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Abstract: Whale optimization algorithm (WOA) is a swarm intelligence optimization algorithm
inspired by humpback whale hunting behavior. WOA has many similarities with other swarm
intelligence algorithms (PSO, GWO, etc.). WOA’s unique search mechanism enables it to have
a strong global search capability while taking into account the strong global search capabilities.
In this work, considering the the deficiency of WOA in local search mechanism, combined with the
optimization methods of other group intelligent algorithms, perceptual perturbation mechanism
is introduced, which makes the agent perform more detailed searches near the local extreme point.
At the same time, since the WOA uses a logarithmic spiral curve, the agent cannot fully search all
the spaces within its search range, even though the introduction of the perturbation mechanism may
still lead to the algorithm falling into a local optimum. Therefore, the equal pitch Archimedes spiral
curve is chosen to replace the classic logarithmic spiral curve. In order to fully verify the effect of
the search path on the performance of the algorithm, several other spiral curves have been chosen
for experimental comparison. By utilizing the 23 benchmark test functions, the simulation results
show that WOA (PDWOA) with perceptual perturbation significantly outperforms the standard
WOA. Then, based on the PDWOA, the effect of the search path on the performance of the algorithm
has been verified. The simulation results show that the equal pitch of the Archimedean spiral curve
is best.

Keywords: whale optimization algorithm; searching path; function optimization

1. Introduction

Problems with optimization must find the most optimal solution of the objective function by
iteration. Generally, the search target—which can be described by coutinuous, descrete, linear, unlinear,
convace, and convex functions—is a function that belongs to optimal objective functions. In order to
solve the problem of function optimization, a heuristic algorithm inspired by natural processes and/or
events has raised concerns. Swarm intelligence optimization algorithms that simulate biological
population evolution is a random search algorithm. It can solve complex global optimization problems
through cooperation and competition among individuals. Swarm intelligence optimization algorithm
include the ant colony optimization (ACO) algorithm [1–3], genetic algorithm (GA) [4,5], particle
swarm optimization (PSO) algorithm [6–8], artificial bee colony (ABC) algorithm [9], grey wolf
algorithm (GWO) [10], harmony search (HS) Algorithm [11,12], etc.
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The whale optimization algorithm (WOA) is a biological heuristic algorithm presented by Seyedali
Mirjalili and Andrew Lewis in 2016. WOA is a swarm intelligence optimization algorithm inspired
by the unique humpback hunting method. Because of unique optimization mechanism, WOA has
a good global search capability. Therefore, the new algorithm has been widely proposed by the
engineering community. As a new type of bionic algorithm with better global search performance,
many scholars are interested in it and apply it to a variety of engineering problems. It has been widely
used in the optimization of neural network parameters, allocation, and scheduling. On the allocation
and scheduling, the literatures [13–16] use WOA to optimize energy management system (EMS) of
the Combined Economic Emission Dispatch (CEED) problem for microgrid systems, and MATLAB
software is used to compared it with GM, ACO, PSO and WOA; the results show that WOA can
obtain better results with fewer iterations. The literature [17] applies WOA to the Unit Commitment
Problem of power generation operation scheduling, the experimental results show that the convergence
speed of WOA is obviously faster than PSO, GA, etc. In order to reduce the wire loss of distribution
network, the literature [18] uses WOA to optimize the distribution scheme of the capacitors in the grid.
The simulation results show that WOA is more effective in reducing operating costs and maintaining
better voltage distribution. Similarly, the literature [19] uses the WOA to the water resources scheduling
problem. The research results show that WOA has a faster convergence speed.

In terms of parameter optimization, the literature [20] uses WOA to optimize two parameters
of a least-squares support vector machine to establish a WOA-LSSVM (WOA-least-squares support
vector machine) model to predict carbon dioxide emissions. Similarly, chaos WOA algorithm (CWOA)
is proposed to optimize the parameters of Elman neural network in the literature [21], so as to establish
a soft measurement model and predict variables. The literature [22] compares WOA with other
methods for optimizing neural network parameters quantitatively and qualitatively. Simulation results
show that the proposed trainer can outperform current algorithms on most data sets in terms of local
optimal avoidance and convergence speed. The literature [23] uses WOA to optimize the parameters
of the multilayer perception model, and it uses five standard data sets to verify the validity of the
modified model. We compared it with GWO and PSO, and found a high convergence and classification
rate of WOA, and it is possible to avoid local minimums.

In terms of variable prediction, the literature [24] proposes a multi-objective whale optimization
algorithm (MOWOA) model to predict the wind speed in the power system and thus provide
a reference for power dispatching. The literature [25] combines the reverse adaptive whale optimization
algorithm (AWOA) and the fast learning network (FLN) to propose an integrated modeling method
(AWOA-FLN) and establishes a 600-MW prediction model for supercritical steam turbine group heat
rate. Simulation results show that the AWOA-FLN model has stronger prediction accuracy and
stronger generalization ability than the improved PSO algorithm and differential evolution algorithm,
and it can more accurate predict the heat rate of the turbine. In image processing, in order to find the
best image segmentation threshold, the literature [26] combines WOA and moth-flame optimization to
avoid the problem of determining the optimal threshold spend too much time in the case of multilevel
thresholds. The simulation results show that the proposed algorithm has better performance than other
swarm intelligence algorithms. The literature [27] propose a MRI image liver segmentation method
based on the whale optimization algorithm (WOA). The proposed method uses a set of 70 magnetic
resonance images (MRI) images for testing. The experimental results show that the method has a high
accuracy overall. In addition, considering WOA optimization and other applications, the literature [28]
introduces the nondominated sorting algorithm to obtain the optimal solution of WOA, named the
nondominated sorting WOA (NSWOA). The simulation results show that the method is much better
than multiobjective collision-body optimizer (MOCBO), multi-objective particle swarm optimizer
(MOPSO), nondominated sorting genetic algorithm II (NSGA-II) and the multiobjective symbiotic
organism search (MOSOS). The literature [29] proposed a chaos WOA (CWOA) algorithm to calculate
and automatically adjust the internal parameters of the optimization algorithm through chaotic
mapping. This idea is essentially different from the literature [21]. The experimental results show
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that CWOA can effectively optimize the parameters of photovoltaic cells and their components.
The literature [30] proposes a WOA-based feature selection approach, which is applied to find the
largest subset of features so that it maximizes classification accuracy while retaining the minimum
number of features.

