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Abstract: Hamacher operation is a generalization of the algebraic and Einstein operation and
expresses a family of binary operation in the unit interval [0,1]. Heronian mean can deal with
correlations of different criteria or input arguments and does not bring out repeated calculation.
The normal intuitionistic fuzzy numbers (NIFNs) can depict normal distribution information in
practical decision making. A decision-making problem was researched under the NIFN environment
in this study, and a new multi-criteria group decision-making (MCGDM) approach is herein
introduced on the basis of Hamacher operation. Firstly, according to Hamacher operation, some
operational laws of NIFNs are presented. Secondly, it is noted that Heronian mean not only takes
into account mutuality between the attribute values once, but also considers the correlation between
input argument and itself. Therefore, in order to aggregate NIFN information, we developed
some operators and studied their properties. These operators include Hamacher Heronian mean
(NIFHHM), Hamacher weighted Heronian mean (NIFHWHM), Hamacher geometric Heronian mean
(NIFHGHM), and Hamacher weighted geometric Heronian mean (NIFHWGHM). Furthermore, we
applied the proposed operators to the MCGDM problem and developed a new MCGDM approach.
The characteristics of this new approach are that: (1) it is suitable for making a decision under the
NIFN environment and it is more reasonable for aggregating the normal distribution data; (2) it
utilizes Hamacher operation to provide an effective and powerful MCGDM algorithm and to make
more reliable and more flexible decisions under the NIFN circumstance; (3) it uses the Heronian
mean operator to deal with interrelations between the attributes or input arguments, and it does not
bring about repeated calculation. Therefore, the proposed method can describe the interaction of the
different criteria or input arguments and offer some reasonable and reliable MCGDM aggregation
operators, which can open avenues for decision making and broaden perspectives of the decision
experts. Lastly, an application is given for showing the effectiveness and feasibility of the approach
presented in this paper.

Keywords: normal intuitionistic fuzzy numbers; Heronian mean; Hamacher t-conorm; Hamacher
t-norm

1. Introduction

In the MCGDM procedure, because a lot of problems are uncertain or fuzzy, the value of the input
argument is not always a real number and may be more effectively described as a fuzzy value. Zadeh’s
fuzzy set (FS) plays an important role in dealing with fuzzy number information [1], and the FS theory
has been a good tool which is suitable for various fields, including decision analysis, machine learning,
information retrieval, among others.
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However, the FS theory only defines a membership function in a domain of discourse, so it is
very difficult to describe the vagueness and uncertainty of the objective elements in real society [2].
The intuitionistic fuzzy set (denoted as IFS) theory [3] involves a non-membership function besides a
membership function. Recently, the IFS theory has been applied to the MCGDM field. Xu presented
some aggregation methods under an intuitionistic fuzzy number circumstance to settle MCGDM
problems [4,5]. The IFS was generalized to the interval-valued IFS (denoted as IVIFS) by Gargov [6]
and Atanassov [7]. Xu and Yager [8] proposed a new measurement method similar to the IVIFSs
for dealing with the MCGDM problem. Tan and Zhang [9] gave a new TOPSIS approach which
can deal with a decision-making problem with interval-valued intuitionistic fuzzy number (IVIFN)
data. Wang et al. [10] utilized the prospect value function to introduce a score method which can
settle the MCGDM problem under the IVIFN environment. Gomathi Nayagam et al. [11] defined
an accuracy function of the IVIFNs. Fuzzy number IFS (denoted as FNIFS) theory was proposed by
Liu and Yuan [12], where some basic operational laws were defined and the relationships among the
FNIFS, the IFS, and interval-valued fuzzy set (IVFS) were discussed. Shu et al. [13] introduced the
triangular IFNs (TriIFNs) and presented the operational rules which are utilized in fault-tree analysis.
Lin et al. [14] proposed some prioritized operators for the FNIF data. Furthermore, they presented
a method to deal with fuzzy number intuitionistic fuzzy MCGDM problems. Wang [15] extended
the TriIFNs and originally defined the TriIFNs and IVTriIFNs. The trapezoidal intuitionistic fuzzy
numbers (TraIFNs) [16–21] are other types of the IFNs. Some MCGDM processes were studied for the
TriIFNs or TraIFNs information [22–30].

