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Abstract: We study ruled submanifolds in Minkowski space in regard to the Gauss map satisfying
some partial differential equation. As a generalization of usual cylinders, cones and null scrolls in a
three-dimensional Minkowski space, a cylinder over a space curve, a product manifold of a right cone
and a k-plane, a product manifold of a hyperbolic cone and a k-plane which look like kinds of cylinders
over cones in 3-space, and the generalized B-scroll kind in Minkowski space are characterized with
the partial differential equation regarding the Gauss map, where k is a positive integer.

Keywords: finite-type immersion; pointwise 1-type Gauss map of the second kind; generalized
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1. Introduction

According to Nash’s imbedding theorem, a Riemannian manifold can be imbedded in a Euclidean
space with considerably high codimension. That naturally enables us to study Riemannian manifolds
as submanifolds of a Euclidean space. In the late 1970’s, the notion of finite-type immersion of
Riemannian manifolds into Euclidean space was introduced, which is a generalization of the so-called
eigenvalue problem of the immersion [1]: An isometric immersion of x of a Riemannian manifold M
into a Euclidean space Em is said to be of finite-type if it can be expressed as

x = x0 + x1 + · · ·+ xk

for some positive integer k, where x0 is a constant vector and ∆xi = λixi for some λi ∈ R, i = 1, . . . , k.
Here, ∆ denotes the Laplace operator defined on M. If λ1, . . . , λk are mutually different, M is said
to be of k-type. We may assume that a finite-type immersion of x of a Riemannian manifold into a
Euclidean space is of k-type for some non-negative integer k.

Let Em
s be an m-dimensional pseudo-Euclidean space of signature (m − s, s). The notion of

finite-type immersion was extended to that of submanifolds in pseudo-Euclidean space Em
s and to

that of smooth maps defined on submanifolds of Euclidean space Em or pseudo-Euclidean space Em
s .

In particular, the study of finite-type immersions and finite-type Gauss map of submanifolds in the
Minkowski m-space Em

1 denoted by Lm has been made extensively ([2–15]).
On the other hand, the Gauss map of some nice surfaces in the three-dimensional Euclidean space

E3 has an interesting property regarding the Laplacian. The helicoid in E3 parameterized by

x(u, v) = (u cos v, u sin v, av), a 6= 0

has the Gauss map G satisfying

∆G =
2a2

(a2 + u2)2 G.

The Gauss map of the right (or circular) cone in E3 with parametrization
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x(u, v) = (u cos v, u sin v, au), a ≥ 0

satisfies
∆G =

1
u
(G + (0, 0,

1√
1 + a2

))

(cf. [16,17]). The Gauss map of those surfaces is similar to of 1-type, but obviously not of 1-type in the
usual sense. We need to know what other manifolds have such a property. Based on these examples,
the following definition was introduced.

Definition 1 ([18]). An oriented n-dimensional submanifold M of the Euclidean space Em or the pseudo-
Euclidean space Em

s is said to have pointwise 1-type Gauss map or the Gauss map is of pointwise 1-type if
it satisfies

∆G = f (G + C), (1)

where f is a non-zero smooth function on M and C a constant vector in the ambient space. In particular, if C is
zero, the Gauss map G is said to be of pointwise 1-type of the first kind. Otherwise, it is said to be of the second
kind ([19–24]).

The notion of ruled submanifold is a concept of great interest in the Riemannian geometry, which
has been investigated by many authors. Several results involving ruled submanifolds in manifolds
equipped with remarkable geometric structures were recently obtained in [25–28].

In [19,20], the authors of the present paper et al. studied ruled submanifolds in the Euclidean
space Em with pointwise 1-type Gauss map and proved that the ruled submanifold M in the Euclidean
space Em is minimal if and only if the Gauss map G of M is of pointwise 1-type Gauss map of the first
kind. Further, we showed that the only non-cylindrical ruled submanifold M in the Euclidean space
Em with pointwise 1-type Gauss map of the second kind is the generalized right cone.

In [29], the authors of the present paper and et al. investigated the ruled submanifolds in the
Lorentz-Minkowski m-space Lm with pointwise 1-type Gauss map of the first kind and then established
the equivalent conditions for the minimality of the ruled submanifold in the Lorentz-Minkowski
m-space Lm by means of the Gauss map.

In this paper, we will study ruled submanifolds in Lm with pointwise 1-type Gauss map of the
second kind and thereby complete the classification of the ruled submanifolds in Lm with pointwise
1-type Gauss map.

2. Preliminaries

A curve in Em
s is said to be space-like, time-like or null if its tangent vector field is space-like,

time-like or null, respectively.
Let x : M→ Em

s be an isometric immersion of an n-dimensional pseudo-Riemannian manifold
M into Em

s . Throughout the present paper, a submanifold in Em
s always means pseudo-Riemannian,

in other words, each tangent space of the submanifold in Em
s is non-degenerate.

Let (x1, x2, . . . , xn) be a local coordinate system of M in Em
s . For the components gij of the

pseudo-Riemannian metric 〈·, ·〉 on M induced from that of Em
s , we denote by (gij) (respectively, G)

the inverse matrix (respectively, the determinant) of the matrix (gij) of the components of the induced
metric 〈·, ·〉. Then, the Laplacian ∆ defined on M is given by

∆ = − 1√
|G|∑i,j

∂

∂xi
(
√
|G|gij ∂

∂xj
).

We now define the Gauss map G on M. Consider the map G : M → G(n, m) of a point p of M
mapped to an oriented tangent space at p, where G(n, m) is the Grassmannian manifold consisting
of all oriented n-planes passing through the origin. Roughly speaking it can be achieved by parallel
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displacement of the oriented tangent space at p to the origin of Lm. By an isomorphism, G(n, m)

can be identified with G(m− n, m) in a natural manner. Let us express the Gauss map rigorously.
Choose an adapted local orthonormal frame {e1, e2, . . . , em} in Em

s such that e1, e2, . . . , en are tangent
to M and en+1, en+2, . . . , em normal to M. Define the map G : M → G(n, m) ⊂ RN (N = mCn),
G(p) = (e1 ∧ e2 ∧ · · · ∧ en)(p).

An indefinite scalar product� ·, · � on G(n, m) ⊂ RN is defined by

� ei1 ∧ · · · ∧ ein , ej1 ∧ · · · ∧ ejn �= det(〈eil , ejk 〉).

Then, {ei1 ∧ ei2 ∧ · · · ∧ ein |1 ≤ i1 < · · · < in ≤ m} is an orthonormal basis of EN
k for some positive

integer k.
Now, let us recall the notion of a ruled submanifold M in Lm ([7–10]). A non-degenerate (r +

1)-dimensional submanifold M in Lm is called a ruled submanifold if M is foliated by r-dimensional
totally geodesic submanifolds E(s, r) of Lm along a regular curve α = α(s) on M defined on an open
interval I. Thus, a parametrization of a ruled submanifold M in Lm can be given by

x = x(s, t1, t2, . . . , tr) = α(s) +
r

∑
i=1

tiei(s), s ∈ I, ti ∈ Ii,

where Ii’s are some open intervals for i = 1, 2, . . . , r. Without loss of generality, we may assume
that 0 ∈ Ii for all i = 1, 2, . . . , r. For each s, E(s, r) is open in Span{e1(s), e2(s), . . . , er(s)}, which is
the linear span of linearly independent vector fields e1(s), e2(s), . . . , er(s) along the curve α. Here,
we assume that E(s, r) are either non-degenerate or degenerate for all s along α. We call E(s, r) the
rulings and α the base curve of the ruled submanifold M. In particular, the ruled submanifold M is said
to be cylindrical if E(s, r) are parallel along α, or non-cylindrical otherwise.

Remark 1 ([7,8]). (1) If the rulings of M are non-degenerate, then the base curve α can be chosen to be
orthogonal to the rulings as follows: Let V be a unit vector field on M which is orthogonal to the rulings. Then α

can be taken as an integral curve of V.
(2) If the rulings are degenerate, we can choose a null base curve which is transversal to the rulings: Let V

be a null vector field on M which is not tangent to the rulings. An integral curve of V can be the base curve.

By solving a system of ordinary differential equations similarly set up relative to a frame along a
curve in Lm as given in [30], we have

Lemma 1 ([8]). Let V(s) be a smooth l-dimensional non-degenerate distribution in the Minkowski m-space
Lm along a curve α = α(s), where l ≥ 2 and m ≥ 3. Then, we can choose orthonormal vector fields
e1(s), . . . , em−l(s) along α which generate the orthogonal complement V⊥(s) satisfying e′i(s) ∈ V(s) for
1 ≤ i ≤ m− l.

3. Characterization of Cylinders over Spatial Base Curves

Let M be an (r + 1)-dimensional ruled submanifold in Lm with non-degenerate rulings. Then,
by Remark 1, the base curve α can be chosen to be orthogonal to the rulings. Without loss of generality,
we may assume that α is a unit speed curve, that is, 〈α′(s), α′(s)〉 = ε(= ±1). From now on, the prime
′ denotes d/ds unless otherwise stated. By Lemma 1, we may choose orthonormal vector fields
e1(s), . . . , er(s) along α satisfying

〈α′(s), ei(s)〉 = 0, 〈e′i(s), ej(s)〉 = 0, i, j = 1, 2, . . . , r. (2)

A parametrization of M is given by
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x = x(s, t1, t2, . . . , tr) = α(s) +
r

∑
i=1

tiei(s). (3)

In this section, we always assume that the parametrization (3) satisfies condition (2). Then, the
Gauss map G of M is given by

G =
1
‖xs‖

xs ∧ xt1 ∧ · · · ∧ xtr ,

or, equivalently

G =
1
|q|1/2 (Φ +

r

∑
i=1

tiΨi), (4)

where q, Φ and Ψi are the function and the vectors respectively, defined by

q = 〈xs, xs〉, Φ = α′ ∧ e1 ∧ · · · ∧ er and Ψi = e′i ∧ e1 ∧ · · · ∧ er.

First, we consider the case of cylindrical ruled submanifolds that are one of two typical types
of ruled submanifolds, which are cylindrical or non-cylindrical. Before discussing cylindrical ruled
submanifolds, we cite the following lemma.

Lemma 2 ([29]). Suppose that a unit speed curve α(s) in the m-dimensional Minkowski space Lm defined on
an open interval I satisfies

α′′′(s) = g(s)(α′(s) + C), (5)

where g is a function of the parameter s and C a constant vector in Lm. Then, the curve α lies in a 3-dimensional
affine space in Lm. In particular, if the constant vector C is zero, we see that α is a plane curve.

We now prove that if an (r + 1)-dimensional cylindrical ruled submanifold M in Lm has pointwise
1-type Gauss map of the second kind satisfying (1), then it is part of a (r + 1)-plane or a cylinder over
a curve in 3-dimensional affine space.

Let M be a cylindrical (r + 1)-dimensional ruled submanifold in Lm generated by non-degenerate
rulings which is parameterized by (3). Without loss of generality, we may assume that e1, e2, . . . , er

generating the rulings are constant vectors.
The Laplacian ∆ of M is then naturally expressed by

∆ = −ε
∂2

∂s2 −
r

∑
i=1

εi
∂2

∂t2
i

,

where εi = 〈ei(s), ei(s)〉 = ±1 and the Gauss map G of M is given by

G = εα′ ∧ e1 ∧ · · · ∧ er = εΦ.

We now suppose that the Gauss map G is of pointwise 1-type of the second kind, that is,
∆ G = f (G + C) for some non-zero smooth function f and some non-zero constant vector C.
Then, the equation ∆G = f (G + C) is written as

−εΦ′′ = f (εΦ + C). (6)

From Equation (6), we see that f is a function of s. We may assume that f is non-zero on the open
interval I = dom(α). Then, differentiation of Equation (6) with respect to s gives

ε f ′

f 2 Φ′′ − ε

f
Φ′′′ − εΦ′ = 0, (7)
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or, equivalently
f ′

f 2 α
′′′ − 1

f
α(4) − α′′ = 0

which implies that − 1
f α
′′′ − α′ = D for some constant vector D, where 0 denotes zero vector. Namely,

if we denote by ∆′ the Laplacian of α, we have

∆′α′ = −α′′′ = f (α′ + D). (8)

According to Lemma 2, we see that the curve α lies in a 3-dimensional affine space in Lm.
If a cylindrical ruled submanifold M is part of an (r + 1)-plane or a cylinder over a 3-dimensional

affine space satisfying (8), it is obvious that the Gauss map G is of pointwise 1-type of the second kind.
Thus, we have

Theorem 1. Let M be an (r + 1)-dimensional cylindrical ruled submanifold of Lm. Then, M has pointwise
1-type Gauss map of the second kind if and only if M is part of an (r + 1)-dimensional plane or a cylinder over a
curve in a 3-dimensional affine space in Lm satisfying (8).