The essence of a group intelligence algorithm is to find the global optimal value as much as
possible with the help of various mechanisms. The improvement ideas proposed by many scholars are
as far as possible to complete the search mechanism of group intelligent algorithm, so that the search
agent traverses the entire search space as much as possible.

In this paper, we analyze the search mechanism of the WOA algorithm and find that its search
mechanism has defects. However, this kind of defect cannot be solved by adjusting the moving
step length. The original WOA uses a logarithmic spiral curve as the search path of the agent.
However, the screw pitch of the logarithmic spiral curve is not fixed. Because the screw pitch causes
a large amount of agent movements in the early stage, some areas cannot be searched. As a result,
the global optimum is ignored. For this problem, this paper proposes a WOA with perceptual
perturbation [31–33] so that the agent can perturb near the local extreme points to obtain better optimal
values as much as possible. The closest to the idea of this paper is the literature [34]. In order to
improve the PSO’s local search ability, literature [34] defines and analyzes the regions with the most
particles. At the same time, presented a PSO algorithm with intermediate disturbance searching
strategy (IDPSO), which enhances the global search ability of particles and increases their convergence
rates. Introducing the perturbation mechanism into the group intelligent algorithm can effectively
improve the performance of the algorithm. The difference between this article and other methods is
that the step length is set to make the search agent’s moving step smaller and smaller, so that the agent
can search more and more carefully. The definition of the minimum step size makes it impossible
for the agent’s step size to be smaller and smaller, thus ensuring the algorithm’s convergence speed
and ability to jump out of the local extreme point. At the same time, for the defects of the search
mechanism, this paper uses the remaining seven spiral curves instead of the original logarithmic spiral
curve to obtain an optimal search path. Finally, we select 23 benchmark test functions to verify the
effectiveness of perceived perturbation and remaining spiral curves.

The structure of this paper is as follows: we have an introduction in the first section. The second
section introduces the WOA optimization algorithm and analyzes the defects of the algorithm.
The third section introduces the idea and method of improving WOA. The fourth section is a simulation,
and a summary in the fifth section.

2. Whale Optimization Algorithm

2.1. Inspiration

The whale optimization algorithm (WOA) is inspired by the unique hunting method of the
humpback whale, which is called the bubble-net predation method [35–39]. The humpback whale
can perceive the distance between him and the prey and surround the prey. It is observed that the
humpback whale can move up with a spiral path in about 15 m deep, and spit out a number of different
sizes of bubbles. The last spit out bubble and the first spit out bubble rose to the surface at the same
time so as to form a cylindrical or tubular bubble network. It likes a huge spider knotted web to
surround the prey tightly, and makes the prey toward the center of the net. So the humpback whales
almost upright open mouth in the bubble circle and swallow the prey in the net. According to the
above descriptions, the hunting behavior of the humpback whale can be divided into three steps:
encircling prey, spiral bubble-net feeding maneuver and searching for prey.

2.2. Search for Prey (Exploration Phase)

In order to establish the mathematical model of the humpback whale searching path,
each humpback whale is set as a search agent. At the same time, the algorithm is divided into
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three steps: the search for prey, encircling prey and spiral bubble-net attacking method (exploitation
phase). Then these three kinds of behavioral mathematical model are established. And the
mathematical model is established for these three behaviors. In the modeling of the spiral bubble-net
attacking method, two methods are proposed, which are the shrinking encircling mechanism and
the spiral updating position method. Among them, the searching for prey can be regarded as the
exploration stage, whose main purpose is to find a better solution. The bubble-net attacking method
can also be called the exploitation phase, whose main purpose is to use this better solution more fully.

In the exploration phase (searching for prey), in order to make the search more extensive,

the search agents are pushed away from each other by the positive and negative of a random vector
→
A.

At the same time, the position of the search agent is replaced by a randomly selected search agent to
replace the current optimal search agent. The mathematical model is described as follows:

→
D =

∣∣∣∣→C ·→Xrand −
→
X
∣∣∣∣ (1)

→
X(t + 1) =

→
Xrand −

→
A ·
→
D (2)

where,
→
Xrand is a random location vector selected from the current population. Figure 1 shows

a possible location of a solution when
→
A > 1. When

∣∣∣∣→A∣∣∣∣ > 1, the search agent selects a random agent,

and when
∣∣∣∣→A∣∣∣∣ < 1, the search agent is selected as the current best agent to replace the location of the

search agent.
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2.3. Encircling Prey

At the initial stage, the optimal location in the search space is unknown when the prey is
surrounded. In this algorithm, the best candidate is regarded as the target prey or the best target.
After that, the best search agent will be defined, and other agents will try to update their location
toward the best agent. The mathematical model of this behavior can be described as follows:

→
D =

∣∣∣∣→C ·→X∗(t)−→X(t)
∣∣∣∣ (3)
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→
X(t + 1) =

→
X
∗
(t)−

→
A ·
→
D (4)

where t is the current iteration number,
→
A and

→
C are the coefficient vector, X∗ is the known optimal

location vector,
→
X is the location vector of other search agents. It is proposed that, in each iteration,

if a better solution occurs, the X∗ will be replaced with a better one.