In nature, a lot of social and economic phenomena involve some normal distribution factors,
such as random measurement error, average annual rainfall in a region, and others. Yang and Ko [31]
proposed the concept with respect to the normal fuzzy numbers (NFNs), which are very suitable
for depicting normal distribution information. Wang et al. [32,33] gave the definition of the normal
intuitionistic (NIFNs), and they introduced some operations and score function of the NIFNs. Some
MCGDM problems were discussed in order to deal with NIFN information [34,35], and some new
operators were developed. Nevertheless, these aggregation operators only focus on the impact of input
data and ordered result, and they cannot present the interrelationship of input data. Some normal
intuitionistic fuzzy Bonferroni mean operators were proposed by Liu and Liu [36] for describing
the correlation of input data. Bonferroni originally proposed the Bonferroni mean (BM) in 1950,
which considers mutuality of attribute values [37,38]. The BM operators were studied in regard to
the circumstance under which the criterion values may be other types, such as NIFNs, HFNs [39],
IFNs [40], IVIFNs [41], and IVNs [42].

Heronian mean (denoted as HM) [43–45] is another type of decision-making operator which can
also objectively express the interrelations between input data. The significant characteristics of the
HM operator are that (1) it can account for the interaction of the different criteria or input arguments,
which is very desirable in decision making; (2) it pays close attention to the aggregated input data, and
it is not the same as power operator or integral aggregation operator, which focus on the importance
of the attributes or input data; (3) it can capture the interrelation between an attribute and itself, and
take into account the correlation between an input argument and itself. From the definition of the
BM and HM operators, the BM operator indicates the correlation between the criteria ci and cj (i 6= j).
However, the correlation between ci and cj is equal to the correlation between cj and ci (i 6= j). Namely,
the BM operator results in the redundant computation. Furthermore, it ignores the correlation between
criterion ci and itself. Although the HM decision operator is similar to the BM aggregation operator,
it can settle the aforementioned shortcoming of the BM aggregation operator. At present, the HM
has been applied to aggregate the input information with the IFNs [46], the hesitant fuzzy set (HFS)
information [47] and the IVIFN [48].

However, the HM is not applied to aggregate the normal intuitionistic fuzzy number (NIFN)
arguments. The above aggregation operators only take into account the algebraic operation of the
IFNs, hesitant fuzzy set (HFS), IVIFNs, or NIFNs where the algebraic product and sum are important,
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and they can define union and intersection of the NIFNs, IVIFNs, or HFS. In conclusion, a generalized
t-conorm or t-norm can simulate union and intersection between the IFNs or IVIFNs [49,50]. According
to Archimedean t-conorm or t-norm, Xia et al. [50] generalized the Hamacher and Frank operational
laws and presented some operational laws of the IFNs. Furthermore, they introduced the weighted
average and geometric operator for the intuitionistic fuzzy MCGDM problem. Because these operators
do not integrate the weight of the attribute and order, they cannot be utilized for IVIFNs. Wang and
Liu [51,52] applied the Einstein operation to develop some operators.

Hamacher operation generalizes the algebraic and Einstein operation, and it also plays an
important role in studying aggregation method for the MCGDM problem [53]. Hamacher operation
depends on Hamacher t-norm and Hamacher t-conorm, which are a pair of dual triangular norms. In
other words, Hamacher t-norm or Hamacher t-conorm are binary operations in the unit interval [0,1]
which satisfy boundary, monotonicity, associativity, and symmetry, and they are broadly applicable
in the FS theory, fuzzy logic, and information aggregation. Especially, as for any hot research topic,
Hamacher operation has been applied to aggregate the IFN information, IVIFN information [54], or
hesitant fuzzy information.

