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Abstract: The Kirchhoff index, global mean-first passage time, average path length and number of
spanning trees are of great importance in the field of networking. The “Kirchhoff index” is known as
a structure descriptor index. The “global mean-first passage time” is known as a measure for nodes
that are quickly reachable from the whole network. The “average path length” is a measure of the
efficiency of information or mass transport on a network, and the “number of spanning trees” is used
to minimize the cost of power networks, wiring connections, etc. In this paper, we have selected
a complex network based on a categorical product and have used the spectrum approach to find
the Kirchhoff index, global mean-first passage time, average path length and number of spanning
trees. We find the expressions for the product and sum of reciprocals of all nonzero eigenvalues of a
categorical product network with the help of the eigenvalues of the path and cycles.

Keywords: Laplacian spectra; categorical product; Kirchhoff index; global mean-first passage time;
spanning tree

MSC: 05C12, 05C90

1. Introduction

The impact of the study of Laplacian spectra for graphs has increased due to its applications in
different fields. "Laplacian spectra have miscellaneous applications in graph theory, combinatorial
optimization, mathematical biology, computer science, machine learning and in differential geometry,
as well. Due to the wide range of applications, the Laplacian spectra of networks is a very interesting
and attractive field of research. Computations of the Laplacian spectra of networks are involved in
many results related to topological structures and dynamical processes."

" Arenas et al. [1] developed a method for understanding synchronization phenomena in
networks using Laplacian spectra. Synchronization processes in populations of locally-interacting
elements are the focus of intense research in physical, biological, chemical, technological and complex
network topologies.

Boccaletti et al. [2] focused on coupled biological and chemical systems, neural networks,
socially-interacting species, the Internet and the World Wide Web, which are only a few examples of
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systems composed of a large number of highly interconnected dynamical units. The first approach to
capture the global properties of such systems is to model them as graphs whose nodes represent the
dynamical units and whose links stand for the interactions between them.

Liu et al. [3] discussed and investigated the properties of the Laplacian matrices for n-prism
networks. They calculated the Laplacian spectra of n-prism graphs, which are both planar and
polyhedral. In particular, they derived the analytical expressions for the product and the sum of the
reciprocals of all nonzero Laplacian eigenvalues. Moreover, these results were used to handle various
problems that often arise in the study of networks including the Kirchhoff index, global mean-first
passage time, average path length and the number of spanning trees.

Ding et al. [4] discussed the Laplacian spectra of a three-prism graph and applied them.
This graph is both planar and polyhedral and belongs to the generalized Petersen graph. Using the
regular structures of this graph, they obtained the recurrent relationships for the Laplacian matrix
between this graph and its initial state of a triangle and further derived the corresponding relationships
for Laplacian eigenvalues between them. By these relationships, they obtained the analytical
expressions for the product and the sum of the reciprocals of all nonzero Laplacian eigenvalues. Finally,
they applied these expressions to calculate the number of spanning trees and mean first-passage time
(MFPT) and saw the scaling of MFPT with the network size n, which is larger than those performed on
some uniformly recursive trees.

Therefore, it is of great interest to compute the Laplacian spectra of different networks. In the
last decades, networks and applications of Laplacian spectra have been studied by many scientists,
i.e., [5]."

"Researchers have not paid much attention to applications of Laplacian spectra for networks based
on different types of graph operations. Since graph products have a very significant contribution to
describing very useful complex networks, we have considered networks based on a categorical product.
In this paper, we study the Laplacian spectra of the complex network as a categorical product network.
Categorical graph products are used to study complex networks in computer science, to understand
structures in structural mechanics and to describe multilayer networks and have many applications
in network topologies. Considering the structure of categorical product networks, we derive the
expressions for the product and sum of reciprocals of nonzero eigenvalues of the categorical product
with the help of the eigenvalues of the path and cycle. Furthermore, we compute the Kirchhoff index,
global mean first passage time, average path length and number of spanning trees using the relation of
nonzero eigenvalues to these applications."