Next, we consider the case that non-cylindrical ruled submanifolds have pointwise 1-type
Gauss map of the second kind. Let M be an (r + 1)-dimensional non-cylindrical ruled submanifold
parameterized by (3) in Lm. Then, we have

xs = α′(s) +
r

∑
j=1

tje′j(s), xti = ei(s)

for i = 1, 2, . . . , r. The function q defined in the beginning of this section is given by

q = 〈xs, xs〉 = ε +
r

∑
i=1

2uiti +
r

∑
i,j=1

wijtitj, (9)

where ui(s) = 〈α′, e′i〉 and wij(s) = 〈e′i , e′j〉 for i, j = 1, . . . , r. Note that q is a polynomial in t = (t1, . . . , tr)

with functions in s as coefficients.
From now on, for a polynomial F(t) in t = (t1, t2, . . . , tr), deg F(t) denotes the degree of F(t) in

t = (t1, t2, . . . , tr) unless otherwise stated.
If we adapt the proof of Proposition 3.3 of [19] to the case of a non-cylindrical ruled submanifold

in the Minkowski m-space Lm, we may assume that the generator vector fields e1, e2, . . . , er of the
rulings of M satisfy

e′j 6= 0

on the domain I of α for all j = 1, 2, . . . , r if M has pointwise 1-type Gauss map of the second kind.
Then, we get the components of the metric 〈·, ·〉 on M

g11 = q, g1j = 0 and gij = εiδij

for i, j = 2, 3, . . . , r + 1.
It is enough for us to consider the case of q > 0. Accordingly, Equation (9) gives ε = 1.

By definition, we have the Laplacian of the form

∆ =
1

2q2
∂q
∂s

∂

∂s
− 1

q
∂2

∂s2 −
1
2q

r

∑
i=1

εi
∂q
∂ti

∂

∂ti
−

r

∑
i=1

εi
∂2

∂t2
i

. (10)
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First, we suppose that e′1, e′2, . . . , e′r are non-null. Then, using the Formula (10), ∆G = f (G + C)

can be expressed as

(
∂q
∂s

)2(Φ +
r

∑
j=1

Ψjtj)−
3
2

q
∂q
∂s

(Φ′ +
r

∑
j=1

Ψ′jtj)−
1
2

q
∂2q
∂s2 (Φ +

r

∑
j=1

Ψjtj)

+q2(Φ′′ +
r

∑
j=1

Ψ′′j tj) +
1
2

q
r

∑
i=1

εi(
∂q
∂ti

)2(Φ +
r

∑
j=1

Ψjtj)−
1
2

q2
r

∑
i=1

εi
∂q
∂ti

Ψi

−1
2

q2
r

∑
i=1

εi
∂2q
∂t2

i
(Φ +

r

∑
j=1

Ψjtj) + f {q3(Φ +
r

∑
j=1

Ψjtj) + q
7
2 C} = 0.

(11)

If we use the indefinite scalar product� ·, · � on G(r + 1, m), we have

� Φ, Φ�= ε̃, � Φ, Φ′ �= 0,

� Φ, Φ′′ �= −ε̃µ + 2
r

∑
k=1

ε̃εku2
k −

r

∑
k=1

ε̃εkwkk,

� Φ, Ψi �= ε̃ui, � Φ, Ψ′i �= ε̃pi,

� Φ, Ψ′′i �= ε̃yi + 2
r

∑
k=1

ε̃εkukwik −
r

∑
k=1

ε̃εkuiwkk,

� Ψi, Φ′ �= ε̃zi, � Ψi, Ψj �= ε̃wij, � Ψi, Ψ′j �= ε̃ξij,

where we have put

ε̃ = ε1 · · · εr, µ = 〈α′′, α′′〉, pi = 〈α′, e′′i 〉, yi = 〈α′, e′′′i 〉, zi = 〈α′′, e′i〉, ξij = 〈e′i , e′′j 〉.

Then, we get
u′i(s) = pi(s) + zi(s) and w′ij = ξij + ξ ji. (12)

By taking the indefinite scalar product with the vector Φ to both sides of (11), we obtain

(
∂q
∂s

)2(1 +
r

∑
j=1

ujtj)−
3
2

q
∂q
∂s

(
r

∑
j=1

pjtj)−
1
2

q
∂2q
∂s2 (1 +

r

∑
j=1

ujtj)

+q2(ε̃φ +
r

∑
j=1

ε̃ϕjtj) +
1
2

q
r

∑
i=1

εi(
∂q
∂ti

)2(1 +
r

∑
j=1

ujtj)−
1
2

q2
r

∑
i=1

εi
∂q
∂ti

ui

−1
2

q2
r

∑
i=1

εi
∂2q
∂t2

i
(1 +

r

∑
j=1

ujtj) + f {q3(1 +
r

∑
j=1

ujtj) + q
7
2 γ(s)} = 0,

(13)

where we have put

γ(s) =� C, Φ(s)�, φ =� Φ, Φ′′ � and ϕi =� Φ, Ψ′′i � . (14)

Let ēr+1, ēr+2, . . . , ēm−1 be the orthonormal vector fields which are normal to M along α. If we
apply Lemma 1 to the normal space T⊥

α(s)M of M, then there exists an orthonormal frame {ea}m−1
a=r+1 of

the normal space T⊥
α(s)M satisfying

〈e′a(s), eb(s)〉 = 0 (15)

for all a, b = r + 1, . . . , m− 1. Then we can put

e′j = ujα
′ +

m−1

∑
a=r+1

εaλ
j
aea, (16)
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where εa = 〈ea, ea〉 = ±1 and λ
j
a(s) = 〈e′j, ea〉 for a = r + 1, . . . , m− 1. From (16), we get

Ψj = ujΦ +
m−1

∑
a=r+1

εaλ
j
aξa, (17)

where ξa = ea ∧ e1 ∧ e2 ∧ · · · ∧ er for a = r + 1, . . . , m− 1. And, we may put

α′′ = −
r

∑
i=1

εiuiei −
m−1

∑
a=r+1

εauaea, (18)

where ua(s) = 〈α′, e′a〉 for all a = r + 1, . . . , m− 1.
Suppose that M is not an (r + 1)-plane, that is, G 6= −C. To deal with (13), we consider the subset

M1 = {p ∈ M|q3(1 +
r

∑
j=1

ujtj) + q
7
2 γ(s) = 0}.

Without loss of generality, we may assume that f 6= 0 on M1. Then, on M1,

(1 +
r

∑
j=1

ujtj) +
√

qγ(s) = 0, or, (1 +
r

∑
j=1

ujtj)
2 = qγ2(s).

By (9) and ε = 1, we see that γ2(s) = 1 and hence

q = (1 +
r

∑
j=1

ujtj)
2

which implies that
M1 = {p ∈ M|1 + γ(s) = 0}.

Also, it follows from (16) that on M1,

m−1

∑
a=r+1

εaλk
aλ

j
a = 0 (19)

for all j, k = 1, . . . , r.

Lemma 3. Let M be an (r + 1)-dimensional non-cylindrical and non-planar ruled submanifold parameterized
by (3) in Lm. Let e1, e2, . . . , er be the orthonormal generators of the rulings along the base curve α such that
e′j are non-null for all j = 1, 2, . . . , r. If the Gauss map G of M satisfies ∆G = f (G + C) for some non-zero
function f and non-zero constant vector C, then

γ(s) =� C, Φ(s)�6= −1

on {p ∈ M| f 6= 0}.

Proof. Let Ĩ1 = {s ∈ I|1 + γ(s) = 0}. We suppose that the interior Int( Ĩ1) of Ĩ1 is non-empty.
If we put
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P(t) =(
∂q
∂s

)2(1 +
r

∑
j=1

ujtj)−
3
2

q
∂q
∂s

(
r

∑
j=1

pjtj)−
1
2

q
∂2q
∂s2 (1 +

r

∑
j=1

ujtj)

+ q2(ε̃φ +
r

∑
j=1

ε̃ϕjtj) +
1
2

q
r

∑
i=1

εi(
∂q
∂ti

)2(1 +
r

∑
j=1

ujtj)

− 1
2

q2
r

∑
i=1

εi
∂q
∂ti

εui −
1
2

q2
r

∑
i=1

εi
∂2q
∂t2

i
(1 +

r

∑
j=1

ujtj),

(20)

Equation (13) tells us that P(t) ≡ 0 on Int( Ĩ1). Using q = (1 + ∑j ujtj)
2 on Int( Ĩ1), equation

P(t) = 0 yields that

3(
r

∑
j=1

u′jtj)(
r

∑
j=1

(u′j − pj)tj) + (1 +
r

∑
j=1

ujtj)(ε̃φ +
r

∑
j=1

(ε̃ϕj − u′′j )tj) = 0

which provides
φ = 0, ε̃ϕj = u′′j and u′j(u

′
j − pj) = 0 (21)

as the coefficients of terms containing t0
j , t1

j and t2
j , respectively, for j = 1, . . . , r.

Now, we will proceed with the proof according to the following steps.

Step 1. u′j = 0 on Int( Ĩ1).

We suppose that u′j 6= 0 at some point in Int( Ĩ1). Then, u′j = pj in (21) and hence

zj = 〈α′′, e′j〉 =
m−1

∑
a=r+1

εauaλ
j
a = 0 (22)

because of (12), (16) and (18). Since φ =� Φ, Φ′′ �= − � Φ′, Φ′ � and� Φ′, Ψj �= ε̃zj,

� Φ′, Φ�=� Φ′, Φ′ �=� Φ′, Φ′′ �=� Φ′, Ψj �= 0. (23)

Now, we suppose that γ′(s0) 6= 0 for some s0 ∈ Int Ĩ1. Then, at s0 Equation (11) is rewritten as

3(
r

∑
j=1

u′jtj)
2(Φ +

r

∑
j=1

Ψjtj)− 3(1 +
r

∑
j=1

ujtj)(
r

∑
j=1

u′jtj)(Φ′ +
r

∑
j=1

Ψ′jtj)

− (1 +
r

∑
j=1

ujtj)(
r

∑
j=1

u′′j tj)(Φ +
r

∑
j=1

Ψjtj) + (1 +
r

∑
j=1

ujtj)
2(Φ′′ +

r

∑
j=1

Ψ′′j tj)

+ (1 +
r

∑
j=1

ujtj)
2(

r

∑
i=1

εiu2
i )(Φ +

r

∑
j=1

Ψjtj)− (1 +
r

∑
j=1

ujtj)
3(

r

∑
i=1

εiuiΨi)

+ f (1 +
r

∑
j=1

ujtj)
4{(Φ +

r

∑
j=1

Ψjtj) + (1 +
r

∑
j=1

ujtj)C} = 0

(24)

and taking the indefinite scalar product with Φ′ to (24) gives us the following

f =
3(∑j u′jtj)(∑j ηjtj)− (1 + ∑j ujtj)(∑j ϑjtj)

γ′(1 + ∑j ujtj)4 , (25)

where we have put
ηj(s) =� Φ′, Ψ′j � and ϑj(s) =� Φ′, Ψ′′j � .
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Substituting (25) into (24) and then considering the constant terms of the equation obtained in
such a way, we get

Φ′′ + (
r

∑
i=1

εiu2
i )Φ− (

r

∑
i=1

εiuiΨi) = 0. (26)

By straightforward computation, it follows from (19), (21) and (22) that at s0

Φ′′ =
m−1

∑
a=r+1

εa(−u′a +
r

∑
k=1

εkukλk
a)ξa +

r

∑
k=1

m−1

∑
a=r+1

εa(ukua + (λk
a)
′)Γk

a, (27)

where we have put
Γk

a = α′ ∧ e1 ∧ · · · ∧ ek−1 ∧ ea ∧ ek+1 ∧ · · · ∧ er.

Combining (17), (26) and (27), we can obtain

u′a = 0 and (λk
a)
′ = −ukua (28)

for all k = 1, . . . , r and a = r + 1, . . . , m− 1. Using (19), (21) and (28), we also get at s0

Ψ′j =u′jΦ− 2
m−1

∑
a=r+1

εaujuaξa +
r

∑
k=1

m−1

∑
a=r+1

εa(ujλ
k
a − ukλ

j
a)Γk

a,

Ψ′′j =u′′j Φ +
m−1

∑
a=r+1

εa(−3u′jua +
r

∑
k=1

εkuk(ujλ
k
a − ukλ

j
a))ξa

+
r

∑
k=1

m−1

∑
a=r+1

εa(2u′jλ
k
a − u′kλ

j
a + 2ujukua)Γk

a.

(29)

Since Φ′ = −∑a εauaξa + ∑k ∑a εaλk
aΓk

a, the functions ηj(s) and ϑj(s) are identically zero on M2

for all j = 1, . . . , r, with the help of (19), (21), (22) and (29). Thus, we have

� Φ′, Φ�=� Φ′, Φ′ �=� Φ′, Φ′′ �=� Φ′, Ψj �=� Φ′, Ψ′j �=� Φ′, Ψ′′j �= 0

which means that Φ′ is orthogonal to all vectors of (24) except the constant vector C, so taking the
indefinite scalar product with Φ′ to (24) yields that

f (1 +
r

∑
j=1

ujtj)
5 � Φ′, C�= f (1 +

r

∑
j=1

ujtj)
5γ′ = 0

which is a contradiction.
Therefore, we have

γ′ = 0 (30)

on Ĩ1. Using (30), (24) implies that

3(
r

∑
j=1

u′jtj)(
r

∑
j=1

ηjtj) = (1 +
r

∑
j=1

ujtj)(
r

∑
j=1

ϑjtj)

by taking the indefinite scalar product with Φ′. Thus, we can see that

ηj = 0 = ϑj (31)

as the coefficients of terms containing tj and t2
j for j = 1, . . . , r, by virtue of u′j 6= 0. Equations (23), (30)

and (31) indicate that Φ′ is orthogonal to all vectors of (24), so the coefficient of Φ′ has to be identically
zero, which yields that u′j = 0 for j = 1, 2, . . . , r. It contradicts our assumption.
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Therefore, we conclude that the functions uj are constant for all j = 1, . . . , r, that is,

∂q
∂s

= 0

on ( Ĩ1).

Step 2. An expression for f on Ĩ1.