The calculated expressions of
→
A and

→
C are described follows:

→
A = 2a ·→r − a (5)

→
C = 2•→r (6)

The a is linearly reduced in the interval (0, 2) in the iterative process (including the whole
exploration and development phase), and the vector

→
r is a random vector in interval [0,1].

Figure 2 illustrates the theoretical basis of Equation (4) in two dimensional plane. The search agent
(X, Y) can update its location based on the location of the current best agent (X∗, Y∗). It can be seen
from this point that if the choice of (X∗, Y∗) is not good, it will be easy to make the algorithm fall into
the local optimum. It can be seen from Figure 2 that anywhere near the best agent can be achieved by

changing the value of the
→
A and

→
C .
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2.4. Bubble-Net Attacking Method (Exploitation Phase)

The third stage is the bubble-net attacking method. In order to realize the model in this stage,
two ideas are introduced.

1. Shrinking encircling mechanism

By reducing the value of a in Equation (5), the value of
→
A is limited in [−a, a]. When random

values for
→
A are in the interval [−1,1], the new search agent can be defined any location between the

initial position and the current search agent’s best position. The theoretical illustration of the shrinking
encircling mechanism is shown in Figure 3. It can be seen that any position between (X, Y) and (X∗, Y∗)
in the two dimensional plane can be reached by adjusting the value of A between [0,1].

2. Spiral updating position method
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The sketch map of spiral renewal position method is shown in Figure 4, which is the path of
the search agent proposed by the original WOA. It calculates the distance between whale (X, Y)
and (X∗, Y∗) prey. The equation imitating the humpback whales spiral moving mode is described
as follows.

→
X(t + 1) =

→
D′ · ebl · cos(2πl) +

→
X
∗
(t) (7)

where,
→
D′ =

∣∣∣∣→X∗(t)−→X(t)
∣∣∣∣ represents the distance between the ith whale and the prey, b is used to

define the constant to limit the logarithmic spiral and l is a random number between the interval [−1,1].Symmetry 2018, 10, x FOR PEER REVIEW  6 of 31 
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To be mentioned, the humpback whales swim around the prey in a gradual contraction of the
circle and a spiral shape. In order to facilitate the establishment of the model, it is stipulated that
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each of the fifty percent of the whales may choose to surround the contraction path or spiral model to
update their locations. The mathematical model is described as follows.

→
X(t + 1) =


→
X
∗
(t)−

→
A ·
→
D p < 0.5

→
D′ · ebl · cos(2πl) +

→
X
∗
(t) p ≥ 0.5

(8)

where, p is a random number between [0,1].

2.5. Idea of Improving Whale Optimization Algorithm

Through carrying out the research on the original WOA idea, two improvement ideas are
put forward.

(1) It can be seen from the searching path of the whales in Figure 4 and Equation (7), the logarithmic
spiral curve adopted as the searching path, but the pitch is not equal seen from the logarithmic helix
curve. In other words, when the searching agent carries out the searching process according to the
path, it can be seen from the two shaded sections in Figure 2 that any location around the best agent

can be changed by changing the values of
→
A and

→
C . However, if the pitch of the spiral curve is larger

than that of the search agent, it will lead to some locations can not be searched so as to reduce the
ergodicity of the algorithm.

(2) In order to make the algorithm search thoroughly near the location of the search agents,
after each iteration of the WOA, a set of more advantageous searched positions X∗(t) are obtained.
Then X∗(t) will be no go directly into the next iteration, the disturbance is carried on it so as to
searching the nearby scope of X∗(t). The next iteration will generate a new best searching agent.

3. Complex Path-Perceptual Disturbance WOA

3.1. Selection of Mathematical Model of Searching Path

According to the logarithmic spiral model proposed by the original WOA, seven kinds of spirals
are puts forward as the mathematical models of searching paths [40].

3.1.1. Logarithmic Spiral Curve (Lo)

Logarithmic spiral curve is also called equilateral spiral curve. The mathematical model of
Logarithmic spiral searching path is described in Equation (9) and the two-dimensional image is show
in Figure 5. {

x = a · el cos(2πl)
y = a · el sin(2πl)

(9)
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3.1.2. Archimedes Spiral Curve (Ar)

The Archimedes spiral curve is a trail generated by a point evenly moving away from a fixed point,
while moving at a fixed angular velocity around the fixed point. The equal pitch Archimedes spiral
means that the pitch of the spiral curve is a invariant constant shown in Figure 6. The mathematical
model of Archimedes spiral searching path is described in Equation (10) and the two-dimensional
image is show in Figure 6. {

x = (a + b · l) cos(2πl)
y = (a + b · l) sin(2πl)

(10)
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As we put forward, the pitch of the spiral curve gradually changes to affect the convergence
performance of the algorithm. Therefore, we first select the Archimedean spiral curve with a constant
pitch. Since its pitch is equidistant, we use an algorithm to adjust the parameters of the function so
that the algorithm achieves optimal performance.