"The Kirchhoff index K f , also simply called the resistance and denoted by R [6], of a connected
graph G on n nodes is defined by:

K f =
1
2

n

∑
i=1

n

∑
j=1

(Ω)ij (1)

where (Ω)ij is the resistance distance matrix. This formula for the Kirchhoff index reduces to [7]:

K f (G) = N
N

∑
i=2

1
νi

(2)

where νi represents the eigenvalue of the Laplacian matrix of the graph.
The global mean-first passage time (MFPT) Fij has been studied with respect to transport and

networks. The mean first passage time (MFPT) is very useful to estimate the speed of transport for
random walks on complex networks [8,9]. In fact, MFPT denoted by < FN > measures the diffusion
efficiency of random walks, which is obtained by averaging Fij over (N − 1) possible destinations and
N origins of particles:"

< FN >=
1

N(N − 1) ∑
i 6=j

Fij(N) (3)
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From ([10]), let commuting time Cij between nodes i and j be exactly 2 | E | rij, then we have:

Cij = Fij + Fji = 2 | E | rij (4)

" where | E | denotes the number of edges in G and rij is the effective resistance between two nodes i
and j. By combining the two above relations, the MFPT can be computed by the following formula:"

< FN >=
2Et

Nt(Nt − 1)

n

∑
i<j

rij(G) =
2Et

Nt − 1

Nt

∑
k=2

1
νk

(5)

" where νk are the eigenvalues of the Laplacian matrix of the graph after t iterations.
The average path length defines the average number of steps along the shortest path dij for all

possible pairs of network nodes, which is the measure of the efficiency of information or mass transport
on the network, then the average path length Dt, for G(t) (the graph after t iterations) is defined as:"

Dt =
2

Nt − 1 ∑
j>i

dij (6)

" Moreover, the shortest path dij and effective resistance rij are related by expression rij =
2dij
|N| ,

where N represents the number of nodes in the complete graph. Then, by these two relations, we have:

Dt =
2

Nt(Nt − 1)
Nt

2 ∑
j>i

rij =
Nt

Nt − 1
Nt

2
Nt

Nt

∑
k=2

1
νk

(7)

Spanning trees are very important in complex networks and play a key role in various networks.
The exact number of spanning trees Nst(Gt), for G(t), (t ≥ 1), where t shows the iterations in
constructing a graph, discussed in the next section, can be computed by Kirchhoff’s matrix tree
theorem [11]. "

" More precisely, in this paper, we have computed Laplacian spectra for categorical product
networks and have discussed their applications. After the Introduction, in the second section,
the materials and methods are discussed; in the main section, the categorical product network is
defined in an iterative way, and then, the Laplacian spectra are computed. Finally, the applications of
the Laplacian spectra are computed."

2. Materials and Methods

In this section, we state the materials and methods that are used in the main section.
"In graph theory, the direct product G× H of graphs G and H is defined as a graph such that the

vertex set of G× H is the Cartesian product V(G)×V(H) and any two vertices (u, u1) and (v, v1) are
adjacent in G× H if and only if u is adjacent with v and u1 is adjacent with v1. The direct product is
also called the tensor product or categorical product.

Let G be a graph with vertices 1, 2, . . . , n. The Laplacian matrix of G is L(G) = D(G)− A(G),
where A(G) is n× n adjacency, and the matrix of G with (i, j)− entry is equal to 1 if vertices i and j are
adjacent and 0 otherwise. D(G) is the diagonal matrix of vertices’ degrees."

Definition 1. " Consider two matrices A and B. The Kronecker product A⊗ B of two matrices A and B is
the matrix that is obtained by taking (i, j)-th entries as aijB for all i, j. The Kronecker product of the matrix
A ∈ M(p,q) with the matrix B ∈ M(r,s) is defined as (see [12,13]):" a11B . . . a1qB

.. . .
ap1B . . . apqB
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The Kronecker product has the following main properties.