According to Step 1, Equation (24) is simplified as

(Φ′′ +
r

∑
j=1

Ψ′′j tj) + (
r

∑
i=1

εiu2
i )(Φ +

r

∑
j=1

Ψjtj)− (1 +
r

∑
j=1

ujtj)(
r

∑
i=1

εiuiΨi)

+ f (1 +
r

∑
j=1

ujtj)
2{(Φ +

r

∑
j=1

Ψjtj) + (1 +
r

∑
j=1

ujtj)C} = 0.
(32)

We repeat taking the indefinite scalar product to Φ′ to (32) and then we obtain

(
r

∑
j=1

ϑjtj) + (
r

∑
i=1

εiu2
i )(

r

∑
j=1

zjtj)− (1 +
r

∑
j=1

ujtj)(
r

∑
i=1

εiuizi)

+ f (1 +
r

∑
j=1

ujtj)
2{(

r

∑
j=1

zjtj) + (1 +
r

∑
j=1

ujtj)γ
′} = 0.

(33)

If (∑j zjtj) + (1 + ∑j ujtj)γ
′ = 0, then γ′ = 0 = zj and hence ϑj = 0 in (33) for all j = 1, . . . , r.

In this case, Φ′′ and Ψ′′j are given by (27) and

Ψ′′j =
m−1

∑
a=r+1

εa(uj

r

∑
k=1

εkukλk
a −

r

∑
k=1

εku2
kλ

j
a − uju′a + (λ

j
a)
′′)ξa

+
r

∑
k=1

m−1

∑
a=r+1

εa(ujukua − 2uk(λ
j
a)
′ + uj(λ

k
a)
′)Γk

a

+
r

∑
k=1

m−1

∑
a,b=r+1

εaεb(2〈e′′j , ea〉λk
b + 〈e

′′
k , eb〉λ

j
a)Γk

ab,

(34)

respectively, where we have put

Γk
ab = ea ∧ e1 ∧ · · · ∧ ek−1 ∧ eb ∧ ek+1 ∧ · · · ∧ er.

Together with (27) and (34), (32) yields that the constant vector C can be expressed as

C =− ε̃Φ +
m−1

∑
a=r+1

ε̃εa � C, ξa � ξa +
r

∑
k=1

m−1

∑
a=r+1

ε̃εkεa � C, Γk
a � Γk

a

+
r

∑
k=1

m−1

∑
a,b=r+1

ε̃εkεaεb � C, Γk
ab � Γk

ab

(35)

and that the equations containing� C, ξa � and� C, Γk
a � are given by
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0 =(−u′a +
r

∑
k=1

εkukλk
a) +

r

∑
j=1

tj(uj

r

∑
k=1

εkukλk
a −

r

∑
k=1

εku2
kλ

j
a − uju′a + (λ

j
a)
′′)

+ (
r

∑
i=1

εiu2
i )(

r

∑
j=1

tjλ
j
a)− (1 +

r

∑
j=1

ujtj)(
r

∑
i=1

εiuiλ
i
a)

+ f (1 +
r

∑
j=1

ujtj)
2{(

r

∑
j=1

tjλ
j
a) + ε̃(1 +

r

∑
j=1

ujtj)� C, ξa �},

0 = (ukua + (λk
a)
′) +

r

∑
j=1

tj(ujukua − 2uk(λ
j
a)
′ + uj(λ

k
a)
′) + ε̃εk f (1 +

r

∑
j=1

ujtj)
3 � C, Γk

a �,

respectively. Therefore,� C, ξa � and� C, Γk
a � are of the form

ε̃� C, ξa �=
u′a(1 + ∑j ujtj)−∑j tj(λ

j
a)
′′ − f (1 + ∑j ujtj)

2(∑j tjλ
j
a)

f (1 + ∑j ujtj)3
(36)

and

ε̃εk � C, Γk
a �= −

Aak + ∑j Bak
j tj

f (1 + ∑j ujtj)3 , (37)

where
Aak =� Φ′′, Γk

a �= ukua + (λk
a)
′ and

Bak
j =� Ψ′′j , Γk

a �= ujukua − 2uk(λ
j
a)
′ + uj(λ

k
a)
′.

If� C, Γk
a �= 0, then Aak = 0 = Bak

j in (37). By definitions of Aak and Bak
j , (λj

a)
′ = 0 and hence

ujua = 0 for all j = 1, . . . , r and a = r + 1, . . . , m− 1. Thus, we have ua = 0 and (36) is simplified as

ε̃� C, ξa �= −
(∑j tjλ

j
a)

(1 + ∑j ujtj)
(38)

for a = r + 1, . . . , m− 1. Equation (38) implies that� C, ξa �= 0 and λ
j
a = 0 for j = 1, . . . , r and

a = r + 1, . . . , m− 1. Thus, Ψj = ujΦ and hence G = Φ. Also, under these conditions, by computation,
we get � Ψ′′j , Γk

ab �= 0 which implies that C = −ε̃Φ by virtue of (27), (34) and (35). Therefore,

the Gauss map G is a constant vector, a contradiction. Therefore, we see that� C, Γk
a �6= 0. Then,

it follows from (37) that

f (1 +
r

∑
j=1

ujtj)
3 = h(s)(Aak +

r

∑
j=1

Bak
j tj) (39)

for some non-vanishing function h of s. Putting (39) into (36), we have

ε̃� C, ξa �

=
u′a(1 + ∑j ujtj)

2 − (1 + ∑j ujtj)(∑j tj(λ
j
a)
′′)− h(s)(Aak + ∑j Bak

j tj)(∑j tjλ
j
a)

h(s)(1 + ∑j ujtj)(Aak + ∑j Bak
j tj)

which allows us to have the following equation

g(s)h(s)(1 +
r

∑
j=1

ujtj)(Aak +
r

∑
j=1

Bak
j tj)

= u′a(1 +
r

∑
j=1

ujtj)
2 − (1 +

r

∑
j=1

ujtj)(
r

∑
j=1

tj(λ
j
a)
′′)− h(s)(Aak +

r

∑
j=1

Bak
j tj)(

r

∑
j=1

tjλ
j
a)

(40)
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for some non-vanishing function g of s. Comparing the coefficients of terms containing t0
j , t1

j and t2
j

of (40) gives us three equations:

g(s)h(s)Aak = u′a,

g(s)h(s)uj Aak + g(s)h(s)Bak
j = 2uju′a − (λ

j
a)
′′ − h(s)Aakλ

j
a,

g(s)h(s)ujBak
j = u2

j u′a − uj(λ
j
a)
′′ − h(s)Bak

j λ
j
a.

Combining these equations, we get

uj Aak = Bak
j .

Therefore,
uj(ukua + (λk

a)
′) = ujukua − 2uk(λ

j
a)
′ + uj(λ

k
a)
′,

that is, uk(λ
j
a)
′ = 0 and hence

(λ
j
a)
′ = 0 (41)

for all j, k = 1, . . . , r and a = r + 1, . . . , m− 1. From (39), we can obtain

f =
h(s)Aak

(1 + ∑j ujtj)2 =
h(s)ukua

(1 + ∑j ujtj)2 (42)

and then we have

(Φ′′ +
r

∑
j=1

Ψ′′j tj) + (
r

∑
i=1

εiu2
i )(Φ +

r

∑
j=1

Ψjtj)− (1 +
r

∑
j=1

ujtj)(
r

∑
i=1

εiuiΨi)

+ h(s)ukua{(Φ +
r

∑
j=1

Ψjtj) + (1 +
r

∑
j=1

ujtj)C} = 0
(43)

from (32). By regarding (43) as the polynomial in t of degree 1, we get

Φ′′ + (
r

∑
i=1

εiu2
i )Φ− (

r

∑
i=1

εiuiΨi) + h(s)ukuaΦ + h(s)ukuaC = 0,

Ψ′′j + (
r

∑
i=1

εiu2
i )Ψj − uj(

r

∑
i=1

εiuiΨi) + h(s)ukuaΨj + h(s)ukuaujC = 0

which produce that

Ψ′′j = ujΦ′′ − (
r

∑
i=1

εiu2
i )(Ψj − ujΦ)− h(s)ukua(Ψj − ujΦ)

for all j. With the help of (17), (27), (34) and (41), the equation above provides that

h(s)ukua = 0

which means that f = 0 due to (42), a contradiction.
Therefore, we conclude that

(
r

∑
j=1

zjtj) + (1 +
r

∑
j=1

ujtj)γ
′ 6= 0

on Ĩ1 and hence the function f is given by
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f = −
(∑j ϑjtj) + (∑i εiu2

i )(∑j zjtj)− (1 + ∑j ujtj)(∑i εiuizi)

(1 + ∑j ujtj)2((∑j zjtj) + (1 + ∑j ujtj)γ′)
(44)

from (33).

Step 3. We find the another equation for f on Ĩ1.

First, we suppose that � C, Γk
a �=� C, Γk

ab �= 0 of (35) for all k = 1, . . . , r and a, b =

r + 1, . . . , m− 1. Then, we have

C = −ε̃Φ +
m−1

∑
a=r+1

ε̃εa � C, ξa � ξa

and
� Φ′′, Γk

a �=� Φ′′, Γk
ab �=� Ψ′′j , Γk

a �=� Ψ′′j , Γk
ab �= 0 (45)

for k = 1, . . . , r and a, b = r + 1, . . . , m− 1. In this case, Φ′′ and Ψ′′j are given by

Φ′′ =
m−1

∑
a=r+1

εa(−u′a +
r

∑
k=1

εkukλk
a)ξa +

r

∑
k=1

m−1

∑
a=r+1

εa(ukua + (λk
a)
′)Γk

a

− 2
r

∑
k=1

m−1

∑
a,b=r+1

εaεbuaλk
bΓk

ab,

Ψ′′j =
m−1

∑
a=r+1

εa(〈e′′′j , ea〉+ 2uj

r

∑
k=1

εkukλk
a −

r

∑
k=1

εku2
kλ

j
a)ξa

+
r

∑
k=1

m−1

∑
a=r+1

εa(2〈e′′j , α′〉λk
a − 2uk〈e′′j , ea〉+ uj〈e′′k , ea〉 − 〈e′′k , α′〉λj

a)Γk
a

+
r

∑
k=1

m−1

∑
a,b=r+1

εaεb(2〈e′′j , ea〉λk
b + 〈e

′′
k , eb〉λ

j
a)Γk

ab.

(46)

With the help of (46), the first three equations of (45) provide

(λk
a)
′ = −ukua, uaλk

b = ubλk
a, and ua = 0 (47)

for all k = 1, . . . , r and a, b = r + 1, . . . , m− 1.
Taking the indefinite scalar product with ξa to (32) gives us the equation containing� C, ξa � in

the following

� Φ′′, ξa � +
r

∑
j=1

tj � Ψ′′j , ξa � +(
r

∑
i=1

εiu2
i )

r

∑
j=1

tj � Ψj, ξa �

− (1 +
r

∑
j=1

ujtj)(
r

∑
i=1

εiui � Ψj, ξa �)

+ f (1 +
r

∑
j=1

ujtj)
2{(

r

∑
j=1

tj � Ψj, ξa �) + (1 +
r

∑
j=1

ujtj)� C, ξa �} = 0.

(48)

Using (46) and (47), Equation (48) is rewritten as

f (1 +
r

∑
j=1

ujtj)
2{(

r

∑
j=1

λ
j
atj) + ε̃(1 +

r

∑
j=1

ujtj)� C, ξa �} = 0

which gives
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(
r

∑
j=1

λ
j
atj) + ε̃(1 +

r

∑
j=1

ujtj)� C, ξa �= 0

and hence
λ

j
a = 0 and � C, ξa �= 0

for all j = 1, . . . , r and a = r + 1, . . . , m − 1. Thus, G = Φ = −ε̃C, a contradiction. Therefore,
we conclude that � C, Γk

a �6= 0 or � C, Γk
ab �6= 0 for some k, a and b. Now we assume that

� C, Γk
a �6= 0. Then, taking the indefinite scalar product with Γk

a to (32), we obtain

� Φ′′, Γk
a � +

r

∑
j=1

tj � Ψ′′j , Γk
a � + f (1 +

r

∑
j=1

ujtj)
3 � C, Γk

a �= 0,

or, equivalently,

f = −
Aak + ∑j Bak

j tj

(1 + ∑j ujtj)3 � C, Γk
a �

. (49)

Comparing two Equations (44) and (49) regarding the function f , we get

(Aak +
r

∑
j=1

Bak
j tj){(

r

∑
j=1

zjtj) + (1 +
r

∑
j=1

ujtj)γ
′)}

= (1 +
r

∑
j=1

ujtj)� C, Γk
a � {(

r

∑
j=1

ϑjtj) + (
r

∑
i=1

εiu2
i )(

r

∑
j=1

zjtj)− (1 +
r

∑
j=1

ujtj)(
r

∑
i=1

εiuizi)}

which provides that

Aakγ′ = − � C, Γk
a � (

r

∑
i=1

εiuizi),

Aakzj + γ′uj Aak + γ′Bak
j =� C, Γk

a � (ϑj + zj(
r

∑
i=1

εiu2
i )− 2uj(

r

∑
i=1

εiuizi)),

zjBak
j + γ′ujBak

j = uj � C, Γk
a � (ϑj + zj(

r

∑
i=1

εiu2
i )− uj(

r

∑
i=1

εiuizi))

as the coefficients of terms containing t0
j , tj and t2

j for j = 1, . . . , r. Combining these three equations
above, we have

zj(Bak
j − uj Aak) = 0

for all j, k = 1, . . . , r and a, b = r + 1, . . . , m − 1. If zj = 0 for some j, then we can see that γ′ = 0
by applying the same arguments used to show that γ′ = 0 on Ĩ1. But, it contradicts (∑j zjtj) + (1 +

∑j ujtj)γ
′ 6= 0. Therefore, we have

Bak
j = uj Aak

and hence the function f becomes

f = − Aak

� C, Γk
a � (1 + ∑j ujtj)2 (50)

for all k = 1, . . . , r and a = r + 1, . . . , m− 1.