3.1.3. Rose Spiral Curve (Ro)

Assuming a fixed length segment AB = 2a, the two endpoints of AB slide on two mutually
perpendicular straight lines. Then a vertical line OM is made from the intersection O of two straight
lines to the line AB. The trajectory of foot M is called the Rose spiral curve. The mathematical model
of Rose spiral with four leaves searching path is described in Equation (11) and the two-dimensional
image is show in Figure 7. {

x = a · cos(nπl) sin(l)
y = a · sin(nπl) cos(l)

(11)
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Because the path of the function is relatively simple, taking into account the existence of the
disturbance, by adjusting the parameters of the function, the spacing between the search paths is as
small as possible, and the optimal value may be obtained faster with as few iterations as possible.
So we chose this spiral curve.

3.1.4. Epitrochoid-I (Ep-I)

A movable circle is carried out the roll around the externally-tangent of the fixed circle internally,
where the radius of the fixed circle is a and the radius of the movable circle is b. In the process of the
movable circle rolling, the trajectory is formed by a fixed point P on the movable circle, which is called
the Epicycloid-I. The mathematical model of Epitrochoid-I searching path is described in Equation (12)
and the two-dimensional image is show in Figure 8.{

x = (a + b) · cos(nπl)− c cos( a
b+1 nπl)

y = (a + b) · sin(nπl) + c sin( a
b+1 nπl)

(12)
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3.1.5. Hypotrochoid (Hy)

A fixed large circle internally tangent a movable small circle. In the process of small circle rolling,
the trajectory is formed by a fixed point P on the small circle, which is called the Hypotrochoid.
The curve will change with the radius of the two circles. The mathematical model of Hypotrochoid
searching path is described in Equation (13) and the two-dimensional image is show in Figure 9.{

x = (a + b) · cos(nπl)− b cos( a
b+1 nπl)

y = (a + b) · sin(nπl)− b sin( a
b+1 nπl)

(13)
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3.1.6. Epitrochoid-II (Ep-II)

The formation principle of the Epicycloid-II and the Epicycloid-I is the same. Just the difference of
the radius of the big circle and the small circle produces the different trend. The mathematical model
of Epitrochoid-II searching path is described in Equation (14) and the two-dimensional image is show
in Figure 10. {

x = (a− b) · cos(nπl) + c cos( a
b−1 nπl)

y = (a− b) · sin(nπl)− c sin( a
b−1 nπl)

(14)
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The selection idea of the three spiral curves of EP-I, EP-II, and Hy is that when multiple agents are
searching at the current optimal position, the agent performs a full search around the current optimal
position according to its search path.

3.1.7. Fermat Spiral Curve (Fe)

The Fermat spiral curve is a kind of equiangular spiral curve. It is obtained by tire up the starting
points of the two logarithmic spiral curves, whose rotation direction is opposite. The mathematical
model of Fermat spiral searching path is described in Equation (15) and the two-dimensional image is
show in Figure 11. {

x =
√

l cos( a
b−1 nπl)

y = −
√

l sin( a
b−1 nπl)

(15)
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3.1.8. Lituus Spiral Curve (Li)

The Lituus spiral curve is parameterized and interacted by three helical curves. The mathematical
model of Lituus spiral searching path is described in Equation (16) and the two-dimensional image is
show in Figure 12.  x =

√
a+b

l cos( a
b−1 nπl)

y = −
√

a+b
l sin( a

b−1 nπl)
(16)
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Li and Fe, we complete the search path corresponding to such functions by defining the positive
and negative of two search agents. Search for larger ranges in less time by combining two agents
searching in symmetrical positions.

3.2. Introduction of Disturbance Factor

In order to make the WOA search thoroughly near the location of the search agent, after each
iteration, a set of more advantageous search positions X∗(t) are obtained. But it will not go directly to
the next iteration. A disturbance factor is carried out to search the nearby scope of X∗(t). The next
iteration will generate a new best search agent. In order to get rid of the randomness and blindness of
the original perturbation method, when constructing the perturbation factor, the range of disturbances
are limited to ensure the accuracy of local search. At the same time, in order to make the search agents
swim to the targets in the disturbance range as far as possible. Then the perceptual coefficient is
introduced. In this way, the search agents are constantly changing the positions within the disturbance
range and the optimal value are replaced with the current optimal. The introduced disturbance factor
is described as follows.

ε =
xd − x
‖xd − x‖ · Step · Rand() (17)

After the disturbance, the position of the search agent is updated by the following equation.

x = x + u · Rand()⊕ ε (18)

where, u is the coefficient that defines the perturbation distance, Rand() is a random number between
(−1, 1), Step is the step size of the search agent moving at the time of disturbance, xd is the position at
time d, x is the current best position, ⊕ represents the point-to-point multiplication.

In the Equation (18), (xd − x)/‖xd − x‖ is selected for the nature of fitness function, when the
fitness function solves the maximum value problem, select (xd − x)/‖xd − x‖; if the minimum value is
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solved, then (xd − x)/‖xd − x‖ is selected. When the perturbation result is unchanged, the disturbed
structure is allowed to enter the next main loop.

3.3. Improved WOA with Perceptual Disturbances and Complex Paths

The algorithm should search out a better position as fast as possible in the initial period of the
disturbance. In the later stages of the perturbation, the search agent can perform a more thorough
search near the target to improve the search accuracy. For the above given formula, the moving step
size of the search agents is redefined as:

Step = Stepmin + (Stepmax − Stepmin)× N−n
N

s.t. i f Step > Stepmax

then Step = Stepmax

(19)

where Stepmin is the minimum value of the moving step, Stepmax is the maximum value of the moving
step, N is the maximum number of iterations and n is the current number of iterations.

It can be seen from the above equations, the value of Step is the maximum value from the
beginning of the iteration and the minimum at the end of the iteration. The algorithm procedure of the
complex path-perceptual disturbance WOA (CP-PDWOA) is described as follows.