First of all, in the practical MCGDM procedure, there are many natural phenomena which
approximately obey normal distribution. Furthermore, the criteria or input arguments are often
stochastic values or fuzzy values, and sometimes the stochastic and fuzzy values exist simultaneously.
Under these special circumstances, the IFNs cannot accurately express random information. As an
expansion of the IFNs and NFNs, the NIFNs can better describe fuzzy MCGDM problems with normal
distribution. Besides this, in the MCGDM process, there is an interaction among the different criteria
or input arguments, especially, and some unreasonable information values are determined by the
decision maker. Therefore, it is very important to determine how to depict simultaneously stochastic
and fuzzy information and how to capture the interaction of the different criteria or input arguments
in order to make a reasonable decision by more general and more flexible MCGDM approach.

According to the aforementioned analysis, we note that there are no methods aggregating NIFNs
with respect to Hamacher operation and considering the interrelationship between NIFN arguments
at the same time. The NIFNs can simultaneously describe the fuzzy and random information, and the
HM operator can better capture and handle the correlation between the different criteria or input data
and relieve the redundant computation at the same time. Hamacher operation can offer more flexible
operation or more general operation for a reasonable MCGDM procedure. Therefore, in this paper,
the motivation of the research is (1) to present some new operational laws of the NIFNs on the basis
of the Hamacher t-norm and Hamacher t-conorm; (2) to propose some new HM operators and study
some of their desirable properties; (3) to develop a new MCGDM approach which can deal with the
NIFNs information.

This paper is presented as follows. In Section 2, we review the normal intuitionistic fuzzy number,
Hamacher operation, and Heronian mean operators. In Section 3, we establish Hamacher operational
rules and their characteristics with respect to the normal intuitionistic fuzzy numbers, furthermore, we
describe the normal intuitionistic fuzzy Heronian mean aggregation operators based on Hamacher
operation of NIFNs and study their properties. According to the new Hamacher operations, the
geometric Heronian mean is extended to the NIFNs, and its weighted version is presented in Section 4.
In Section 5, we utilize new operators to make a MCGDM procedure for the NIFN information and
introduce the decision steps. In Section 6, an application is introduced to show the new approach and
the evidence of the effectiveness. We make a conclusion and present some remarks in Section 7.

2. Preliminaries

Some notions and operational rules with respect to NIFNs are introduced in this section, and the
definition of Heronian mean operator is given.



Symmetry 2018, 10, 199 4 of 34

2.1. Normal Intuitionistic Fuzzy Number

Definition 1. [31] If R is a real number set, and x, α, σ ∈ R , A = (α, σ) is a normal fuzzy number (NFN)
whose membership function is presented

A(x) = e−(
x−a

σ )
2
, σ > 0 (1)

Definition 2. [33] If X is a finite nonempty set, a normal intuitionistic fuzzy number (NIFN)A =

〈(α, σ), µA, vA〉 is presented in the following, where µA is the membership function and vA is the
non-membership function, and they satisfy 0 ≤ µA ≤ 1, 0 ≤ vA ≤ 1, 0 ≤ µA + vAv ≤ 1.

µA(x) = µAe−(
x−α

σ )
2
, x ∈ X (2)

vA(x) = 1− (1− vA)e−(
x−α

σ )
2
, x ∈ X (3)

Compared with the classical IFNs, the non-membership function of the NIFNs can more
synthetically capture the fuzziness and uncertainty of objects. From the definition of NIFNs, its
universe of discourse is expanded from discrete to continuous, and it can effectively describe a
large number of normal distributions under the socioeconomic environment. In the following, some
operational rules of the NIFNs were defined in [33].

Let Ai = 〈(αi, σi), µi, vi〉 , i = 1, 2, and A = 〈(α, σ), µ, v〉, γ > 0, λ > 0, then

A1 ⊕ A2 = 〈(α1 + α2, σ1 + σ2), µ1 + µ2 − µ1µ2, v1v2〉 (4)

A1 ⊗ A2 =

〈(
α1α2, α1α2

√
σ2

1
α2

1
+

σ2
2

α2
2

)
, µ1µ2, v1 + v2 − v1v2

〉
(5)

λA =
〈
(λα, λσ), 1− (1− µ)λ, vλ

〉
(6)

Aλ =
〈(

αλ, λ
1
2 αλ−1σ

)
, µλ, 1− (1− v)λ

〉
(7)

The score and accuracy function with respect to NIFNs are given as follows [33]:

S1(A) = α(µA − vA), S2(A) = σ(µA − vA) (8)

H1(A) = α(µA + vA), H2(A) = σ(µA + vA) (9)

In order to rank any two NIFNs, the following method was introduced by Wang and Li [33].