Step 4. We compare the equations for f obtained in Steps 2 and 3.

Putting (50) into (32) and then considering the coefficients of terms containing t0
j and tj in the

equation obtained in such a way, we get
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Ψ′′j = ujΦ′′ + (
Aak

� C, Γk
a �
−

r

∑
i=1

εiu2
i )(

m−1

∑
a=r+1

εaλ
j
aξa) (51)

for j = 1, . . . , r. With the help of (46), Equation (51) gives that� Ψ′′j , Γk
ab �= uj � Φ′′, Γk

ab �, so we

see that� Ψ′′j , Γk
ab �= 0 if and only if� Φ′′, Γk

ab �= 0.

If� Φ′′, Γk
ab �= 0, then uaλk

b = ubλk
a because of (46). In this case,

uazj = ua

m−1

∑
b=r+1

εbubλ
j
b =

m−1

∑
b=r+1

εbub(uaλ
j
b) =

m−1

∑
b=r+1

εbub(ubλ
j
a)

= λ
j
a

m−1

∑
b=r+1

εbu2
b = −λ

j
aφ = 0

which means that ua = 0 or zj = 0 for j = 1, . . . , r and a = r + 1, . . . , m− 1. The case of ua = 0 also
guarantees zj = 0, a contradiction. Therefore, we see that� Ψ′′j , Γk

ab �6= 0 and� Φ′′, Γk
ab �6= 0 for

all k = 1, . . . , r and a, b = r + 1, . . . , m− 1. By computation, equation Bak
j = uj Aak gives us

2uk(λ
j
a)
′ = (

m−1

∑
b=r+1

εbubλk
b)λ

j
a (52)

and equation� Ψ′′j , Γk
ab �= uj � Φ′′, Γk

ab � provides

2(λj
a)
′λk

b − ukubλ
j
a + (λk

b)
′λ

j
a − 2(λj

b)
′λk

a + ukuaλ
j
b − (λk

a)
′λ

j
b = 0 (53)

for all j, k, a and b. In particular, by replacing k with j in (53), we have

(λ
j
a)
′λ

j
b − (λ

j
b)
′λ

j
a + uj(uaλ

j
b − ubλ

j
a) = 0

which implies that
� Φ′′, Γk

ab �= uaλ
j
b − ubλ

j
a = 0

by virtue of (52). This is a contradiction.
According to Steps 1, 2, 3 and 4, we can conclude that the subset Ĩ1 is empty, that is, we may

assume that 1 + γ 6= 0 on M.

By Lemma 3, we can see that the function f of (13) is a rational function in t with functions in s as
coefficients of the form

f (t) = − P(t)

q3(1 + ∑j ujtj) + q
7
2 γ(s)

. (54)

If we substitute (54) into (11) and multiply (1 + ∑j ujtj) by the equation obtained in such a way,
then we have
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(1+
r

∑
j=1

ujtj){−
3
2

q(
∂q
∂s

)(Φ′ +
r

∑
j=1

Ψ′jtj) + q2(Φ′′ +
r

∑
j=1

Ψ′′j tj)−
1
2

q2
r

∑
i=1

εi
∂q
∂ti

Ψi}

−(Φ +
r

∑
j=1

Ψjtj){−
3
2

q(
∂q
∂s

)(
r

∑
j=1

pjtj) + q2(ε̃φ +
r

∑
j=1

ε̃ϕjtj)−
1
2

q2
r

∑
i=1

εi
∂q
∂ti

ui}

= −q
1
2 γ(s){(∂q

∂s
)2(Φ +

r

∑
j=1

Ψjtj)−
3
2

q(
∂q
∂s

)(Φ′ +
r

∑
j=1

Ψ′jtj)−
1
2

q(
∂2q
∂s2 )(Φ +

r

∑
j=1

Ψjtj)

+ q2(Φ′′ +
r

∑
j=1

Ψ′′j tj) +
1
2

q
r

∑
i=1

εi(
∂q
∂ti

)2(Φ +
r

∑
j=1

Ψjtj)−
1
2

q2
r

∑
i=1

εi
∂q
∂ti

Ψi

− 1
2

q2
r

∑
i=1

εi(
∂2q
∂t2

i
)(Φ +

r

∑
j=1

Ψjtj)} + q
1
2 CP(t).

(55)

Next, we will show that the function q is independent of the parameter s and it is a form of perfect
square expression in t of degree 2.

We suppose that q
1
2 is not a polynomial in t. Then we have

(1+
r

∑
j=1

ujtj){−
3
2

q(
∂q
∂s

)(Φ′ +
r

∑
j=1

Ψ′jtj) + q2(Φ′′ +
r

∑
j=1

Ψ′′j tj)−
1
2

q2
r

∑
i=1

εi
∂q
∂ti

Ψi}

−(Φ +
r

∑
j=1

Ψjtj){−
3
2

q(
∂q
∂s

)(
r

∑
j=1

pjtj) + q2(ε̃φ +
r

∑
j=1

ε̃ϕjtj)−
1
2

q2
r

∑
i=1

εi
∂q
∂ti

ui} = 0.
(56)

By following the same argument to prove Lemma 3.4 in [19], (56) implies that

∂q
∂s

= 0.

Then, we deduce from (55) the following

γ(s){q(Φ′′ +
r

∑
j=1

Ψ′′j tj) +
1
2

r

∑
i=1

εi((
∂q
∂ti

)2 − ∂2q
∂t2

i
)(Φ +

r

∑
j=1

Ψjtj)−
1
2

q
r

∑
i=1

εi
∂q
∂ti

Ψi}

= C{q(ε̃φ +
r

∑
j=1

ε̃ϕjtj) +
1
2

r

∑
i=1

εi((
∂q
∂ti

)2 − ∂2q
∂t2

i
)(1 +

r

∑
j=1

ujtj)−
1
2

q
r

∑
i=1

εi
∂q
∂ti

ui},

or,
1
2

r

∑
i=1

εi(
∂q
∂ti

)2{γ(s)Φ−C +
r

∑
j=1

(γ(s)Ψj − ujC)tj} = q(t)Γ(t), (57)

where Γ(t) is a polynomial in t such that deg Γ = 1 with vector functions of s as coefficients.
Considering the degrees of (57), we see that

r

∑
i=1

εi(
∂q
∂ti

)2 = cq(t) (58)

for some constant c.
Suppose that there exist j1, . . . , jl ∈ {1, . . . , r} such that ( ∂q

∂tjk
)2 are not a multiple of q(t) for

k = 1, . . . , l. By (58), we get
l

∑
k=1

ε jk (
∂q
∂tjk

)2 = c1q(t) (59)
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for some constant c1. By hypothesis, we can put

(
∂q
∂tjk

)2 = cjk q(t) + rjk (t)

for some constants cjk and polynomials rjk (t) in t with deg rjk (t) ≤ 1 for k = 1, . . . , l. Then, ∑l
k=1 ε jk rjk (t)

has to be a multiple of q(t) because of (59), a contradiction. Thus, we have

(
∂q
∂ti

)2 = 4u2
i q(t) (60)

which yields
wij = uiuj,

by comparing the both sides of (60) for all i, j = 1, . . . , r. It contradicts that q
1
2 is not a polynomial.

Therefore, we have

q = (1 +
r

∑
j=1

ujtj)
2 (61)

for all s and t.
Since 1 + γ(s) 6= 0 on M, the rational function f defined by (54) becomes

f =
P(t)

(1 + ∑j ujtj)7(1 + γ(s))
.

Lemma 4. Let M be an (r + 1)-dimensional non-cylindrical and non-planar ruled submanifold parameterized
by (3) in Lm. Let e1, e2, . . . , er be the orthonormal generators of the rulings along the base curve α such that e′j
are non-null for all j = 1, 2, . . . , r. If M has pointwise 1-type Gauss map of the second kind, then we have

e′j = ujα
′

for all j = 1, 2, . . . , r.

Proof. If M is Lorentzian, it is obvious. We now suppose that M is space-like. In this case,

ε j = 1 and q = (1 +
r

∑
j=1

ujtj)
2

for all j = 1, . . . , r. Therefore, (55) can be rewritten as

3(
r

∑
j=1

u′jtj)(
r

∑
j=1

(pj + γ(s)u′j)tj)(Φ +
r

∑
j=1

Ψjtj) = (1 +
r

∑
j=1

ujtj)Γ1(t), (62)

where we have put

Γ1(t) =3(∑ u′jtj)(Φ′ + ∑ Ψ′jtj)− (1 + ∑ ujtj)(Φ′′ + ∑ Ψ′′j tj)

+ (1 + ∑ ujtj)
2(∑ uiΨi) + (φ + ∑ ϕjtj)(Φ + ∑ Ψjtj)

− (1 + ∑ ujtj)(∑ u2
i )(Φ + ∑ Ψjtj) + 3γ(∑ u′jtj)(Φ′ + ∑ Ψ′jtj)

+ γ(∑ u′′j tj)(Φ + ∑ Ψjtj)− γ(1 + ∑ ujtj)(Φ′′ + ∑ Ψ′′j tj)

− γ(1 + ∑ ujtj)(∑ u2
i )(Φ + ∑ Ψjtj) + γ(1 + ∑ ujtj)

2(∑ uiΨi)

+ 3(∑ u′jtj)
2C− 3(∑ u′jtj)(∑ pjtj)C− (1 + ∑ ujtj)(∑ u′′j tj)C

+ (1 + ∑ ujtj)(φ + ∑ ϕjtj)C.

(63)
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According to (63), we may have put

Γ1(t) = Λ0(s) +
r

∑
j=1

Λj(s)tj +
r

∑
j,k=1

Λjk(s)tjtk, (64)

where Λ0, Λj and Λjk are vector functions of s for j, k = 1, . . . , r. Then, by considering the degrees of
polynomials (62) and (64) in t, we can see that

Λ0(s) = 0 and Λj(s) = 0

which implies that

3u′j(pj + γ(s)u′j)Φ = Λjj and 3u′j(pj + γ(s)u′j)Ψj = ujΛjj

for all j = 1, . . . , r. From the above two equations, we have

u′j(pj + γ(s)u′j)(Ψj − ujΦ) = 0. (65)

If Ψj − ujΦ ≡ 0, then λ
j
a = 0 in (17), that is, e′j = ujα

′ for all j = 1, . . . , r and a = r + 1, . . . , m− 1.
Now, we consider J1 = {s ∈ I|Ψj − ujΦ 6= 0} and suppose that J1 6= ∅. Then, on J1,

u′j(pj + γ(s)u′j) = 0 (66)

and hence
Λjj = 0.

With the help of (63) and (64), the relations Λ0 = Λj = Λjj = 0 provide us with the
following results

φC = (1 + γ){Φ′′ −∑ uiΨi + (∑ u2
i )Φ} − φΦ, (67)

3u′j(u
′
j − pj)C = −3(1 + γ)u′j(Ψ

′
j − ujΦ′) + (Ψj − ujΦ)(ujφ− γu′′j − ϕj) (68)

for j = 1, . . . , r. Considering the orthogonality of vectors of the right sides in (67) and (68), we can see
that the pj =� Ψ′j, Φ�must be zero. Therefore, it follows from (66) that

(u′j)
2γ = 0. (69)

Case 1. If γ 6= 0 on some open interval J2 (⊂ J1), then u′j = 0 on J2. Then, (55) is simplified as

(1 + ∑ ujtj)(Φ′′ + ∑ Ψ′′j tj)− (1 + ∑ ujtj)
2(∑ uiΨi)

− (φ + ∑ ϕjtj)(Φ + ∑ Ψjtj) + (1 + ∑ ujtj)(∑ u2
i )(Φ + ∑ Ψjtj)

=− γ(1 + ∑ ujtj)(Φ′′ + ∑ Ψ′′j tj)− γ(1 + ∑ ujtj)(∑ u2
i )(Φ + ∑ Ψjtj)

+ γ(1 + ∑ ujtj)
2(∑ uiΨi) + (1 + ∑ ujtj)(φ + ∑ ϕjtj)C,

(70)

or,

(φ +
r

∑
j=1

ϕjtj)(Φ +
r

∑
j=1

Ψjtj) = (1 +
r

∑
j=1

ujtj)Γ2(t), (71)

where Γ2 is a polynomial in t with vector functions of s as coefficients.
If Γ2(t) = {a(s) + ∑j bj(s)tj}Υ(s) for some functions a, bj of s and a vector Υ of s, then

Equation (71) gives us
φΦ = aΥ, (72)
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φΨj + ϕjΦ = aujΥ + bjΥ, (73)

ϕjΨj = ujbjΥ (74)

as the coefficients of terms containing t0
j , t1

j and t2
j for j = 1, . . . , r. Putting (72) into (73) and substituting

the equation obtained in such a way into (74), we get

(ϕj − ujφ)(Ψj − ujΦ) = 0

which implies that ϕj − ujφ = 0 on J2.
If Γ2 is of the form Γ2 = Υ0(s) + ∑j Υj(s)tj for some vectors Υ0 and Υj along s, we also have the

only possible case of (φ + ∑ ϕjtj) = φ(1 + ∑ ujtj) .
Then, the condition of ϕj = ujφ renders (70) simple as follows

(1 + γ){Φ′′+∑ Ψ′′j tj − (∑ uiΨi)(1 + ∑ ujtj) + (∑ u2
i )(Φ + ∑ Ψjtj)}

= φ{Φ + ∑ Ψjtj + (1 + ∑ ujtj)C}.
(75)

Here, we may assume that φ 6= 0. If not, that is, φ = 0 = ϕj, it follows from (75) that

Φ′′+∑ Ψ′′j tj = (∑ uiΨi)(1 + ∑ ujtj)− (∑ u2
i )(Φ + ∑ Ψjtj) (76)

because of 1+ γ 6= 0. By computations, u′j = 0 and (76) implies that ∆G = 0. According to Theorem 3.4
in [9], we can see that it is part of an (r + 1)-plane in Lm.