Step 1: Initialization. Randomly generate N search agents and initialize their locations.
Step 2: Realization of searching path. In this paper, the moving path of the search agents is

improved, but the shrinking idea of the searching path is constant. Randomly generate a number
p ∈ (0, 1). When p < 0.5, the shrinking encircling mechanism is executed so as to narrow the search
radius. When p > 0.5, the method of the spiral updating position is executed. The above two steps are
not followed by order and are random implemented.

Step 3: Update locations. The value of
∣∣∣∣→A∣∣∣∣ in Equation (5) is the criterion for the search agent to

update the next location. When
∣∣∣∣→A∣∣∣∣ ≥ 1, the search agent randomly selects an agent as a reference

for the next move, which is to ensure the ergodicity of the algorithm. When
∣∣∣∣→A∣∣∣∣ ≤ 1, the search

agent chooses the current optimal agent as the reference for the next move, which is to ensure the
convergence of the algorithm.

Step 4: Perceived perturbation. The best search agent at each iteration is disturbed. Then the
position of the search agent is tested after the perturbation, and the test result is compared with
the search agent obtained from the last disturbance to select the position of the better search agent.
After a number of disturbances, a good set of search agents is obtained, and the best position Xbest
is selected.

Step 5: Determine whether to terminate the iteration. If the fitness value f (Xbest) reaches the
termination condition, Xbest is the optimal solution. If it does not reached, the solution group obtained
by Step 4 returned to Step 2 for the next iteration.

It must be explained that Step 2 and Step 3 are executed at the same time when the algorithm is
ran. In this paper, it is decomposed into two steps in order to facilitate the expression.

4. Simulation and Results Analysis

4.1. Selection of Testing Functions

In order to test the performance of the improved WOA, 23 benchmark functions are selected in
this paper [41,42]. The expressions of the functions are shown in Table 1 in details.
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Table 1. Testing functions.

Function Function Expression Range Fmin

F1 f1(x) =
d
∑

i=1
x2

i [−100,100] 0

F2 f2(x) =
d
∑

i=1
|xi|+ ∏n

i=1|xi| [−10,10] 0

F3 f3(x) =
d
∑

i=1

(
∑i

j−1 xj

)2
[−100,100] 0

F4 f4(x) = maxi{|xi|, 1 ≤ i ≤ n} [−100,100] 0

F5 f5(x) =
d−1
∑

i=1
(100(xi+1 − xi

2) + (xi − 1)2) [−30,30] 0

F6 f6(x) = ∑d
i=1([xi + 0.5])2 [−100,100] 0

F7 f7(x) = ∑d
i=1 ix4

i + random[0, 1) [−1.28,1.28] 0

F8 f8(x) = ∑n
i=1−xi sin

(√
xi
)

[−500,500] −418.9 × 5

F9 f9(x) =
d
∑

i=1
(xi

2 − 10cos(2πxi) + 10) [−5.12,5.12] 0

F10 f10(x) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n ∑n

i=1 cos(2πxi)
)

+20 + e
[−32,32] 0

F11 f11(x) = 1
4000

(
n
∑

i=1
(x2i)

)
−
(

n
∏
i=1

cos( xi√
i
)

)
+ 1 [−600,600] 0

F12

f12(x) = π
n

{
10 sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1
]
+ (yn + 1)2

}
+∑n

i=1 u(xi, 10, 100, 4)

yi = 1 + xi+1
4 ; u(xi, a, k, m) =


k(xi − a)m

0
k(−xi − a)m

xi > a
−a < xi < a

xi < −a

[−50,50] 0

F13
f13(x) = 0.1

{
sin2(3πx1) + ∑n

i=1 (xi − 1)2[1 + sin2(3πxi+1)
]

+(xn − 1)2[1 + sin2(3πxi+1)
]
}+ ∑n

i=1 u(xi, 5, 100, 4)
[−50,50] 0

F14 f14 = ( 1
500 + ∑25

j=1
1

j+∑2
i=1 (xi−aij)

6 )
−1

[−65,65] 1

F15 f15 = ∑11
i=1 [ai−

x1(b2
i +b1x2)

b2
i +b1b3+b4

]2 [−5,5] 0.0003

F16 f16 = 4x2
1 − 2.1x4

1 +
1
3 x6

1+x1x2 − 4x2
2 + 4x4

2 [−5,5] −1.0316

F17 f17 = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10(1− 1

8π ) cos x1 + 10 [−5,5] 0.398

F18 f18 = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 + 6x1x2 + 3x2

2)]

×[30 + (2x1 − 3x2)
2] × (18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2))

[−2,2] 3

F19 f19 = −∑4
i=1 ci exp(−∑3

j=1 aij(xij − pij)
2
) [1,3] −3.80

F20 f20 = −∑4
i=1 ci exp(−∑6

j=1 aij(xij − pij)
2
) [0,1] −3.32

F21 f21 = −∑5
i=1

[
(X− ai)(X− ai)

T + ci

]−1
[0,10] −10.1513

F22 f22 = −∑7
i=1

[
(X− ai)(X− ai)

T + ci

]−1
[0,10] −10.4028

F23 f23 = −∑10
i=1

[
(X− ai)(X− ai)

T + ci

]−1
[0,10] −10.5363

The three-dimensional images of a partial functions are shown in Figure 13a–i.



Symmetry 2018, 10, 210 14 of 31

Symmetry 2018, 10, x FOR PEER REVIEW  14 of 31 

 

F22 
17

22 1
( )( )Ti i ii

f X a X a c



      

 
[0,10] −10.4028 

F23 
110

23 1
( )( )Ti i ii

f X a X a c



      

 
[0,10] −10.5363 

The three-dimensional images of a partial functions are shown in Figure 13a–i. 