If S1(A1) > S1(A2), then A1 > A2;
If S1(A1) = S1(A2), and H1(A1) > H1(A2), then A1 > A2;
If S1(A1) = S1(A2) and H1(A1) = H1(A2), then;
If S2(A1) < S2(A2) then A1 > A2;
If S2(A1) = S2(A2) and H2(A1) < H2(A2) then A1 > A2;
If S2(A1) = S2(A2) and H2(A1) = H2(A2) then A1 = A2.

2.2. Hamacher t-Norm and Hamacher t-Conorm

In FS theory, t-conorm (T∗) and t-norm (T) are very important to the generalization of intersection
or union of fuzzy sets [34,42,46,55–61].
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Definition 3. [46] If A and B are IFSs, then the union and intersection of A and B are expressed

A ∪TT∗ B = {〈x, T∗(µA(x), µB(x)), T(vA(x), vB(x))〉, x ∈ X} (10)

A ∩TT∗ B = {〈x, T(µA(x), µB(x)), T∗(vA(x), vB(x))〉, x ∈ X} (11)

Hamacher defined the Hamacher t-norm and Hamacher t-conorm [10,56]:

Tγ(x, y) =
xy

γ + (1− γ)(x + y− xy)
, γ > 0 (12)

T∗γ(x, y) =
x + y− xy− (1− γ)xy

1− (1− γ)xy
, γ > 0 (13)

Especially, when γ = 1, Hamacher t-norm and Hamacher t-conorm transform into the algebraic
t-norm and t-conorm:

T(x, y) = xy, T∗(x, y) = x + y− xy (14)

If γ = 2, Hamacher t-norm and Hamacher t-conorm are respectively equal to the Einstein t-norm
and t-conorm [39].

T(x, y) =
xy

1 + (1− x)(1− y)
T∗(x, y) =

x + y
1 + xy

(15)

2.3. Heronian Mean

Definition 4. [43] Let ai(i = 1, 2, · · · , n) ∈ R, which is greater than zero. The basic Heronian mean (BHM)
is defined as follows

BHM(a1, a2, · · · , an) =
2

n(n + 1)

n

∑
i=1

n

∑
j=i

√
aiaj (16)

Based on the BHM, Yu and Wu [48] applied the parameters p and q to the BHM and obtained a
more general HM version, and they proposed the geometric Heronian mean.

Definition 5. [48] Let p, q > 0 and ai ∈ R, ai ≥ 0 (i = 1, 2, · · · , n), then the HM aggregation operator is
presented in the following

HMp,q(a1, a2, · · · , an) =

(
2

n(n + 1)

n

∑
i=1

n

∑
j=i

ap
i aq

j

) 1
p+q

(17)

It is easy to notice that the HM reduces to the BHM when p = q = 1
2 .

Definition 6. [48] If p, q ≥ 0 and p, q are not equal to zero at the same time, ai ∈ R, ai ≥ 0, i = 1, 2, · · · , n,
then the geometric Heronian mean (denoted as GHM) has the following form

GHMp,q(a1, a2, · · · , an) =
1

p + q

(
n

∏
i=1,j=i

(
pai + qaj

) 2
n(n+1)

)
(18)
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3. Normal Intuitionistic Fuzzy Hamacher Heronian Mean Operator and Its Weighted Form

3.1. Hamacher Operational Laws of the NIFNs

From Definition 3—Hamacher t-norm and Hamacher t-conorm—Hamacher intersection and sum
between NIFNs are introduced.