Considering the constant terms with respect to t and the coefficients of terms containing tj of (75),
we have

(1 + γ){Φ′′ −∑ uiΨi + (∑ u2
i )Φ} = φ(Φ + C), (77)

(1 + γ){Ψ′′j − uj(∑ uiΨi) + (∑ u2
i )Ψj} = φ(Ψj + ujC). (78)

Differentiating (17) with respect to s gives

Ψ′′j = ujΦ′′ +
m−1

∑
a=r+1

εa(λ
j
a)
′′ξa + 2

m−1

∑
a=r+1

εa(λ
j
a)
′ξ ′a +

m−1

∑
a=r+1

εaλ
j
aξ ′′a . (79)

Here,

ξ ′a =e′a ∧ e1 ∧ · · · ∧ er +
r

∑
i=1

ea ∧ e1 ∧ · · · ∧ e′i ∧ · · · ∧ er,

ξ ′′a =e′′a ∧ e1 ∧ · · · ∧ er + 2
r

∑
i=1

e′a ∧ e1 ∧ · · · ∧ e′i ∧ · · · ∧ er

+
r

∑
k,l=1

ea ∧ e1 ∧ · · · ∧ e′k ∧ · · · ∧ e′l ∧ · · · ∧ er +
r

∑
i=1

ea ∧ e1 ∧ · · · ∧ e′′i ∧ · · · ∧ er.

(80)

In (80), we can see that the vector ea ∧ e1 ∧ · · · ∧ e′k ∧ · · · ∧ e′l ∧ · · · ∧ er of ξ ′′a is orthogonal to ξa

and other vectors in (80) except the vectors having the same form. Note that

� ea ∧ e1 ∧ · · · ∧ e′k ∧ · · · ∧ e′l ∧ · · · ∧ er, eb ∧ e1 ∧ · · · ∧ e′k ∧ · · · ∧ e′l ∧ · · · ∧ er �

=

∣∣∣∣∣∣∣
0 λk

a λl
a

λk
b u2

k ukul
λl

b ukul u2
l

∣∣∣∣∣∣∣ = u2
l λk

aλk
b + ukul(λ

k
aλl

b + λl
aλk

b)− u2
kλl

aλl
b

(81)

for k, l = 1, . . . , r and a, b = r + 1, . . . , m− 1.



Symmetry 2018, 10, 218 20 of 39

We multiply uj by (77) and then compare (78) and the equation obtained in such a way. Then,
we can obtain

φ
m−1

∑
a=r+1

εaλ
j
aξa = (1 + γ(s)){

m−1

∑
a=r+1

εa(λ
j
a)
′′ξa + 2

m−1

∑
a=r+1

εa(λ
j
a)
′ξ ′a

+
m−1

∑
a=r+1

εaλ
j
aξ ′′a + (

r

∑
i=1

u2
i )

m−1

∑
a=r+1

εaλ
j
aξa}

(82)

with the help of (17) and (79). By taking the wedge product with ek to (82) for some k, (80) and (82)
induce the following

0 =2
m−1

∑
a=r+1

εa(λ
j
a)
′ea ∧ e1 ∧ · · · ∧ e′k ∧ · · · ∧ er ∧ ek

+ 2
m−1

∑
a=r+1

εaλ
j
ae′a ∧ e1 ∧ · · · ∧ e′k ∧ · · · ∧ er ∧ ek

+
m−1

∑
a=r+1

εaλ
j
aea ∧ e1 ∧ · · · ∧ e′′k ∧ · · · ∧ er ∧ ek

+
m−1

∑
a=r+1

εaλ
j
a(

r

∑
i 6=k

ea ∧ e1 ∧ · · · ∧ e′k ∧ · · · ∧ e′i ∧ · · · ∧ er ∧ ek).

(83)

Again, taking the wedge product with ei to (83) for i 6= k, we get

εaλ
j
aea ∧ e1 ∧ · · · ∧ e′k ∧ · · · ∧ e′i ∧ · · · ∧ er ∧ ek ∧ ei = 0 (84)

for all j = 1, . . . , r and a = r + 1, . . . , m− 1. If λ
j
a 6= 0 for some j and a, then putting (16) into (84)

implies that
ukλi

b − uiλ
k
b = 0 (85)

for b = r + 1, . . . , m − 1. Here, we note that (e′k)
⊥ ∧ (e′i)

⊥ = 0 because of wij = uiuk. Using (85),
we can see that the value of (81) becomes zero, which means that the coefficients of ξ ′′a in (82) must be
identically zero by the orthogonality of vectors. Therefore, we have λ

j
a = 0 and hence e′j = ujα

′ on J2,
for all j and a.

Case 2. We consider A = {s ∈ I|γ(s) = 0} and suppose that Int(A) 6= ∅. Then, on Int(A),

0 =� Φ, C�=� Φ′, C� (86)

and Equation (68) is simplified as

3(u′j)
2C = −3u′j(Ψ

′
j − ujΦ′) + (Ψj − ujΦ)(ujφ− ϕj). (87)

With the help of (86), taking the indefinite scalar product with Φ′ to (87) gives

0 = −3u′j(� Ψ′j, Φ′ � −uj � Φ′, Φ′ �)+� Ψj, Φ′ � (ujφ− ϕj)

which yields
−2u′j(ujφ− ϕj) = 0

because of � Ψ′j, Φ′ �= −ϕj, � Φ′, Φ′ �= −φ and � Ψj, Φ′ �= u′j. If u′j 6= 0, then ϕj = ujφ,
which implies that e′j = ujα

′ by applying the same arguments used in Case 1. If u′j = 0 on Int(A), then,
by continuity, u′j = 0 on A and hence e′j = ujα

′ on A for the same reasons as Case 1.
According to Cases 1 and 2, we can conclude that
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e′j = ujα
′

on J1 and hence on M. This proof is complete.

From Lemma 4, the Gauss map G is given by

G = Φ

and thus ∆G = f (G + C) yields

1
2q2

∂q
∂s

Φ′ − 1
q

Φ′′ = f (Φ + C). (88)

Taking the indefinite scalar product to (88) with Φ, we obtain

−1
q

φ(s) = f (ε̃ + γ(s)). (89)

Suppose that φ(s) ≡ 0 on I. Then we have two cases concerning Φ′.
If Φ′ ≡ 0 on I, then the Gauss map G is a constant vector field and hence M is an open part of an

(r + 1)-plane in Lm.
Now, we suppose that Φ′ is null on some interval U. Then the normal part of α′′ of (18) has to be

null on U as well. Therefore, we have ε j = 1 for j = 1, . . . , r. By (89), we get

f (1 + γ(s)) = 0.

Since 1 + γ(s) 6= 0, we see that f = 0 on U. Then, Equation (88) is rewritten as

(
r

∑
j=1

εu′jtj)Φ′ − (1 +
r

∑
j=1

εujtj)Φ′′ = 0

which yields
Φ′′ = 0 and u′j = 0

for all j = 1, . . . , r. By the definition of Φ and Lemma 4, we have

0 = Φ′′ = α′′′ ∧ e1 ∧ · · · ∧ er +
r

∑
k=1

α′′ ∧ e1 ∧ · · · ∧ ek−1 ∧ e′k ∧ ek+1 ∧ · · · ∧ er. (90)

Taking the wedge product with ek to (90) for some k, we obtain

0 = α′′ ∧ e1 ∧ · · · ∧ ek−1 ∧ e′k ∧ ek+1 ∧ · · · ∧ er ∧ ek

= α′′ ∧ e1 ∧ · · · ∧ ek−1 ∧ ukα′ ∧ ek+1 ∧ · · · ∧ er ∧ ek.

Without loss of generality, we may assume that uk is a non-zero constant. So we have

α′′ ∧ e1 ∧ · · · ∧ ek−1 ∧ α′ ∧ ek+1 ∧ · · · ∧ er ∧ ek = 0

which means that α′′ is tangent to M, a contradiction.
Therefore, we conclude that if φ(s) ≡ 0 on I, then Φ′ ≡ 0 and M is part of an (r + 1)-plane in Lm.
We now suppose that the open subset J = {s ∈ I|φ(s) 6= 0} is not empty. Then, we may put

f = − φ(s)
q(ε̃ + γ(s))

. (91)
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Using q = (1 + ∑i εuiti)
2 and putting (91) into (88), we have

(
r

∑
j=1

u′jtj)Φ′ − (1 +
r

∑
j=1

ujtj)Φ′′ = −
φ

(ε̃ + γ(s))
(1 +

r

∑
j=1

ujtj)(Φ + C). (92)

In (92), considering the constant terms with respect to t and the coefficients of terms containing tj,
we see

Φ′′ =
φ

(ε̃ + γ(s))
(Φ + C) (93)

and hence
u′jΦ

′ = 0

for all j = 1, 2, . . . , r. Since Φ′(s) 6= 0, uj are constant for all j = 1, 2, . . . , r and s ∈ J. Together with
Lemma 4, we have

Lemma 5. Let M be an (r + 1)-dimensional non-cylindrical and non-planar ruled submanifold parameterized
by (3) in Lm with pointwise 1-type Gauss map of the second kind. Let e1, e2, . . . , er be the orthonormal generators
of the rulings along the base curve α. If e′j are non-null for all j = 1, 2, . . . , r, then the functions

uj(s) = 〈α′, e′j〉 and wij(s) = 〈e′i , e′j〉

are constant functions on the open interval J = {s ∈ I|φ(s) 6= 0} for all i, j = 1, 2, . . . , r, where φ(s) =�
Φ(s), Φ′′(s)� .

Furthermore, for the case that e′j are non-null for all j, we have

Lemma 6. Let M be an (r + 1)-dimensional non-cylindrical and non-planar ruled submanifold parameterized
by (3) in Lm. We suppose that e′j are non-null for all j = 1, 2, . . . , r. If M has pointwise 1-type Gauss map of

the second kind, we can choose an orthonormal frame {ea}m−1
a=r+1 of the normal space (Tα(s)M)⊥ of M along α

satisfying
e′a ∧ α′(s) = 0

for all a = r + 1, . . . , m− 1.

Proof. It is sufficient to see Lemma 3.5 in [20].

Proposition 1. Let M be an (r + 1)-dimensional non-cylindrical and non-planar ruled submanifold
parameterized by (3) in Lm. Let e1, e2, . . . , er be the orthonormal generators of the rulings along the base curve
α such that e′j are non-null for all j = 1, 2, . . . , r. If M has pointwise 1-type Gauss map of the second kind,
then the parametrization of M is given by

x(s, t1, . . . , tr) = t1β(s) +
r

∑
i=2

tiai + D, (94)

where β(s) is part of a circle or a hyperbola in Lm with a2, a3, . . . , ar orthonormal constant vectors satisfying
〈β′(s), ai〉 = 〈β(s), ai〉 = 0, D a constant vector and ti ∈ Ii for some open intervals Ii and i = 2, . . . , r.

Proof. Suppose φ(s) ≡ 0 on the whole domain I of α. In this case, we showed that M is part of an
(r + 1)−plane in Lm. Clearly, a plane can be parameterized as (94) for some suitable constant vectors
a2, . . . , ar.

Now, we suppose that M is not part of an (r + 1)−plane, that is, J = {s ∈ I|φ(s) 6= 0} is not
empty. Note that
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� Φ′, Φ′′ �= −φ′

2
, � Φ′, Φ�= 0 and φ = −ε̃

m−1

∑
a=r+1

εau2
a. (95)

Then, Equation (93) implies

−φ′

2
=

φ

ε̃ + γ
� Φ′, C�=

φ

ε̃ + γ
γ′,

or, equivalently,

−1
2

φ′

φ
=

(ε̃ + γ)′

(ε̃ + γ)
(96)

on J. Equation (96) yields
1√
|φ|

= λ̃|ε̃ + γ|

for some positive constant λ̃. Therefore, from (93) we get

Φ′′ = λ
√
|φ|3(Φ + C)

for some non-zero constant λ.
Meanwhile, according to Lemma 6, we can put

α′′ = −
r

∑
i=1

εiuiei −
m−1

∑
a=r+1

εauaea and e′a = εuaα′ (97)

for all a = r + 1, . . . , m− 1. Since 1
λ
√
|φ|3

Φ′′ −Φ is constant, by straightforward computation, we have

0 =
m−1

∑
a=r+1

εa{(
u′a

λ
√
|φ|3

)′ua − ua(
εµ

λ
√
|φ|3

+ 1)}ξa

+
r

∑
j=1

m−1

∑
a=r+1

εεauj{(
1

λ
√
|φ|3

)′ua + (
2

λ
√
|φ|3

)u′a}ea ∧ e1 ∧ · · · ∧ ej−1 ∧ α′ ∧ ej+1 ∧ · · · ∧ er,

(98)

where µ = 〈α′′, α′′〉. By the orthogonality of the vectors α′, ej and ea for all j = 1, . . . , r and a =

r + 1, . . . , m− 1, (98) yields

(
1

λ
√
|φ|3

)′ua + (
2

λ
√
|φ|3

)u′a = 0 (99)

for all a = r + 1, . . . , m− 1. Since φ 6= 0 on J and φ = −ε̃ ∑a εau2
a, there exists a non-zero function ub

for some b = r + 1, . . . , m− 1. Then, (99) implies

3
4
|φ|′
|φ| =

u′b
ub

.