 
(a) F1 

 
(b) F6 

-100
-50

0
50

100

-100

-50

0

50

100
0

0.5

1

1.5

2

x 10
4

x
1

x
2

F
1(

 x
1 ,

 x
2 )

-200
-100

0
100

200

-200

-100

0

100

200
0

0.5

1

1.5

2

x 10
11

x
1

x
2

( 
x 1 ,

 x
2
 )

Figure 13. Cont.



Symmetry 2018, 10, 210 15 of 31

Symmetry 2018, 10, x FOR PEER REVIEW  15 of 31 

 

 
(c) F4 

 
(d) F8 

 
(e) F9 

-100
-50

0
50

100

-100

-50

0

50

100
0

20

40

60

80

100

x
1

x
2

( 
x 1 ,

 x
2 )

-500

0

500

-500

0

500
-1000

-500

0

500

1000

x
1

x
2

( 
x 1 ,

 x
2 )

-5

0

5

-5

0

5
0

20

40

60

80

100

x
1

x
2

( 
x 1 ,

 x
2 )

Figure 13. Cont.



Symmetry 2018, 10, 210 16 of 31

Symmetry 2018, 10, x FOR PEER REVIEW  16 of 31 

 

 
(f) F12 

 
(g) F14 

 
(h) F20 

-10
-5

0
5

10

-10

-5

0

5

10
0

50

100

150

x
1

x
2

( 
x 1 ,

 x
2 )

-100
-50

0
50

100

-100

-50

0

50

100
0

100

200

300

400

500

x
1

x
2

( 
x 1 ,

 x
2 )

-5

0

5

-5

0

5
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

x
1

x
2

( 
x 1 ,

 x
2 )

Figure 13. Cont.



Symmetry 2018, 10, 210 17 of 31

Symmetry 2018, 10, x FOR PEER REVIEW  17 of 31 

 

 
(i) F21 

Figure 13. Three-dimensional images of some optimization functions. 

4.2. Simulation Results and Analysis 

This paper tests the computational power of WOA by adopting 23 classical benchmark 
functions. Among them, the number of search agents is 30, the maximum number of iterations is 500. 
Each function runs 30 times and then takes the average to plot the convergence curve. Benchmark 
functions can be divided into four groups: unimodal, multimodal, fixed-dimension multimodal and 
composite functions. Functions F1–F7 are typical unimodal since they have only one global optimum. 
These functions allow to evaluate the exploitation capability of the investigated meta-heuristic 
algorithms. The functions F8–F23 are multimodal functions. Unlike unimodal functions, multimodal 
functions include many local optima whose number increases exponentially with the problem size 
(number of design variables). Therefore, this kind of test problems turns very useful if the purpose is 
to evaluate the exploration capability of an optimization algorithm. 

In this paper, we completed the simulation in matlab2010b environment, the computer 
configuration is Windows 7. The related MATLAB code of CP-PDWOA is available online at 
https://github.com/sunweizhen01/CP-PDWOA.git. Firstly, in order to verify the effectiveness of 
the perturbation mechanism, the convergence curves of the original WOA and the convergence 
curves after the introduction of the disturbance mechanism only with logarithmic spiral curve are 
compared. Then, the search path of the WOA with the disturbance mechanism is replaced by several 
spiral curves listed in Table 1 so as to find out the search path with the best optimization performance. 
The paper chooses several functions from above mentioned classes as a representative, and their 
convergence curves are shown in the following Figures 14 and 15. The convergence performances of 
all the different methods are shown in Table 2. The convergence curves of the representative functions 
are shown in Figure 14a–i to verify the validity of the disturbance. 

It can be seen from the Figure 14 that the convergence effect of the improved WOA with the 
introduction of the perturbation is better than the standard WOA, which proves that the perturbation 
mechanism is effective and can make the algorithm have good convergence speed and optimization 
precision. Next, the simulation results are carried out to verify which search has best search 
performance. Therefore, the convergence curves generated by the improved WOA with these 
proposed paths are compared. 

-5

0

5

-5

0

5
-0.5

-0.4

-0.3

-0.2

-0.1

0

x
1

x
2

( 
x 1 ,

 x
2 )

Figure 13. Three-dimensional images of some optimization functions.

4.2. Simulation Results and Analysis

This paper tests the computational power of WOA by adopting 23 classical benchmark functions.
Among them, the number of search agents is 30, the maximum number of iterations is 500. Each function
runs 30 times and then takes the average to plot the convergence curve. Benchmark functions can be
divided into four groups: unimodal, multimodal, fixed-dimension multimodal and composite functions.
Functions F1–F7 are typical unimodal since they have only one global optimum. These functions allow to
evaluate the exploitation capability of the investigated meta-heuristic algorithms. The functions F8–F23
are multimodal functions. Unlike unimodal functions, multimodal functions include many local optima
whose number increases exponentially with the problem size (number of design variables). Therefore,
this kind of test problems turns very useful if the purpose is to evaluate the exploration capability of an
optimization algorithm.

In this paper, we completed the simulation in matlab2010b environment, the computer
configuration is Windows 7. The related MATLAB code of CP-PDWOA is available online at
https://github.com/sunweizhen01/CP-PDWOA.git. Firstly, in order to verify the effectiveness of the
perturbation mechanism, the convergence curves of the original WOA and the convergence curves
after the introduction of the disturbance mechanism only with logarithmic spiral curve are compared.
Then, the search path of the WOA with the disturbance mechanism is replaced by several spiral curves
listed in Table 1 so as to find out the search path with the best optimization performance. The paper
chooses several functions from above mentioned classes as a representative, and their convergence
curves are shown in the following Figures 14 and 15. The convergence performances of all the different
methods are shown in Table 2. The convergence curves of the representative functions are shown in
Figure 14a–i to verify the validity of the disturbance.

