\
& =\sum_{i=0}^{w_{2}-1} \sum_{l=0}^{w_{1} i} y^{w_{1} i}\binom{w_{1} i}{l}(-1)^{l} \frac{2}{1-y^{w_{2}}\left(e^{t}-1\right)^{w_{2}}} e^{\left(w_{1} i-l\right) t} \\
& =2 \sum_{n=0}^{\infty}\left(\sum_{i=0}^{w_{2}-1} \sum_{l=0}^{w_{1} i} y^{w_{1} i}\binom{w_{1} i}{l}(-1)^{l} F_{n, w_{2}}\left(w_{1} i-l, y\right)\right) \frac{t^{n}}{n!} .
\end{align*}
$$

Hence, by Equations (23) and (24), we obtain the following theorem.
Theorem 2. For $w_{1}, w_{2} \in \mathbb{N}$ with $w_{1} \equiv 1(\bmod 2), w_{2} \equiv 1(\bmod 2), n \geq 0$, we have

$$
\begin{equation*}
\sum_{i=0}^{w_{1}-1} \sum_{l=0}^{w_{2} i} y^{w_{2} i}\binom{w_{2} i}{l}(-1)^{l} F_{n, w_{1}}\left(w_{2} i-l, y\right)=\sum_{i=0}^{w_{2}-1} \sum_{l=0}^{w_{1} i} y^{w_{1} i}\binom{w_{1} i}{l}(-1)^{l} F_{n, w_{2}}\left(w_{1} i-l, y\right) . \tag{25}
\end{equation*}
$$

Remark 2. Especially, if we take $w_{1}=1$, then by Theorem 2 , we get

$$
\begin{equation*}
F_{n}(y)=\sum_{i=0}^{w_{2}-1} \sum_{l=0}^{i}\binom{i}{l} y^{i}(-1)^{l} F_{n, w_{2}}(i-l, y) . \tag{26}
\end{equation*}
$$

3. Conclusions

In this paper, we introduced w-torsion Fubini polynomials as a generalization of Fubini polynomials and expressed the generating function of w-torsion Fubini polynomials by means of a fermionic p-adic integral on \mathbb{Z}_{p}. Then we derived some new symmetric identities for the w-torsion Fubini and two variable w-torsion Fubini polynomials by investigating a quotient of such p-adic integrals on \mathbb{Z}_{p}, representing generating functions of three w-torsion Fubini polynomials. It seems that they are the first double symmetric identities on Fubini polynomials. As was done, for example in $[4,20,21]$, we expect that this result can be extended to the case of triple symmetric identities. That is one of our next projects.

Author Contributions: T.K. and D.S.K. conceived the framework and structured the whole paper; T.K. wrote the paper; G.-W.J. and J.K. checked the results of the paper; D.S.K. and J.K. completed the revision of the article.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kim, T. q-Volkenborn integration. Russ. J. Math. Phys. 2002, 9, 288-299.
2. Kim, T. Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on \mathbb{Z}_{p}. Russ. J. Math. Phys. 2009, 16, 93-96. [CrossRef]
3. Kim, T. A study on the q-Euler numbers and the fermionic q-integral of the product of several type q-Bernstein polynomials on \mathbb{Z}_{p}. Adv. Stud. Contemp. Math. 2013, 23, 5-11.
4. Kim, D.S.; Park, K.H. Identities of symmetry for Bernoulli polynomials arising from quotients of Volkenborn integrals invariant under S_{3}. Appl. Math. Comput. 2013, 219, 5096-5104. [CrossRef]
5. Kilar, N.; Simsek, Y. A new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomials. J. Korean Math. Soc. 2017, 54, 1605-1621.
6. Kim, T.; Kim, D.S.; Jang, G.-W. A note on degenerate Fubini polynomials. Proc. Jangjeon Math. Soc. 2017, 20, 521-531.
7. Kim, Y.-H.; Hwang, K.-H. Symmery of power sum and twisted Bernoulli polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2009, 18, 127-133.
8. Lee, J.G.; Kwon, J.; Jang, G.-W.; Jang, L.-C. Some identities of λ-Daehee polynomials. J. Nonlinear Sci. Appl. 2017, 10, 4137-4142. [CrossRef]
9. Rim, S.-H.; Jeong, J.-H.; Lee, S.-J.; Moon, E.-J.; Jin, J.-H. On the symmetric properties for the generalized twisted Genocchi polynomials. ARS Comb. 2012, 105, 267-272.
10. Rim, S.-H.; Moon, E.-J.; Jin, J.-H.; Lee, S.-J. On the symmetric properties for the generalized Genocchi polynomials. J. Comput. Anal. Appl. 2011, 13, 1240-1245.
11. Seo, J.J.; Kim, T. Some identities of symmetry for Daehee polynomials arising from p-adic invariant integral on \mathbb{Z}_{p}. Proc. Jangjeon Math. Soc. 2016, 19, 285-292.
12. A $\breve{g} y \ddot{u} z$, E.; Acikgoz, M.; Araci, S. A symmetric identity on the q-Genocchi polynomials of higher-order under third dihedral group D_{3}. Proc. Jangjeon Math. Soc. 2015, 18, 177-187.
13. He, Y. Symmetric identities for Calitz's q-Bernoulli numbers and polynomials. Adv. Differ. Equ. 2013, 2013, 246. [CrossRef]
14. Moon, E.-J.; Rim, S.-H.; Jin, J.-H.; Lee, S.-J. On the symmetric properties of higher-order twisted q-Euler numbers and polynoamials. Adv. Differ. Equ. 2010, 2010, 765259. [CrossRef]
15. Ryoo, C.S. An identity of the symmetry for the second kind q-Euler polynomials. J. Comput. Anal. Appl. 2013, 15, 294-299.
16. Kim, T.; Kim, D.S. An identity of symmetry for the degenerate Frobenius-Euler polynomials. Math. Slovaca 2018, 68, 239-243. [CrossRef]
17. Kim, T.; Kim, D.S. Identities of symmetry for degenerate Euler polynomials and alternating generalized falling factorial sums. Iran J. Sci. Technol. Trans. A Sci. 2017, 41, 939-949. [CrossRef]
18. Carlitz, L. Eulerian numbers and polynomials. Math. Mag. 1959, 32, 247-260. [CrossRef]
19. Milovanović, G.V.; Mitrinović, D.S.; Rassias, T.M. Topics in Polynomials: Extremal Problems, Inequalities, Zeros; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 1994.
20. Kim, D.S.; Kim, T. Triple symmetric identities for w-Catalan polynomials. J. Korean Math. Soc. 2017, 54, 1243-1264.
21. Kim, D.S.; Lee, N.; Na, J.; Park, K.H. Identities of symmetry for higher-order Euler polynomials in the three varibles (I). Adv. Stud. Contemp. Math. (Kyungshang) 2012, 22, 51-74.
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