So we can see that
|φ|

3
4 = λbub or, u2

b =
1

λ2
b
|φ|

3
2

for some non-zero real number λb. By (95), we have

φ = c|φ|
3
2
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for some negative constant c, which means that the function φ is constant and hence the functions
ua are constant for all a = r + 1, . . . , m− 1 by virtue of (99). By continuity, the interval J is the whole
domain I of α. Furthermore, (97) implies

α′′′ = −µα′ (100)

for the constant µ = ∑i εiu2
i + ∑a εau2

a. By Lemma 2, we can see that the curve α is contained in a
2-dimensional subspace of Lm. Equation (100) gives that the curvature is non-zero constant and hence
the plane curve α is part of a circle or a hyperbola.

Considering Lemmas 4–6, we may put

α(s) =
ε

u1
(e1 − a1) and ei(s) =

ui
u1

e1(s) + bi (101)

for some constant vectors a1 and bi for i = 2, . . . , r such that e1(s), b2, b3, . . . , br are linearly
independent for each s. By applying Gram-Schmidt’s orthogonalization, we get orthonormal constant
vectors a2, . . . , ar from b2, . . . , br. 〈e1(s), bi〉 are constant and thus 〈e1(s), ai〉 are also constant for all
i = 2, . . . , r.

We put vi = 〈e1(s), ai〉 for all i = 2, . . . , r. Define

β1(s) = e1(s)−
r

∑
r=2

τiviai,

where τi = 〈ai, ai〉(= ±1). Then 〈β1(s), β1(s)〉 = ε1 −∑r
i=2 τiv2

i is a non-zero constant since e1(s), a2,

. . . , ar are linearly independent. Take β(s) = β1(s)
||β1(s)||

, where ||β1(s)|| =
√
|〈β1, β1〉|. After appropriate

change of parameters t1, t2, . . . , tr, the parametrization of (3) for M can be reduced to

x(s, t̄1, t̄2, . . . , t̄r) = t̄1β(s) +
r

∑
i=2

t̄iai + D

for some constant vector D.
If α is a circle, we can see that the trace of position vectors of β(s) is a circle on the unit sphere by

virtue of the first equation of (101).

Note that if q < 0, that is, α is time-like, then we can see that α is part of a hyperbola in Lm by
applying the same arguments developed in the proof of Proposition 1. Therefore, we can also obtain
the parametrization (94) for M such that the curve β is part of a hyperbola.

We now consider the case that some of the generators of rulings have null derivatives. Let M be
an (r + 1)-dimensional non-cylindrical ruled submanifold parameterized by (3) in Lm. Again, if we
use Proposition 3.3 of [19], we may assume that e′i 6= 0 for all i = 1, . . . , r.

Case 3. Suppose that e′i are null for all i = 1, . . . , r. We then have three possible cases according to the
degree of q.

Subcase 3.1. Let deg q(t) = 0, that is, e′i are null with e′i(s) ∧ e′l(s) = 0 for i, l = 1, 2, . . . , r and
uj = 〈α′(s), e′j(s)〉 = 0 for j = 1, 2, . . . , r. Note that εi = 1 for all i = 1, 2, . . . , r. Then M has the Gauss
map of the form

G = Φ +
r

∑
j=1

tjΨj.

Therefore, ∆G = f (G + C) implies

Φ′′ = − f (Φ + C) and Ψ′′j = − f Ψj (102)
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for all j = 1, 2, . . . , r. Equation (102) shows that the function f depends on the parameter s only.
From e′i(s) ∧ e′j(s) = 0, we can put

e′j = σje′1, (103)

where σj are non-vanishing functions of s for all i, j = 1, 2, . . . , r. Also, e′j(s) ∧ e′′j (s) = 0 follows from
e′i(s) ∧ e′j(s) = 0 and hence we have

e′′j = hje′j (104)

for some functions hj of s and j = 1, 2, . . . , r. By (18) and (104), we see

0 = u′j = 〈α′′, e′j〉 = −σj

m−1

∑
a=r+1

εauaλ1
a

which implies
m−1

∑
a=r+1

εauaλ1
a = 0. (105)

By straightforward computation, equation Ψ′′j = − f Ψj of (102) provides that

σjhj = σ′j + σjh1 and − f = h2
j + h′j (106)

with the help of (103) and (104).
Now, on the non-empty open interval I0 = {s ∈ I| f (s) 6= 0}, the first equation of (102) implies

f ′Φ′′ = f Φ′′′ + f 2Φ′. (107)

In this case, we recall that

φ =� Φ, Φ′′ �= − � Φ′, Φ′ �= −〈α′′, α′′〉 = −
m−1

∑
a=r+1

εau2
a (108)

because of� Φ, Φ′ �= 0. From the definition of Φ, we get

Φ′ = −
m−1

∑
a=r+1

εauaξa +
r

∑
k=1

σkΩk
1, (109)

Φ′′ =φΦ−
m−1

∑
a=r+1

εau′aξa +
r

∑
k=1

σkhkΩk
1 − 2

r

∑
k=1

m−1

∑
a=r+1

εauaσkΩk
a,1, (110)

Φ′′′ =
3
2

φ′Φ−
m−1

∑
a=r+1

εa(uaφ + u′′a )ξa +
r

∑
k=1

(3σkφ− f σk)Ω
k
1

−
r

∑
k=1

m−1

∑
a=r+1

εa(3u′aσk + 3uaσkhk)Ω
k
a,1

(111)

with the aid of (18), (103)–(105) and (108), where we have put

Ωk
1 = α′ ∧ e1 ∧ · · · ∧ ek−1 ∧ e′1 ∧ ek+1 ∧ · · · ∧ er,

Ωk
a,1 = ea ∧ e1 ∧ · · · ∧ ek−1 ∧ e′1 ∧ ek+1 ∧ · · · ∧ er.

Considering (107) and (109)–(111), we have the following:

f ′φ =
3
2

f φ′, (112)
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f ′σkhk = 3 f σkφ, (113)

2 f ′uaσk = f (3u′aσk + 3uaσkhk) (114)

as the coefficients of vectors Φ, Ωk
1 and Ωk

a,1, respectively, for all k = 1, . . . , r and a = r + 1, . . . , m− 1.
Note that σk are non-vanishing for all k = 1, . . . , r. Multiplying (114) by εaua and adding the equations
obtained in such a way together with respect to a , we obtain

2 f ′
m−1

∑
a=r+1

εau2
a = 3 f

m−1

∑
a=r+1

εauau′a + 3 f hk

m−1

∑
a=r+1

εau2
a,

or,

2 f ′φ =
3
2

f φ′ + 3 f φhk (115)

for all k = 1, 2, . . . , r. By (112), (115) yields that

hk =
1
2

φ′

φ
. (116)

By putting (112) into (113) and then considering (116), we have

h2
k = φ.

Thus, µ = 〈α′′, α′′〉 is non-positive because of (108). Since e′j are null and 〈α′′, e′j〉 = 0 for j =
1, . . . , r, the vector α′′ can not be time-like and thus φ = 0. Therefore, in (113), we see that

f ′σkhk = 0

for all k = 1, . . . , r. If f ′ 6= 0, then hk = 0 and then f is vanishing because of (106), a contradiction on I0.
Therefore, f ′ = 0 on I0 and hence f is a non-zero constant function on M by continuity. This means
that G is of 1-type in the usual sense. For ruled submanifolds with finite-type Gauss map, see [10].

Subcase 3.2. Let deg q(t) = 1. In this case, 〈α′(s), e′i(s)〉 6= 0 for some i (1 ≤ i ≤ r) and the null vector
fields e′i satisfy e′i ∧ e′l = 0 for i, l = 1, 2, . . . , r. We note that ε̃ = 1 and εi = 1 for all i = 1, 2, . . . , r. Thus,
∆G = f (G + C) implies

(
∂q
∂s

)2(1 +
r

∑
j=1

ujtj)−
3
2

q
∂q
∂s

(
r

∑
j=1

pjtj)−
1
2

q
∂2q
∂s2 (1 +

r

∑
j=1

ujtj)

+q2(φ +
r

∑
j=1

ϕjtj) +
1
2

q
r

∑
i=1

(
∂q
∂ti

)2(1 +
r

∑
j=1

ujtj)−
1
2

q2
r

∑
i=1

∂q
∂ti

ui

+ f {q3(1 +
r

∑
j=1

ujtj) + q
7
2 γ(s)} = 0.

(117)

Note that q3(1 + ∑j ujtj) + q
7
2 γ(s) 6= 0 because of deg q = 1. Therefore, using the function f

obtained from (117), we repeat the same process to get (55). Then, we have the following equation
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(1+
r

∑
j=1

ujtj){−
3
2

q(
∂q
∂s

)(Φ′ +
r

∑
j=1

Ψ′jtj) + q2(Φ′′ +
r

∑
j=1

Ψ′′j tj)−
1
2

q2
r

∑
i=1

∂q
∂ti

Ψi}

−(Φ +
r

∑
j=1

Ψjtj){−
3
2

q(
∂q
∂s

)(
r

∑
j=1

pjtj) + q2(φ +
r

∑
j=1

ϕjtj)−
1
2

q2
r

∑
i=1

∂q
∂ti

ui}

= −q
1
2 γ(s){(∂q

∂s
)2(Φ +

r

∑
j=1

Ψjtj)−
3
2

q(
∂q
∂s

)(Φ′ +
r

∑
j=1

Ψ′jtj)−
1
2

q(
∂2q
∂s2 )(Φ +

r

∑
j=1

Ψjtj)

+ q2(Φ′′ +
r

∑
j=1

Ψ′′j tj) +
1
2

q
r

∑
i=1

(
∂q
∂ti

)2(Φ +
r

∑
j=1

Ψjtj)−
1
2

q2
r

∑
i=1

∂q
∂ti

Ψi}

+ q
1
2 CP(t),

(118)

where we have put

P(t) =(
∂q
∂s

)2(1 +
r

∑
j=1

ujtj)−
3
2

q
∂q
∂s

(
r

∑
j=1

pjtj)−
1
2

q
∂2q
∂s2 (1 +

r

∑
j=1

ujtj)

+ q2(φ +
r

∑
j=1

ϕjtj) +
1
2

q
r

∑
i=1

(
∂q
∂ti

)2(1 +
r

∑
j=1

ujtj)−
1
2

q2
r

∑
i=1

∂q
∂ti

ui.

Since deg q = 1, the left side of (118) has to be vanishing, that is,

(1+
r

∑
j=1

ujtj){−
3
2

q(
∂q
∂s

)(Φ′ +
r

∑
j=1

Ψ′jtj) + q2(Φ′′ +
r

∑
j=1

Ψ′′j tj)−
1
2

q2
r

∑
i=1

∂q
∂ti

Ψi}

−(Φ +
r

∑
j=1

Ψjtj){−
3
2

q(
∂q
∂s

)(
r

∑
j=1

pjtj) + q2(φ +
r

∑
j=1

ϕjtj)−
1
2

q2
r

∑
i=1

∂q
∂ti

ui} = 0.
(119)

Using q = 1 + ∑i 2uiti and ∂q
∂s = ∑i 2u′iti, Equation (119) can be expressed as

(Φ′ +
r

∑
j=1

Ψ′jtj)(1 +
r

∑
i=1

uiti)− (
r

∑
i=1

piti)(Φ +
r

∑
j=1

Ψjtj) = qW(t) (120)

for some vector W(t). In [29], it was proved that Equation (120) implies

∂q
∂s

= 0.