”(αA)⊗ B = A⊗ (αB) = α(A⊗ B), ∀, A ∈ M(p,q), B ∈ M(r,s) and scalar α

(A⊗ B)T = AT ⊗ BT , ∀A ∈ Mp,q, B ∈ Mr,s

(A⊗ B)⊗ C = A⊗ (B⊗ C), ∀A ∈ M(m,n), B ∈ M(p,q), C ∈ M(r,s)

(A⊗ B)(C⊗ D) = AC⊗ BD, ∀A ∈ M(p,q), B ∈ M(r,s), C ∈ M(q,k), D ∈ M(s,l)

trace(A⊗ B) = trace(B⊗ A) = trace(A)trace(B), ∀A ∈ Mm, B ∈ Mn.”

"We have used the Kronecker product of matrices to find the Laplacian spectra for the categorical
product considering the spectra for the path and cycle. Let Pn denote the path with n vertices. Let Cn

be a cycle of length n. Then, their spectra can be stated as [14]:"

Lemma 1. The Laplacian eigenvalues of a path Pn are 2− 2 cos iπ
n , (i = 0, 1, . . . , n − 1). The Laplacian

eigenvalues of a cycle Cn are 2− 2 cos 2jπ
n , j = 0, 1,..., n−1.

With the help of the following flowchart in Figure 1, we will facilitate the understanding of the
proposed approach in this paper clearly.

Categorical Product of Two Graphs

Categorical Product 
of Two Paths

Categorical Product 
of Cycle-Path

Categorical Product 
of Cycle-Cycle

 1.  Laplacian Matrix
                          2. Eigen values of Laplacian Matrix

                             3. Expression for Eigen values using 
                            Kronecker Products of Matrices

Kirchhoff Index 
Global Mean-First 

Passage time 
Average Path 

Length

Number of 
Spanning Trees

Figure 1. Flowchart for the methods.

3. Main Results

3.1. Categorical Product of Two Paths and Laplacian Spectra

"Let a categorical product network of paths be constructed in an iterative way. We take categorical
product network G(t), (t ≥ 1) after t− 1 iterations. Initially at t = 1, G(1) is a path with n vertices.
For t ≥ 2, G(t) is constructed from G(t− 1); from every existing vertex in G(t− 1), a new vertex is
created so that a new path with n vertices is constructed; also, each new vertex in G(t) is connected to
the vertices in G(t− 1), shown by Figure 2. The number of vertices and edges in G(t) is Nt = nt and
Et = (2t− 2)n− (2t− 2), n ≥ 2."

"Let λt and µt be the product of all nonzero eigenvalues of Gt and the sum of reciprocals of these
eigenvalues, respectively, i.e., λt = ∏Nt

i=2 νi and µt = ∑Nt
i=2

1
νi

, where ν1 = 0 and νi, i = 2, 3, . . . , Nt

denote the Nt − 1 nonzero eigenvalues of L(Gt)."
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Theorem 1. The product and sum of reciprocal nonzero eigenvalues of L(Gt), the Laplacian matrix of G(t), are:

λt =
t−1

∏
i=0

n−1

∏
j=0

(
(2− 2 cos

jπ
n
)di+1 + dj+1(2− 2 cos

iπ
t
)− (2− 2 cos

jπ
n
)(2− 2 cos

iπ
t
)

)

µt =
t−1

∑
i=0

n−1

∑
j=0

1(
(2− 2 cos jπ

n )di+1 + dj+1(2− 2 cos iπ
t )− (2− 2 cos jπ

n )(2− 2 cos iπ
t )
)

di shows the degree of vertex i.

Proof. " Consider a categorical product network G as is shown in the figure. By the properties of the
Kronecker product of matrices, we can write the Laplacian matrix for G as [15],"

L(Gt) = L(Pn)⊗ D(Pt) + D(Pn)⊗ L(Pt)− L(Pn)⊗ L(Pt)

where D(Pn) is the diagonal matrix of order n× n; with the diagonal elements’ degree of vertices.
By using the results from linear algebra, there exists invertible matrices P and Q such that:

(L(Pn))
′
= P−1L(Pn)P, (L(Pt))