Suppose that Ai = 〈(αi, σi), µi, vi〉i = 1, 2, A = 〈(α, σ), µ, v〉, γ > 0 λ>0. The Hamacher
operational rules of the NIFNs are presented as follows:

A1 ⊕H A2 =

〈
(α1 + α2, σ1 + σ2),

µ1 + µ2 − µ1µ2 − (1− γ)µ1µ2

1− (1− γ)µ1µ2
,

v1v2

γ + (1− γ)(v1 + v2 − v1v2)

〉
(19)

A1 ⊗H A2 =

〈(
α1α2, α1α2

√
σ2

1
α2

1
+

σ2
2

α2
2

)
, µ1µ2

γ+(1−γ)(µ1+µ2−µ1µ2)
, v1+v2−v1v2−(1−γ)v1v2

1−(1−γ)v1v2

〉
(20)

λA =

〈
(λα, λσ),

(1 + (γ− 1)µ)λ − (1− µ)λ

(1 + (γ− 1)µ)λ + (γ− 1)(1− µ)λ
,

γvλ

(1 + (γ− 1)(1− v))λ + (γ− 1)vλ

〉
(21)

Aλ =

〈(
αλ, λ

1
2 αλ−1σ

)
, γµλ

(1+(γ−1)(1−µ))λ+(γ−1)µλ
, (1+(γ−1)v)λ−(1−v)λ

(1+(γ−1)v)λ+(γ−1)(1−v)λ

〉
(22)

Furthermore, according to Definition 3 and the properties of Hamacher t-norm and t-conorm, the
above operation results are all NIFNs. Especially, when γ = 1, the above operational rules reduce to
the operational laws of Definition 2. Therefore, the Hamacher operational laws of NIFNs extend the
algebraic operational rules of NIFNs.

Theorem 1. If Ai = 〈(αi, σi), µi, vi〉i = 1, 2, 3, A = 〈(α, σ), µ, v〉 and γ > 0, λ > 0, λi > 0(i = 1, 2), then

A1 ⊕H A2 = A2 ⊕H A1 (23)

A1 ⊗H A2 = A2 ⊗H A1 (24)

(A1 ⊕H A2)⊕H A3 = A1 ⊕H (A2 ⊕H A3) (25)

(A1 ⊗H A2)⊗H A3 = A1 ⊗H (A2 ⊗H A3) (26)

λ(A1 ⊕H A2) = (λA1)⊕H (λA2) (27)

(λ1 A)⊕H (λ2 A) = (λ1 + λ2)A (28)

Aλ1 ⊗H Aλ2 = A(λ1+λ2) (29)

Aλ
1 ⊗H Aλ

2 = (A1 ⊗H A2)
λ (30)(

Aλ1
)λ2

= Aλ1λ2 (31)

λ1(λ2 A) = (λ1λ2)A (32)

According to the Hamacher operational rules of NIFNs, Theorem 1 is easily proved, so the proof
is omitted.
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3.2. Normal Intuitionistic Fuzzy Hamacher Heronian Mean Operator and Its Weighted Form

Definition 7. Let Ai = 〈(αi, σi), µi, vi〉(i = 1, 2, · · · , n) be the NIFNs, and p, q ≥ 0, then the normal
intuitionistic fuzzy Hamacher Heronian mean (NIFHHM) operator is defined in the following formula

NIFHHMp,q(A1, A2, · · · , An) =

(
2

n(n + 1)

(
n
⊕H

i=1,j=i

(
Ap

i ⊗H Aq
j

))) 1
p+q

(33)

Lemma 1. Let Ai = 〈(αi, σi), µi, vi〉, (i = 1, 2, · · · , n) be NIFNs, then

Ap
i ⊗H Aq

j =

〈α
p
i α

q
j , α

p
i α

q
j

√√√√p
σ2

i
α2

i
+ q

σ2
j

α2
j

, µ
pq
ij , vpq

ij

〉
(34)

µ
pq
ij =

γµ
p
i µ

q
j(

(1 + (γ− 1)(1− µi))
p ×

(
1 + (γ− 1)

(
1− µj

))q
)
+ (γ− 1)µp

i µ
q
j

(35)

vpq
ij =

(
(1 + (γ− 1)vi)

p ×
(
1 + (γ− 1)vj

)q
)
−
(
(1− vi)

p ×
(
1− vj

)q
)

(
(1 + (γ− 1)vi)

p ×
(
1 + (γ− 1)vj

)q
)
+ (γ− 1)

(
(1− vi)

p ×
(
1− vj

)q
) (36)