Therefore, (119) is simplified as

(1 +
r

∑
j=1

ujtj)(Φ′′ +
r

∑
j=1

Ψ′′j tj −
r

∑
i=1

uiΨi)

− (Φ +
r

∑
j=1

Ψjtj)(φ +
r

∑
j=1

ϕjtj −
r

∑
i=1

u2
i ) = 0

(121)

which furnishes us with three equations as follows:

Φ′′ −
r

∑
i=1

uiΨi − φΦ + (
r

∑
i=1

u2
i )Φ = 0, (122)
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Ψ′′j + ujΦ′′ − uj(
r

∑
i=1

uiΨi)− ϕjΦ− φΨj + (
r

∑
i=1

u2
i )Ψj = 0, (123)

ujΨ′′j − ϕjΨj = 0 (124)

for all j = 1, 2, . . . , r. Combining (122)–(124), we get

(Ψj − ujΦ)(ϕj − ujφ + uj

r

∑
i=1

u2
i ) = 0

for all j = 1, 2, . . . , r. By the characters of e′j and α′, we see that the functions λ
j
a(s) of (16) are

non-vanishing for all s and it is impossible to have Ψj = ujΦ. Thus, we have

ϕj − ujφ + uj

r

∑
i=1

u2
i ≡ 0 (125)

for all j = 1, 2, . . . , r.
Meanwhile, we note that e′j ∧ e′i = 0 for all i, j = 1, . . . , r. Then, we can put

e′i = fie′j0 (126)

for some j0 with uj0 6= 0, where fi are non-vanishing functions for all i = 1, . . . , r. From the definition
of ui, we have

ui = fiuj0 (127)

which implies that fi are non-zero constant for all i = 1, . . . , r. Indeed, we see that ui 6= 0 for all
i = 1, . . . , r. By (14) and (126), we also obtain

ϕi = fi ϕj0 (128)

for all i = 1, . . . , r. Thus, the following vector and function of (121) are induced as

Φ′′ +
r

∑
j=1

Ψ′′j tj −
r

∑
i=1

uiΨi =
ϕj0
uj0

(Φ +
r

∑
j=1

Ψjtj) (129)

and

φ +
r

∑
j=1

ϕjtj −
r

∑
i=1

u2
i =

ϕj0
uj0

(1 +
r

∑
j=1

ujtj) (130)

by virtue of (122), (124), (125), (127) and (128). Using ∂q
∂s = 0 and (119), and substituting (129) and (130)

into (118), Equation (118) is rewritten as

(
ϕj0
uj0

q + 2
r

∑
i=1

u2
i ){γ(s)(Φ +

r

∑
j=1

Ψjtj)−C(1 +
r

∑
j=1

ujtj)} = 0. (131)

We note that
ϕj0
uj0

q + 2 ∑i u2
i of (131) is non-vanishing for all s. If this not the case, since q = 1 +

∑i 2uiti is a polynomial in t of degree 1 and ∑i u2
i is constant with respect to t, ϕj0 has to be vanishing

for s and hence ∑i u2
i = 0, a contradiction to ui 6= 0 for all i. Therefore, we have

γ(s)(Φ +
r

∑
j=1

Ψjtj) = C(1 +
r

∑
j=1

ujtj),

or, equivalently,
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γ(s)Φ = C and γ(s)Ψj = ujC (132)

for all j = 1, . . . , r. Differentiating ‘γ(s)Φ = C’ of (132) with respect to s and taking the indefinite scalar
product with Φ to the equation obtained in such a way, we get

γ′(s) = 0

which implies that γ is a non-zero constant function for all s. If not, that is, γ = 0, the vector C is zero,
a contradiction. Therefore, (132) yields

Ψj = ujΦ and hence e′j = ujα
′

for all j = 1, . . . , r. This is also a contradiction to the characters of e′j and α′.
Consequently, we can conclude that there is no ruled submanifold with deg q = 1 which has

pointwise 1-type Gauss map of the second kind.

Subcase 3.3. Let deg q(t) = 2. In this case, we can easily obtain the same conclusion such as Lemma 4
by referring to the case that e′1, e′2, . . . , e′r are non-null. But this is impossible according to the characters
of the vectors α′ and e′j. Therefore, we see that no ruled submanifold in Lm with deg q = 2 has
pointwise 1-type Gauss map of the second kind.

Case 4. Suppose that e′j1 , . . . , e′jk are null for j1 < j2 < · · · < jk ∈ {1, 2, . . . , r} and e′i are non-null for
i 6= jl , l = 1, . . . , k.

In this case, deg q = 2. If we follow a similar argument for the case that e′1, e′2, . . . , e′r are non-null,
for the same reason as in Subcase 3.3, we can conclude that there is no ruled submanifold in Lm with
pointwise 1-type Gauss map of the second kind under these assumptions.

Until now, we have considered the necessary conditions for ruled submanifolds to have a
pointwise 1-type Gauss map of the second kind. That is, if the ruled submanifold M in Lm

parameterized by (3) has a pointwise 1-type Gauss map of the second kind, then according to the
characters of e′i , M is part of a product manifold of a right cone (or a hyperbolic cone) and a plane,
or M has a 1-type Gauss map in the usual sense. Conversely, by straightforward computations, we can
see that the Gauss maps of these ruled submanifolds are of pointwise 1-type of the second kind.

Therefore, we have

Theorem 2. Let M be an (r + 1)-dimensional non-cylindrical ruled submanifold with non-degenerate rulings
in the Minkowski m-space Lm. Then, M has a pointwise 1-type Gauss map G of the second kind if and only if
M is one of the following:
(1) M has a 1-type Gauss map in the usual sense, i.e., the Gauss map G satisfies ∆G = λG + C for some
non-zero λ ∈ R and some constant vector C.
(2) M is part of a product manifold of a right cone and a plane of the form CS ×Rr−1 or CS ×Lr−1.
(3) M is part of a product manifold of a hyperbolic cone and a plane CH ×Rr−1.
(3) M is part of an (r + 1)-plane in Lm.

4. Generalized Null Scrolls in Lm

Let M be an (r + 1)-dimensional ruled submanifold in Lm with degenerate rulings E(s, r) along a
regular curve with a parametrization x̃(s, t), where t = (t1, t2, . . . , tr). Since E(s, r) is degenerate, it can
be spanned by a degenerate frame {B(s) = e1(s), e2(s), . . . , er(s)} such that

〈B(s), B(s)〉 = 〈B(s), ei(s)〉 = 0, 〈ei(s), ej(s)〉 = δij, i, j = 2, 3, . . . , r.
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Without loss of generality as was shown in Lemma 1, we may assume that

〈e′i(s), ej(s)〉 = 0, i, j = 2, 3, · · · , r.

Since the tangent space of M at x̃(s, t) is non-degenerate and contains the degenerate ruling
E(s, r), there exists a tangent vector field A to M which satisfies

〈A(s, t), A(s, t)〉 = 0, 〈A(s, t), B(s)〉 = −1, 〈A(s, t), ei(s)〉 = 0, i = 2, 3, . . . , r

at x̃(s, t).
Let α(s) be an integral curve of the vector field A on M. Then we can define another

parametrization x of M as follows:

x(s, t1, t2, . . . , tr) = α(s) +
r

∑
i=1

tiei(s),

where α′(s) = A(s). A ruled submanifold defined as above is called a generalized null scroll. We refer to
two lemmas for later use.

Lemma 7 ([7]). We may assume that 〈A(s), B′(s)〉 = 0 for all s.

Lemma 8 ([8]). Let M be a ruled submanifold with degenerate rulings. Then, the following are equivalent.
(1) M is minimal
(2) B′ is tangent to M.

If we put P = 〈xs, xs〉 and Q = −〈xs, xt1〉, Lemma 7 implies

P(s, t) = 2
r

∑
i=2

ui(s)ti +
r

∑
i,j=1

wij(s)titj,

Q(s, t) = 1 +
r

∑
i=2

vi(s)ti,

where vi(s) = 〈B′(s), ei(s)〉, ui(s) = 〈A(s), e′i(s)〉 and wij(s) = 〈e′i(s), e′j(s)〉 for i, j = 1, 2, . . . , r.
Note that P and Q are polynomials in t = (t1, t2, . . . , tr) with functions in s as coefficients. Then the

Laplacian ∆ of M can be expressed as follows:

∆ =
1

Q2 {
∂P̄
∂t1

∂

∂t1
− 2Q

r

∑
i=2

vi
∂

∂ti
+ 2Q

∂2

∂s∂t1
+ P̄

∂2

∂t2
1

− 2Q
r

∑
i=2

vit1
∂2

∂t1∂ti
−Q2

r

∑
i=2

∂2

∂t2
i
},

where P̄ = P− t2
1 ∑r

i=2 v2
i .

By definition of the indefinite scalar product�,� on G(r + 1, m), we may put

� xs ∧ xt1 ∧ xt2 ∧ · · · ∧ xtr , xs ∧ xt1 ∧ xt2 ∧ · · · ∧ xtr �= −Q2.

Then the Gauss map G is given by
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G =
1
|Q| xs ∧ xt1 ∧ xt2 ∧ · · · ∧ xtr

=
1
|Q| {A ∧ B ∧ e2 ∧ · · · ∧ er + t1B′ ∧ B ∧ e2 ∧ · · · ∧ er

+
r

∑
i=2

tie′i ∧ B ∧ e2 ∧ · · · ∧ er}.

In [9], the authors proved the following theorem.

Theorem 3 ([9]). Let M be a generalized null scroll in Lm. Then, the following are equivalent.
(1) M is minimal.
(2) M has a harmonic Gauss map.

We now suppose that a generalized null scroll M has a pointwise 1-type Gauss map ∆G = f (G +

C). Without loss of generality, we may assume that Q > 0. Then by straightforward computation,
we get

2
Q3

m−1

∑
h=r+1

{(
r

∑
i=1
〈B′, e′i〉ti −

r

∑
i=2

v′iti)vh + v′hQ}eh ∧ B ∧ e2 ∧ · · · ∧ er

+
2

Q2

m−1

∑
h=r+1

v2
h A ∧ B ∧ e2 ∧ · · · ∧ er

+
2

Q2

r

∑
i=2

m−1

∑
h=r+1

vivheh ∧ B ∧ e2 ∧ · · · ∧ ei−1 ∧ A ∧ ei+1 ∧ · · · ∧ er

+
2

Q2

r

∑
i=2

m−1

∑
h,l=r+1

vhλi
leh ∧ B ∧ e2 ∧ · · · ∧ ei−1 ∧ el ∧ ei+1 ∧ · · · ∧ er

= f [
1
Q
{(1 +

r

∑
i=2

tivi)A ∧ B ∧ e2 ∧ · · · ∧ er +
m−1

∑
h=r+1

(t1vh +
r

∑
i=2

λi
hti)eh ∧ B ∧ e2 ∧ · · · ∧ er}+ C]

= f A ∧ B ∧ e2 ∧ · · · ∧ er +
f
Q

m−1

∑
h=r+1

(t1vh +
r

∑
i=2

λi
hti)eh ∧ B ∧ e2 ∧ · · · ∧ er + f C,

(133)

where we have put

B′ =
m−1

∑
i=2

viei and e′j = vj A− ujB +
m−1

∑
l=r+1

λ
j
lel (134)

for j = 2, . . . , r and l = r + 1, . . . , m− 1.

Now, we note that Q is constant with respect to t1. Then, by differentiating (133) with respect to
t1, we get

2
Q3 〈B

′, B′〉
m−1

∑
h=r+1

vheh ∧ B ∧ e2 ∧ · · · ∧ er

= ft1 A ∧ B ∧ e2 ∧ · · · ∧ er +
ft1

Q

m−1

∑
h=r+1

(t1vh +
r

∑
i=2

λi
hti)eh ∧ B ∧ e2 ∧ · · · ∧ er

+
f
Q

m−1

∑
h=r+1

vheh ∧ B ∧ e2 ∧ · · · ∧ er + ft1C.

(135)

Case 5. ft1 ≡ 0 on M.
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Equation (135) implies that

f =
2

Q2 〈B
′, B′〉 = 2w11

Q2 . (136)

Putting (136) into (133), we obtain the following polynomial in t of degree 1 with functions of s
as coefficients

m−1

∑
h=r+1

{(
r

∑
i=1
〈B′, e′i〉ti −

r

∑
j=2

v′jtj)vh + v′hQ}eh ∧ B ∧ e2 ∧ · · · ∧ er

+ Q
m−1

∑
h=r+1

v2
h A ∧ B ∧ e2 ∧ · · · ∧ er

+ Q
r

∑
j=2

m−1

∑
h=r+1

vjvheh ∧ B ∧ e2 ∧ · · · ∧ ej−1 ∧ A ∧ ej+1 ∧ · · · ∧ er

+ Q
r

∑
j=2

m−1

∑
h,l=r+1

vhλ
j
leh ∧ B ∧ e2 ∧ · · · ∧ ej−1 ∧ el ∧ ej+1 ∧ · · · ∧ er

=w11QA ∧ B ∧ e2 ∧ · · · ∧ er + w11

m−1

∑
h=r+1

(t1vh +
r

∑
j=2

λ
j
htj)eh ∧ B ∧ e2 ∧ · · · ∧ er

+ w11QC.

(137)

Comparing the constant terms with respect to t of (137) and using w11 = ∑r
j=2 v2

j + ∑m−1
l=r+1 v2

l ,
we have

ε̄w11C =
m−1

∑
h=r+1

v′heh ∧ B ∧ e2 ∧ · · · ∧ er −
r

∑
j=2

v2
j A ∧ B ∧ e2 ∧ · · · ∧ er

+
r

∑
j=2

m−1

∑
h=r+1

vjvheh ∧ B ∧ e2 ∧ · · · ∧ ej−1 ∧ A ∧ ej+1 ∧ · · · ∧ er

+
r

∑
j=2

m−1

∑
h,l=r+1

vhλ
j
leh ∧ B ∧ e2 ∧ · · · ∧ ej−1 ∧ el ∧ ej+1 ∧ · · · ∧ er.

(138)

From (136) we see that w11(s) 6= 0.
Differentiating (137) with respect to tj (j = 2, . . . , r), with the aid of (138) we get

m−1

∑
h=r+1

(〈B′, e′j〉vh − v′jvh − w11λ
j
h)eh ∧ B ∧ e2 ∧ · · · ∧ er = 0,

which implies

vh

m−1

∑
p=r+1

vpλ
j
p − v′jvh − w11λ

j
h = 0 (139)

as the coefficient of the vector eh ∧ B ∧ e2 ∧ · · · ∧ er for all j = 2, . . . , r and h = r + 1, . . . , m− 1.
If vh = 0 for all h, (134) implies that B′ is tangent to M. With the help of Lemma 8 and Theorem 3,

we can see that M is minimal and hence the Gauss map G of M is harmonic. In this case, G can be
chosen as the constant vector −C. That is, M is part of a Lorentzian (r + 1)-plane in Lm.