′
= Q−1L(Pt)Q

are the upper triangular matrices with diagonal elements, 2 − 2 cos π j
n , j = 0, 1, . . . , n − 1 and

2− 2 cos πi
t , i = 0, 1, . . . , t− 1, respectively. Then, using the fact that:

(P⊗Q)−1 · (L(Pn)⊗ L(Pt)) · (P⊗Q) = (P−1⊗Q−1) · (L(Pn)P⊗ L(Pt)Q) = P−1L(Pn)P⊗Q−1L(Pt)Q

is the upper triangular matrix with diagonal elements, the matrix:"

(P⊗Q)−1 · (L(Pn)⊗ D(Pt) + D(Pn)⊗ L(Pt)− L(Pn)⊗ L(Pt)) · (P⊗Q)

is upper triangular matrix with diagonal elements,

”(2− 2 cos
jπ
n
)di+1 + dj+1(2− 2 cos

iπ
t
)− (2− 2 cos

jπ
n
)(2− 2 cos

iπ
t
); (8)

i = 0, 1, . . . , t− 1, j = 0, 1, . . . , n− 1,

d1 = dt = dn = dnt = 1,

dk+1 = dnt−k = 2, k = 1, . . . , n− 2, d1+nq = dn+nq = 2, q = 1, . . . , t− 2,

all other di have a value of four.”

that are the eigenvalues for the categorical product network. Therefore:

”λt =
t−1

∏
i=0

n−1

∏
j=0

νi,j

=
t−1

∏
i=0

n−1

∏
j=0

(
(2− 2 cos

jπ
n
)di+1 + dj+1(2− 2 cos

iπ
t
)− (2− 2 cos

jπ
n
)(2− 2 cos

iπ
t
)

)
(9)

µt =
t−1

∑
i=0

n−1

∑
j=0

1
νi,j

=
t−1

∑
i=0

n−1

∑
j=0

1(
(2− 2 cos jπ

n )di+1 + dj+1(2− 2 cos iπ
t )− (2− 2 cos jπ

n )(2− 2 cos iπ
t )
)” (10)
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Corollary 1. " Let L(G2) be the Laplacian matrix of Pn × P2, the categorical product graph with n vertices
after the first iteration, t = 2, then the product and sum of the reciprocal nonzero eigenvalues of L(G2) are:"

λ2 = ∏1
i=0 ∏n−1

j=0 νi,j = ∏1
i=0 ∏n−1

j=0

(
(2− 2 cos jπ

n )di+1 + dj+1(2− 2 cos iπ
t )− (2− 2 cos jπ

n )(2− 2 cos iπ
t )
)

µ2 = ∑1
i=0 ∑n−1

j=0
1

νi,j
= ∑1

i=0 ∑n−1
j=0

1(
(2−2 cos jπ

n )di+1+dj+1(2−2 cos iπ
t )−(2−2 cos jπ

n )(2−2 cos iπ
t )
)

1

3

2

n

k

(a)

3

2

1

(b)

3

2

1

n

k

(c)

n

k

Figure 2. (a) Path Pn. (b) Grid Pn × P2 after the first iteration for t = 2. (c) General grid Pn × Pt structure.

3.2. Categorical Product of the Cycle-Path and Laplacian Spectra

Let a categorical product network of the cycle and path be constructed in an iterative way. We take
the initial categorical product network G(t), (t ≥ 1) after t− 1 iterations. Initially, at t = 1, G(1) is
a cycle with n vertices. For t ≥ 2, G(t) is constructed from G(t− 1), from every existing vertex in
G(t− 1), a new vertex is created so that a new path with n vertices is constructed; also, each new
vertex in G(t) is connected to vertices in G(t− 1), shown by Figure 3. The number of vertices and
edges in G(t) are Nt = nt and Et = 2n(t− 1), n ≥ 2.

Let λt and µt be the product of all nonzero eigenvalues of Gt and the sum of reciprocals of these
eigenvalues, respectively, i.e., λt = ∏Nt

i=2 νi and µt = ∑Nt
i=2

1
νi

, where ν1 = 0 and νi, i = 2, 3, . . . , Nt

denote the Nt − 1 nonzero eigenvalues of L(Gt)."