It can be seen from the Figure 14 that the convergence effect of the improved WOA with the
introduction of the perturbation is better than the standard WOA, which proves that the perturbation
mechanism is effective and can make the algorithm have good convergence speed and optimization
precision. Next, the simulation results are carried out to verify which search has best search
performance. Therefore, the convergence curves generated by the improved WOA with these proposed
paths are compared.

https://github.com/sunweizhen01/CP-PDWOA.git
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In Figure 14, LSC represents the search path used by the original WOA, namely a spiral curve.
Therefore, we use LSC to represent the original WOA and Disturbance-LSC to introduce PDWOA
after perceptual perturbation. As can be seen from Figure 14, the perturbation-inducing WOA has
significantly better convergence and convergence than the original WOA. Specifically, when the
two methods converge to the same optimal value, Disturbance-LSC cannot reach the optimal value in
fewer iterations. In general, Disturbance-LSC can converge to a better optimal value than LSC. There is
a special case in these examples, F8. Through analysis of this function, we find that in the range of its
range, we calculate the minimum value, and the WOA algorithm and PDWOA algorithm give the
minimum value as far less than this value. The minimum value searched by other algorithms, such as
GSA, PSO, etc., is much smaller than this value, which has been calculated in the paper [7]. So far,
we have not found the specific reason for this problem.

Through the above analysis and Figure 14, we can find that PDWOA proposed in this paper has
better performance than WOA. In the literature [7], WOA has been compared with many algorithms
to determine the performance of WOA. In the following, on the basis of this research, we have studied
the replacement of PDWOA algorithm search path. In order to ensure the validity of the proposed
method, we have introduced the remaining eight spiral curves.

In order to distinguish it from the simulation results of the logarithmic spiral curve of the
perturbation simulation part, we compare the different search path’s effect on the convergence
performance of the algorithm. We define the name of the logarithmic spiral curve as Lo.
From a numerical perspective, the convergence curve represented by Lo is exactly equal to the
convergence curve of Disturbance-LSC.
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It can be seen from the convergence curves of the benchmark functions and the comparison of
the data in Table 2 that in the case of the same number of iterations, the convergence performance of
the WOA using the Archimedes spiral curve as the search path of the search agents is superior to the
logarithmic spiral curves used in the original algorithm and other seven spiral curves. In particular,
for the function F5, F6, F10 and F13, the Archimedes spiral curve makes the convergence speed and
accuracy of the algorithm improved obviously compared to other seven helical curves (search paths).
Especially for the function F5, this function should be able to converge to 0, but the original WOA
can only converge to 27.86, while the convergence of several other swarm intelligent algorithms is
not very satisfactory [7]. However, when the search path is changed to the Archimedes spiral curve,
the convergence result is obviously close to zero. On the other hand, seen from the three-dimensional
images of function F8, F9 and F14, these three functions are very complex multipeak functions,
which have many local minimum. In the CP-PDWOA, the added perturbation mechanism can make
the algorithm effectively avoid the local minim and search the extreme points, and the convergence
speed of the algorithm is obviously improved. It is shown that the improved idea proposed in this
paper enhances the ability of the algorithm to avoid the local minimum. From the convergence curves
of the functions and the data in Table 2, it can be seen that the improved whale optimization algorithm
has excellent search performance.
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Table 2. Comparison of optimization results obtained for the unimodal, multimodal and fixed-dimension multimodal benchmark functions.

Function
L0 Ar Ro Hy Pe-I Pe-II Fe Li

AVE STD AVE STD AVE STD AVE STD AVE STD AVE STD AVE STD AVE STD

F1 1.41 × 10−30 4.91 ×
10−30

3.64 ×
10−106 4992.4116 2.065 ×

10−47 6816.3959 1.001 ×
10−48 8014.5287 1.031 ×

10−86 6343.7262 7.242 ×
10−71 5094.0843 3.096 ×

10−60 5251.4799 3.638 ×
10−49 7360.7530

F2 1.06 × 10−21 2.39 ×
10−21

1.26 ×
10−105 1012501 4.91 ×

10−65 42530040813 8.33 ×
10−43 19429812933 3.22 ×

10−52 97498186729 3.22 ×
10−52 5463750779 2.66 ×

10−33 493771528062 4.66 × 10−36 14453630723

F3 21,533.06 15,903.34 17,308.09 61,432.76 49,342.12 22,646.55 37,706.46 22,712.248 55,440.039 19,449.57 50,199.04 10,850.31 69,415.32 25,663.15 30,810.03 36,337.14

F4 0.072581 0.39747 0.0240 10.750 8.1417 35.1489 7.8327 19.833 0.7614 5.7955 1.1439 15.942 1.0324 15.568 3.8082 24.589

F5 27.86558 0.763626 0.445 21966964 28.789 17463450 27.779 196730 10.637 197611 1.651 209162 8.598 258619 5.436 226382

F6 3.116266 0.532429 0.01752 8622.984 0.0001208 5866.599 0.010163 5806.449 0.01166 7645.330 0.00738 6855.553 0.01820 6264.7876 0.054570 4673.773

F7 0.001425 0.001149 0.000456 6.0642 0.00617 8.95037 0.001953 10.1904 0.00352 10.1742 0.00317 7.3495 0.00564 7.1875 0.000123 9.778