Now, we suppose that vh 6= 0 for some h ∈ {r + 1, . . . , m− 1}. If we put

e′h = vh A− uhB−
r

∑
j=2

λ
j
hej (140)

in the same manner as (15) by virtue of Lemma 1, differentiating (138) with respect to s provides
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w′11C =
m−1

∑
h=r+1

{v′′h + (
r

∑
j=2

v2
j )uh −

r

∑
j=2

vjujvh +
r

∑
j=2

m−1

∑
p=r+1

vpλ
j
pλ

j
h −

r

∑
j=2

m−1

∑
p=r+1

(λ
j
p)

2vh}

eh ∧ B ∧ e2 ∧ · · · ∧ er

+ (
m−1

∑
p=r+1

vpv′p − 2
r

∑
j=2

vjv′j +
r

∑
j=2

m−1

∑
p=r+1

vjλ
j
pvp)A ∧ B ∧ e2 ∧ · · · ∧ er

+
m−1

∑
h,p=r+1

(v′hvp −
r

∑
j=2

vjvhλ
j
p)eh ∧ ep ∧ e2 ∧ · · · ∧ er

−
r

∑
j=2

m−1

∑
h=r+1

{vjv′h + (
r

∑
k=1

v2
k)λ

j
h + (vjvh)

′ − (
m−1

∑
p=r+1

v2
p)λ

j
h +

m−1

∑
p=r+1

vpλ
j
pvh}

A ∧ B ∧ e2 ∧ · · · ∧ ej−1 ∧ eh ∧ ej+1 ∧ · · · ∧ er

+
r

∑
j=2

m−1

∑
h,p=r+1

{v′hλ
j
p − vjvhup + (vhλ

j
p)
′}eh ∧ B ∧ e2 ∧ · · · ∧ ej−1 ∧ ep ∧ · · · ∧ er.

(141)

Comparing the coefficients of the vectors in (138) and (141), we obtain the following
four equations:

w′11
w11

v′h = v′′h + (
r

∑
j=2

v2
j )uh −

r

∑
j=2

vjujvh +
r

∑
j=2

m−1

∑
p=r+1

vpλ
j
pλ

j
h −

r

∑
j=2

m−1

∑
p=r+1

(λ
j
p)

2vh, (142)

−
w′11
w11

(
r

∑
j=2

v2
j ) =

m−1

∑
p=r+1

vpv′p − 2
r

∑
j=2

vjv′j +
r

∑
j=2

m−1

∑
p=r+1

vjλ
j
pvp, (143)

v′hvp −
r

∑
j=2

vjvhλ
j
p − v′pvh +

r

∑
j=2

vjvpλ
j
h = 0, (144)

w′11
w11

vjvh = vjv′h + (
r

∑
k=2

v2
k)λ

j
h + (vjvh)

′ − (
m−1

∑
p=r+1

v2
p)λ

j
h + vh

m−1

∑
p=r+1

vpλ
j
p. (145)

Substituting (139) into (143), we get

−
w′11
w11

(
r

∑
j=2

v2
j ) =

m−1

∑
p=r+1

vpv′p −
r

∑
j=2

vjv′j +
w11

vh

r

∑
k=2

vkλk
h (146)

for some h with vh 6= 0. Putting (146) into (144) gives

vpv′h = vhv′p,

which implies
vh(s) = ch

pvp(s)

for some constant ch
p. Therefore, we can put

vh(s) = chvr+1(s) (147)

for some constants ch and h = r + 1, . . . , m− 1.
Recall that Equation (139) is valid for all h = r + 1, . . . , m− 1. By replacing h with r + 1, . . . , m− 1,

respectively, and comparing equations obtained in such a way, with the help of (147) we can get
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λ
j
h(s) = chλ

j
r+1(s) (148)

for all j = 2, . . . , r and for all h = r + 1, . . . , m − 1. By virtue of (147) and (148), Equation (142) is
simplified as

w′11
w11

v′h = v′′h + (
r

∑
j=2

v2
j )uh −

r

∑
j=2

vjujvh (149)

for all h = r + 1, . . . , m− 1. Putting (147) into (149) and repeating the method to get (148), we have

uh(s) = chur+1(s) (150)

for all h = r + 1, . . . , m− 1. If we put (147) and (148) into (139), then we obtain

v′jvr+1 = −(
r

∑
k=2

v2
k)λ

j
r+1 (151)

because of w11 = ∑j v2
j + ∑h v2

h. Substituting (139) into (145) provides

w′11
w11

vjvr+1 = 2{(vjvr+1)
′ + (

r

∑
k=2

v2
k)λ

j
r+1},

which yields

vj(
w′11
w11

vr+1 − 2v′r+1) = 0 (152)

with the help of (151).
If vj = 0, (138) implies that

w11C =
m−1

∑
h=r+1

v′heh ∧ B ∧ e2 ∧ · · · ∧ er (153)

and hence

w′11C =
m−1

∑
h=r+1

v′′h eh ∧ B ∧ e2 ∧ · · · ∧ er +
m−1

∑
h=r+1

vhv′h A ∧ B ∧ e2 ∧ · · · ∧ er. (154)

Combining (153) and (154), we have

m−1

∑
h=r+1

vhv′h = 0,

which means that the function w11 = ∑h v2
h is constant. Since w11 = v2

r+1 ∑h c2
h, the function vr+1 is

constant, so are vh for all h = r + 1, . . . , m− 1. In (153), we can see that C is a zero vector because of
w11 6= 0, a contradiction. Therefore, from (152), we conclude that

w′11
w11

vr+1 = 2v′r+1,

or, equivalently,
w11 = dr+1v2

r+1 (155)

for some positive constant dr+1. Since w11 = ∑j v2
j + ∑h v2

h = ∑j v2
j + v2

r+1 ∑h c2
h, we see that

r

∑
j=2

v2
j = (dr+1 −

m−1

∑
h=r+1

c2
h)v

2
r+1. (156)
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We now introduce another kind of generalized null scroll as follows:
For a null curve α̃(s) in Lm, we consider a null frame {A(s), B(s) = e1(s), e2(s), . . . , em−1(s)}

along α̃(s) satisfying

〈A(s), A(s)〉 = 〈B(s), B(s)〉 = 〈A(s), ei(s)〉 = 〈B(s), ei(s)〉 = 0,

〈A(s), B(s)〉 = −1, 〈ei(s), ej(s)〉 = δij, α̃′(s) = A(s)

for i, j = 2, 3, . . . , m− 1.

Let X(s) be the matrix (A(s) B(s) e2(s) · · · em−1(s)) consisting of column vectors of A(s), B(s),
e2(s), . . . , em−1(s) with respect to the standard coordinate system in Lm. Then we have

Xt(s)EX(s) = T,

where Xt(s) denotes the transpose of X(s), E =diag(−1, 1, . . . , 1) and

T =


0 −1 0 · · · 0
−1 0 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 .

Consider a system of ordinary differential equations

X′(s) = X(s)M(s), (157)

where

M(s) =



0 0 v2 · · · vr vr+1 cr+2vr+1 · · · cm−1vr+1

0 0 −u2 · · · −ur −ur+1 −cr+2ur+1 · · · −cm−1ur+1

−u2 v2 0 · · · 0 −λ2
r+1 −cr+2λ2

r+1 · · · −cm−1λ2
r+1

−u3 v3 0 · · · 0 −λ3
r+1 −cr+2λ3

r+1 · · · −cm−1λ3
r+1

...
...

...
...

...
...

...
−ur vr 0 · · · 0 −λr

r+1 −cr+2λr
r+1 · · · −cm−1λr

r+1
−ur+1 vr+1 λ2

r+1 · · · λr
r+1 0 0 · · · 0

−cr+2ur+1 cr+2vr+1 cr+2λ2
r+1 · · · cr+2λr

r+1 0 0 · · · 0
...

...
...

...
...

...
...

−cm−1ur+1 cm−1vr+1 cm−1λ2
r+1 · · · cm−1λr

r+1 0 0 · · · 0



,

where vi (2 ≤ i ≤ r + 1), uj (2 ≤ j ≤ r + 1) and λk
r+1 (2 ≤ k ≤ r, r + 1 ≤ b ≤ m− 1) are some smooth

functions of s and ch (r + 1 ≤ h ≤ m− 1) are constant satisfying

r

∑
j=2

v2
j = dv2

r+1, v′j = −dvr+1λ
j
r+1 and

w′11
w11

v′r+1 = v′′r+1 + (
r

∑
j=2

v2
j )ur+1 −

r

∑
j=2

vjujvr+1

(158)

for some positive constant d.
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For a given initial condition X(0) = (A(0) B(0) e2(0) · · · em−1(0)) satisfying Xt(0)EX(0) = T,
there exists a unique solution to X′(s) = X(s)M(s) on the whole domain I of α̃(s) containing 0. Since
T is symmetric and MT is skew-symmetric, d

ds (Xt(s)EX(s)) = 0 and hence we have

Xt(s)EX(s) = T

for all s ∈ I. Therefore, A(s), B(s), e2(s), . . . , em−1(s) form a null frame along a null curve α̃(s) in Lm

on I. Let α(s) =
∫ s

0 A(u)du.

We now give the following definition.

Definition 2. A generalized null scroll satisfying (157) parameterized by

x(s, t1, t2, · · · , tr) = α(s) + t1B(s) +
r

∑
i=2

tiei(s). (159)

is called the generalized B-scroll kind.

Remark 2. In the case of m = 3 with v2 ∈ R, a generalized B-scroll kind is a so-called B-scroll.

Therefore, we can see that the parametrization of a generalized null scroll M with a pointwise
1-type Gauss map of the second kind can be given by (159). Furthermore, by combining the first two
equations of (158), we can see that these ruled submanifolds satisfy

v′r+1 = −
r

∑
j=2

vjλ
j
r+1.

Conversely, for a generalized B-scroll kind M parameterized by (159), by computation, ∆G can be
expressed as

∆G =
2w11

Q2 (G + C),

where C is the constant vector given by

C =
1

w11
{

m−1

∑
h=r+1

chv′r+1eh ∧ B ∧ e2 ∧ · · · ∧ er −
r

∑
j=2

v2
j A ∧ B ∧ e2 ∧ · · · ∧ er

+
r

∑
j=2

m−1

∑
h=r+1

vjchvr+1eh ∧ B ∧ e2 ∧ · · · ∧ ej−1 ∧ A ∧ ej+1 ∧ · · · ∧ er}.

It means that the Gauss map G of M is of pointwise 1-type of the second kind.

Case 6. ft1 6= 0.

In this case, the open subset W = {p ∈ M| ft1(p) 6= 0} is non-empty. Comparing the vectors
composing the constant vector C of (133) and (135), by the orthogonality of them, we get

vjvh = 0 and vhλ
j
p − vpλ

j
h = 0

on W for all j = 2, . . . , r and h, p = r + 1, . . . , m− 1.
If vh = 0 for all h = r + 1, . . . , m− 1, we obtain the result that the open subset W of M is part of a

Lorentzian (r + 1)-plane by Lemma 8 and Theorem 3.
If vh 6= 0 for some h ∈ {r + 1, . . . , m − 1}, then vj = 0 and Q = 1 for all j = 2, . . . , r. Then,

Equation (133) is simplified as



Symmetry 2018, 10, 218 37 of 39

2
m−1

∑
h=r+1

{(
r

∑
i=1
〈B′, e′i〉vhti + v′h)}eh ∧ B ∧ e2 ∧ · · · ∧ er

+ 2
m−1

∑
h=r+1

v2
h A ∧ B ∧ e2 ∧ · · · ∧ er

= f A ∧ B ∧ e2 ∧ · · · ∧ er + f
m−1

∑
h=r+1

(t1vh +
r

∑
j=2

λ
j
htj)eh ∧ B ∧ e2 ∧ · · · ∧ er + f C,

(160)

or,

C =
1
f
{2

m−1

∑
h=r+1

{(
r

∑
i=1
〈B′, e′i〉vhti + v′h)}eh ∧ B ∧ e2 ∧ · · · ∧ er

+ (2
m−1

∑
h=r+1

v2
h − f )A ∧ B ∧ e2 ∧ · · · ∧ er}

−
m−1

∑
h=r+1

(t1vh +
r

∑
j=2

λ
j
htj)eh ∧ B ∧ e2 ∧ · · · ∧ er

(161)

on W. By differentiating (160) with respect to t1 and using (161), we can obtain

2 ft1

f

m−1

∑
h=r+1

v2
h = 0

as the coefficients of A ∧ B ∧ e2 ∧ · · · ∧ er. Since ft1 6= 0 on W, we have ∑h v2
h = 0, a contradiction to

vh 6= 0 for some h.
Therefore, we can conclude that if the open set W is non-empty, then the functions vh are identically

zero on W for all h = r + 1, . . . , m− 1, and hence we see that W is an open part of a Lorentzian plane
in Lm. By continuity, M is a Lorentzian (r + 1)-plane.

Therefore, we have

Theorem 4. Let M be a generalized null scroll in the Minkowski m-space Lm. Then, M has a pointwise 1-type
Gauss map of the second kind if and only if M is part of a Lorentzian (r + 1)-plane in Lm or a generalized
B-scroll kind.

In particular, by straightforward computation, we have

Corollary 1. Let M be a null scroll in the Minkowski 3-space L3. Then, M has a pointwise 1-type Gauss map
of the second kind if and only if M is part of a time-like plane or a flat B-scroll.
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