Theorem 2. The product and sum of reciprocal nonzero eigenvalues of L(Gt), the Laplacian matrix of G(t), are:

”λt =
t−1

∏
i=0

n−1

∏
j=0

(
(2− 2 cos

2jπ
n

)di+1 + dj+1(2− 2 cos
iπ
t
)− (2− 2 cos

2jπ
n

)(2− 2 cos
iπ
t
)

)

µt =
t−1

∑
i=0

n−1

∑
j=0

1(
(2− 2 cos 2jπ

n )di+1 + dj+1(2− 2 cos iπ
t )− (2− 2 cos 2jπ

n )(2− 2 cos iπ
t )
)”
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1

3

2

n

k

(a)

3

2

1

n

k

(b)

3

2

1

n

k

(c)

Figure 3. (a) Cycle Cn. (b) Grid Cn × P2 after the first iteration for t = 2. (c) General grid Cn × Pt structure.

Proof. Consider a categorical product network G as is shown in the figure. By the properties of the
Kronecker product of matrices, we can write the Laplacian matrix for G as:"

L(Gt) = L(Cn)⊗ D(Pt) + D(Cn)⊗ L(Pt)− L(Cn)⊗ L(Pt)

where D(Cn) is the diagonal matrix of order n× n; with the diagonal elements’ degree of vertices.
By using the results from linear algebra, there exists invertible matrices P and Q such that:

(L(Cn))
′
= P−1L(Cn)P, (L(Pt))

′
= Q−1L(Pt)Q

are the upper triangular matrices with diagonal elements, 2− 2 cos 2π j
n , j = 0, 1, . . . , n − 1 and

2− 2 cos πi
t , i = 0, 1, . . . , t− 1, respectively. Then, using the fact that:

(P⊗Q)−1 · (L(Cn)⊗ L(Pt)) · (P⊗Q) = (P−1 ⊗Q−1) · (L(Cn)P⊗ L(Pt)Q)

= P−1L(Cn)P⊗Q−1L(Pt)Q

is the upper triangular matrix with diagonal elements, the matrix:

(P⊗Q)−1 · (L(Cn)⊗ D(Pt) + D(Cn)⊗ L(Pt)− L(Cn)⊗ L(Pt)) · (P⊗Q)

is the upper triangular matrix with diagonal elements,"

(2− 2 cos
2jπ

n
)di+1 + dj+1(2− 2 cos

iπ
t
)− (2− 2 cos

2jπ
n

)(2− 2 cos
iπ
t
); (11)

i = 0, 1, . . . , t− 1, j = 0, 1, . . . , n− 1,

all di have a value of two.

that are the eigenvalues for the categorical product network. Therefore,

λt = ∏t−1
i=0 ∏n−1

j=0 νi,j

= ∏t−1
i=0 ∏n−1

j=0

(
(2− 2 cos 2jπ

n )di+1 + dj+1(2− 2 cos iπ
t )− (2− 2 cos 2jπ

n )(2− 2 cos iπ
t )
) (12)

µt = ∑t−1
i=0 ∑n−1

j=0
1

νi,j

= ∑t−1
i=0 ∑n−1

j=0
1(

(2−2 cos 2jπ
n )di+1+dj+1(2−2 cos iπ

t )−(2−2 cos 2jπ
n )(2−2 cos iπ

t )
) (13)
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3.3. Categorical Product of the Cycle-Cycle and Laplacian Spectra

" Let a categorical product network of cycles be constructed in an iterative way. We take initial
categorical product network G(t), (t ≥ 1) after t− 1 iterations. Initially, at t = 1, G(1) is a categorical
product network of cycle Cn × C3 with n vertices. For t ≥ 2, G(t) is constructed from G(t − 1),
and from every existing vertex in G(t− 1), a new vertex is created so that n vertices are constructed;
also, each new vertex in G(t) is connected to the vertices in G(t− 1), shown by Figure 4. The number
of vertices and edges in G(t) are Nt = n(t + 2) and Et = 2n(t + 2)− 2."