F8 −5080.76 695.7968 −12,569.062 882.164 −8103.505 784.832 −7574.253 385.518 −7747.811 421.263 −9937.307 625.755 −8163.108 395.22 −11,050.707 1125.405

F9 0 0 0 49.058 0 75.368 0 69.589 0 69.735 0 87.804 0 65.9588 0 60.5413

F10 7.4043 9.89757 8.88 ×
10−16 2.9449 4.44 ×

10−15 2.9965 4.44 ×
10−15 3.5481 8.88 ×

10−16 3.3239 8.88 ×
10−16 3.0169 7.99 ×

10−16 2.79940 1.39 ×
10−13 3.05938

F11 0.00028 0.00158 9.9767 ×
10−6 45.548 0 50.372 1.5259 ×

10−10 62.525 7.414 ×
10−10 54.537 1.1872 ×

10−13 55.4545 0.00076571 66.1365 3.4649 ×
10−5 50.2502

F12 0.33967 0.21486 0.00103 43593546 0.0335 48335777 0.5537 24074879 0.0631 46483837 0.1670 35041377 0.0273 39717531 0.0370 51384616

F13 1.88901 0.26608 0.0052 57915015 1.6642 73268462 0.1307 89315333 0.6859 96698854 0.2089 96675467 1.0066 68800044 1.3849 78754257

F14 2.11197 2.49859 0.99880 3.5538 2.9821 5.2941 0.99801 4.3043 0.9980 22.0250 0.9980 0.81930 2.9821 8.1928 2.9821 0.3263

F15 0.00057 0.00032 0.00030 0.00055 0.00031 0.01003 0.00033 0.01561 0.00032 0.00195 0.00033 0.00550 0.00071 0.00363 0.00037 0.01032

F16 −1.0316 4.2 × 10−7 −1.0316 4.2 × 10−7 -1.0316 4.2 × 10−7 −1.0316 4.2 × 10−7 −1.0316 4.2 × 10−7 −1.0316 4.2 × 10−7 −1.0316 4.2 × 10−7 −1.0316 4.2 × 10−7

F17 0.39791 2.7 × 10−5 0.0817 2.7 × 10−5 0.39791 2.7 × 10−5 0.39791 2.7 × 10−5 0.39791 2.7 × 10−5 0.39791 2.7 × 10−5 0.39791 2.7 × 10−5 0.39791 2.7 × 10−5

F18 3 4.22 ×
10−15 0.3098 7.65 × 10−18 3 6.51 × 10−15 3 4.36 × 10−15 3 3.12 × 10−15 3 2.13 × 10−15 3 5.63 × 10−15 3 4.22 × 10−15

F19 −3.85616 0.002706 −3.8621 0.0495 −3.8625 0.1135 −3.8627 0.0110 −3.8622 0.00087 −3.8599 0.0030 −3.8486 0.0024 −3.8612 0.0165

F20 −2.98105 0.376653 −3.32165 0.1012356 −3.31256 0.118835 −3.31936 0.191023 −3.31844 0.750346 −3.04178 0.055936 −2.83532 0.078376 −3.32126 0.066325

F21 −7.04918 3.629551 −10.152 0.8923 −5.055 0.5159 −5.054 0.4053 −2.627 0.1699 −5.0546 0.3044 −5.05583 0.5427 −9.629 1.25043

F22 −8.18178 3.829202 −10.4023 1.2051 −3.7242 0.19741 −10.4020 1.4238 −10.4014 2.3170 −2.7658 0.2601 −5.0876 0.5905 −10.4024 2.6105

F23 −9.34238 2.414737 −10.5361 1.1602 −5.1185 1.3741 −5.1241 1.1746 −3.8351 0.3774 −3.8354 0.4215 −5.0740 1.16607 −5.1166 1.2442
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As can be seen from Figure 15f, when the average value of the function F12 is searched, the areas
of the convergence curves corresponding to Lo and Hy are equal, and there is only a slight difference
in the early stage. This is not surprising, because from the convergence results of all the models, their
convergence results do not think that there are huge differences in other functions; From the paths of
the two models, it can be seen that the approximate convergence curve is obtained by adjusting the
parameters of the function. The main reason is that these two models fall into the same local extreme
point, so we get the same convergence curve, which is also related to the initialization of the agent.
Because in order to ensure the feasibility of the simulation, we chose the pseudo-random number as
the initial position of the agent.

It is concluded that the introduction of perceptual perturbation not only makes the searching
of agents more purposeful, but also makes the location of search agents more diversified and
prevents the algorithm from falling into local minim. At the same time, the moving step size of
the search agent can be adjusted at different simulation phase so as to ensure that the algorithm in
the early search has a strong ability to exploit and in the late search has a stronger explore capability.
This ensures the accuracy of the algorithm searching process, but also makes the algorithm have
a faster convergence rate.

5. Conclusions

In this paper, we have learned from other scholars’ experience in the improvement of swarm
intelligence algorithms, and improved the performance of WOA by introducing disturbance factors.
Then the WOA search mechanism is analyzed and the logarithmic spiral curve of equal pitch is used as
the search path of the agent. The simulation results also prove that the performance of the equal-pitch
Archimedean spiral curve is superior to other types of spiral curve. When collating simulation and
algorithm, we found that if we randomly define different search paths for different agents in the same
iteration, the resulting convergence performance will be better, but correspondingly, this will also
give the algorithm parameters. The adjustment brings a certain degree of difficulty. In summary,
the proposed complex path-perceptual disturbance WOA (CP-PDWOA) algorithm has a stronger
search performance.

Supplementary Materials: The related MATLAB code of CP-PDWOA is available online at https://github.com/
sunweizhen01/CP-PDWOA.git.
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