(a)

3

2

1

n

k

(b)

3

2

1

n

k

Figure 4. (a) Initial product Cn × C3 for t = 1. (b) Grid Cn × C4 after the first iteration for t = 2.

Let λt and µt be the product of all nonzero eigenvalues of Gt and the sum of reciprocals of these
eigenvalues, respectively, i.e., λt = ∏Nt

i=2 νi and µt = ∑Nt
i=2

1
νi

, where ν1 = 0 and νi, i = 2, 3, . . . , Nt

denote the Nt − 1 nonzero eigenvalues of L(Gt)."

Theorem 3. The product and sum of the reciprocal nonzero eigenvalues of L(Gt), the Laplacian matrix
of G(t), are:

λt =
t+1

∏
i=0

n−1

∏
j=0

(
(2− 2 cos

2jπ
n

)di+1 + dj+1(2− 2 cos
2iπ

t + 2
)− (2− 2 cos

2jπ
n

)(2− 2 cos
2iπ

t + 2
)

)

µt =
t+1

∑
i=0

n−1

∑
j=0

1(
(2− 2 cos 2jπ

n )di+1 + dj+1(2− 2 cos 2iπ
t+2 )− (2− 2 cos 2jπ

n )(2− 2 cos 2iπ
t+2 )

)
Proof. Consider a categorical product network G as is shown in the figure. By the properties of the
Kronecker product of matrices, we can write the Laplacian matrix for G as:"

L(Gt) = L(Cn)⊗ D(Ct) + D(Cn)⊗ L(Ct)− L(Cn)⊗ L(Ct)

where D(Cn) is the diagonal matrix of order n× n; with the diagonal elements’ degree of vertices.
By using the results from linear algebra, there exists invertible matrices P and Q such that:

(L(Cn))
′
= P−1L(Cn)P, (L(Ct))

′
= Q−1L(Ct)Q

are the upper triangular matrices with diagonal elements, 2 − 2 cos 2π j
n , j = 0, 1, . . . , n − 1 and

2− 2 cos 2πi
t+2 , i = 0, 1, . . . , t + 1, respectively. Then, using the fact that:

(P⊗Q)−1 · (L(Cn)⊗ L(Ct)) · (P⊗Q) =
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(P−1 ⊗Q−1) · (L(Cn)P⊗ L(Ct)Q) = P−1L(Cn)P⊗Q−1L(Ct)Q

is the upper triangular matrix with diagonal elements, the matrix:

(P⊗Q)−1 · (L(Cn)⊗ D(Ct) + D(Cn)⊗ L(Ct)− L(Cn)⊗ L(Ct)) · (P⊗Q)

is the upper triangular matrix with diagonal elements,"

(2− 2 cos 2jπ
n )di+1 + dj+1(2− 2 cos 2iπ

t+2 )− (2− 2 cos 2jπ
n )(2− 2 cos 2iπ

t+2 );
i = 0, 1, . . . , t + 1, j = 0, 1, . . . , n− 1,
d1 = dt = dn = dnt = 3, all other di have a value of four.

(14)

that are the eigenvalues for the categorical product network. Therefore:

λt = ∏t+1
i=0 ∏n−1

j=0 νi,j

= ∏t+1
i=0 ∏n−1

j=0

(
(2− 2 cos 2jπ

n )di+1 + dj+1(2− 2 cos 2iπ
t+2 )− (2− 2 cos 2jπ

n )(2− 2 cos 2iπ
t+2 )

)
”

(15)

µt = ∑t+1
i=0 ∑n−1

j=0
1

νi,j

= ∑t+1
i=0 ∑n−1

j=0
1(

(2−2 cos 2jπ
n )di+1+dj+1(2−2 cos 2iπ

t+2 )−(2−2 cos 2jπ
n )(2−2 cos 2iπ

t+2 )
) (16)

4. Applications of Laplacian Spectra

"In this section, by the use of Expressions (15) and (16), we will find the Kirchhoff index, global
mean-first passage time, average path length and the number of spanning trees."

4.1. Kirchhoff Index

" The Kirchhoff index of a connected graph G is defined as the sum of resistance distances between
all pairs of vertices, mathematically:"

K f (G(t)) = ∑
i<j

rij(G)

where rij(G) represents the resistance distance between a pair of vertices. In terms of eigenvalues for
a connected network G of order N with all its nonzero eigenvalues represented by νi; i = 2, . . . , N,
a well-known identity Kirchhoff index is defined as:

K f (G(t)) = Nt

Nt

∑
k=2

1
νk

= Nt

t−1

∑
i=0

n−1

∑
j=0

1
νi,j

, (i, j) 6= (0, 0)

The Kirchhoff index for the categorical path-path product network:"

K f (G(t)) = nt
t−1

∑
i=0

n−1

∑
j=0

1(
(2− 2 cos jπ

n )di+1 + dj+1(2− 2 cos iπ
t )− (2− 2 cos jπ

n )(2− 2 cos iπ
t )
)

(i, j) 6= (0, 0)
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The Kirchhoff index for the categorical cycle-path product network:

K f (G(t)) = nt
t−1

∑
i=0

n−1

∑
j=0

1

(2− 2 cos 2jπ
n )di+1 + dj+1(2− 2 cos iπ

t )− (2− 2 cos 2jπ
n )(2− 2 cos iπ

t )

The Kirchhoff index for the categorical cycle-cycle network:

K f (G(t)) = n(t + 2)∑t+1
i=0 ∑n−1

j=0
1

(2−2 cos 2jπ
n )di+1+dj+1(2−2 cos 2iπ

t+2 )−(2−2 cos 2jπ
n )(2−2 cos 2iπ

t+2 )

4.2. Global Mean-First Passage Time

The global mean first-passage time (MFPT) is defined as the average of the first-passage time
(FPT) between two nodes of a network. Mathematically, the global mean-first passage time (MFPT) for
G(t) is:"

< FN > =
2Et

(Nt − 1)

Nt

∑
k=2

1
νk

=
2Et

(Nt − 1)

t−1

∑
i=0

n−1

∑
j=0

1
νk

, (i, j) 6= (0, 0)

The global mean-first passage time for the categorical path-path product network:"
Since Et = (2t− 2)n− (2t− 2) and Nt = nt:

< FN > =
2((2t− 2)n− (2t− 2))

(nt− 1)

×
t−1

∑
i=0

n−1

∑
j=0

1(
(2− 2 cos jπ

n )di+1 + dj+1(2− 2 cos iπ
t )− (2− 2 cos jπ

n )(2− 2 cos iπ
t )
)

(i, j) 6= (0, 0)

The global mean-first passage time for the categorical cycle-path product network:"
Since Et = 2n(t− 1) and Nt = nt:

< FN > =
2(2n(t− 1))
(nt− 1)

×
t−1

∑
i=0

n−1

∑
j=0

1(
(2− 2 cos 2jπ

n )di+1 + dj+1(2− 2 cos iπ
t )− (2− 2 cos 2jπ

n )(2− 2 cos iπ
t )
)

The global mean-first passage time for the categorical cycle-cycle product network:
Since Et = 2n(t + 2)− 2 and Nt = n(t + 2):

< FN > =
2(2n(t + 2)− 2)

n(t + 2)− 1

×
t+1

∑
i=0

n−1

∑
j=0

1(
(2− 2 cos 2jπ

n )di+1 + dj+1(2− 2 cos 2iπ
t+2 )− (2− 2 cos 2jπ

n )(2− 2 cos 2iπ
t+2 )

)
4.3. Average Path Length

The average path length is an idea in network topology that can be defined as the average number
of steps along with the shortest paths for all possible pairs of vertices of a network. The average path
length in terms of the Laplacian eigenvalues is defined as:"

Dt =
Nt

Nt − 1

Nt

∑
k=2

1
νk

, (i, j) 6= (0, 0)
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The average path length for the categorical path-path product network:

Dt =
nt

nt− 1

t−1

∑
i=0

n−1

∑
j=0

1(
(2− 2 cos jπ

n )di+1 + dj+1(2− 2 cos iπ
t )− (2− 2 cos jπ

n )(2− 2 cos iπ
t )
)

The average path length for the categorical cycle-path product network:

Dt =
nt

nt− 1

t−1

∑
i=0

n−1

∑
j=0

1(
(2− 2 cos 2jπ

n )di+1 + dj+1(2− 2 cos iπ
t )− (2− 2 cos 2jπ

n )(2− 2 cos iπ
t ))
)

The average path length for the categorical cycle-cycle product network:

Dt =
n(t + 2)

n(t + 2)− 1

×
t+1

∑
i=0

n−1

∑
j=0

1(
(2− 2 cos 2jπ

n )di+1 + dj+1(2− 2 cos 2iπ
t+2 )− (2− 2 cos 2jπ

n )(2− 2 cos 2iπ
t+2 )

)
4.4. The Number of Spanning Trees

The number of spanning trees has a very important role in various networks, and it can be
computed using the product of nonzero eigenvalues of the Laplacian matrix [16];

NST(Gt) =
∏Nt

k=2 νi

Nt
=

At

Nt
=

∏t−1
i=0 ∏n−1

j=0 νi,j

Nt
, (i, j) 6= (0, 0)

The number of spanning trees for the categorical path-path product network:

NST(Gt) =
∏t−1

i=0 ∏n−1
j=0

(
(2− 2 cos jπ

n )di+1 + dj+1(2− 2 cos iπ
t )− (2− 2 cos jπ

n )(2− 2 cos iπ
t )
)

nt

The number of spanning trees for the categorical cycle-path product network:

NST(Gt) =
∏t−1

i=0 ∏n−1
j=0 ((2− 2 cos 2jπ

n )di+1 + dj+1(2− 2 cos iπ
t )− (2− 2 cos 2jπ

n )(2− 2 cos iπ
t ))

nt

The number of spanning trees for the categorical cycle-cycle product network:

NST(Gt) =
∏t+1

i=0 ∏n−1
j=0 ((2− 2 cos 2jπ

n )di+1 + dj+1(2− 2 cos 2iπ
t+2 )− (2− 2 cos 2jπ

n )(2− 2 cos 2iπ
t+2 ))

n(t + 2)

5. Discussion

Laplacian spectra and their applications for different networks have been studied for many years,
but the Laplacian spectra and their applications for networks based on graph operations are very
rare. Laplacian spectra are used as a tool to analyze the structure of a network, and the importance of
graph products cannot be denied in multilayer networking. Therefore, we have considered all cases
of categorical product networks to compute Laplacian spectra and further to find their applications.
The Laplacian spectra of a family of recursive trees and their applications in network coherence were
discussed in [17]. Furthermore, we have computed the Laplacian spectra of the categorical product
network and have established the expressions for the product of the nonzero Laplacian eigenvalues
and the sum of the reciprocals of all nonzero Laplacian eigenvalues. Using these expressions, we have
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computed the Kirchhoff index, also called the “network criticality”, for the categorical product network.
The enumeration of spanning trees on generalized pseudofractal networks is discussed in [18]."

6. Conclusions

In this paper, we discuss a complex network based on the categorical product and have used
the spectrum approach to find the Kirchhoff index. The global mean first-passage time (MFPT) is
computed for a complex network based on the categorical product. Moreover, using the Laplacian
spectra for the categorical product network, we compute the average path length, which is the basic
idea in network topologies. It describes the measure of the efficiency of transport (mass or information)
on a network. The last application of Laplacian spectra for the categorical product network that we
have computed was for spanning trees, which is the direct application in designing a network. We can
extend our work to different networks based on graph operations other than the categorical product."

These results are indirectly related to entropy. Using the same spectra, we have future plans
to compute the global first-passage time for maximal-entropy random walks in categorical product
networks, and the categorical product network entropy is also in our future plans using the idea given
in [19,20].
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