Lemma 2. If Ai = 〈(αi, σi), µi, vi〉, λi > 0(i = 1, 2, · · · , n) are NIFNs, then

n
⊕H
i=1

Aiλi =

〈(
n

∑
i=1

λiαi,
n

∑
i=1

λiσi

)
, µ⊕n , v⊕n

〉
(37)

µ⊕n =

n
∏
i=1

(1 + (γ− 1)µi)
λi −

n
∏
i=1

(1− µi)
λi

n
∏
i=1

(1 + (γ− 1)µi)
λi + (γ− 1)

n
∏
i=1

(1− µi)
λi

(38)

v⊕n =

γ
n
∏
i=1

vλi
i

n
∏
i=1

(1 + (γ− 1)(1− vi))
λi + (γ− 1)

n
∏
i=1

vλi
i

(39)

Lemma 3. Let Ai = 〈(αi, σi), µi, vi〉 λi > 0 i = 1, 2, · · · , n be a set of NIFNs, then

n
⊗H
i=1

Aλi
i =

〈 n

∏
i=1

α
λi
i ,

(
n

∏
i=1

α
λi
i

)(
n

∑
i=1

λi
σ2

i
α2

i

) 1
2
, µ⊗n , v⊗n

〉
(40)

µ⊗n =

γ
n
∏
i=1

µ
λi
i

n
∏
i=1

(1 + (γ− 1)(1− µi))
λi + (γ− 1)

n
∏
i=1

µ
λi
i

(41)

v⊗n =

n
∏
i=1

(1 + (γ− 1)vi)
λi −

n
∏
i=1

(1− vi)
λi

n
∏
i=1

(1 + (γ− 1)vi)
λi + (γ− 1)

n
∏
i=1

(1− vi)
λi

(42)
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Theorem 2. If Ai = 〈(αi, σi), µi, vi〉 p, λ, q > 0( i = 1, 2, · · · , n) is a set of NIFNs, then the aggregation
result of Formula (32) is still a NIFN, and it has the following expression

NIFHHMp,q(A1, A2, · · · , An) =

(
2

n(n + 1)

(
n
⊕H

i=1,j=i

(
Ap

i ⊗H Aq
j

))) 1
p+q

= 〈(α, σ), µ, v〉 (43)

α =

(
2

n(n + 1)

n

∑
i=1

n

∑
j=i

α
p
i α

q
j

) 1
p+q

(44)

σ =

( 1
p + q

) 1
2
(

2
n(n + 1)

) 1
p+q
(

n

∑
i=1

n

∑
j=i

α
p
i α

q
j

) 1
p+q−1

×

 n

∑
i=1

n

∑
j=i

α
p
i α

q
j

√√√√p
σ2

i
α2

i
+ q

σ2
j

α2
j

 (45)

µ =
γ

(
n
∏

i=1,j=i
(Vij+(γ2−1)Wij)

2
n(n+1) −

n
∏

i=1,j=i
(Vij−Wij)

2
n(n+1)

) 1
p+q

(
n
∏

i=1,j=i
(Vij+(γ2−1)Wij)

2
n(n+1) +(γ2−1)

n
∏

i=1,j=i
(Vij−Wij)

2
n(n+1)

) 1
p+q

+(γ−1)

(
n
∏

i=1,j=i
(Vij+(γ2−1)Wij)

2
n(n+1) −

n
∏

i=1,j=i
(Vij−Wij)

2
n(n+1)

) 1
p+q

Vij = (1 + (γ− 1)(1− µi))
p(1 + (γ− 1)

(
1− µj

))q Wij = µ
p
i µ

q
j

(46)

v =

(
n
∏

i=1,j=i
(Vij+(γ2−1)Wij)

2
n(n+1) +(γ2−1)

n
∏

i=1,j=i
(Vij−Wij)

2
n(n+1)

) 1
p+q
−
(

n
∏

i=1,j=i
(Vij+(γ2−1)Wij)

2
n(n+1) −

n
∏

i=1,j=i
(Vij−Wij)

2
n(n+1)

) 1
p+q

(
n
∏

i=1,j=i
(Vij+(γ2−1)Wij)

2
n(n+1) +(γ2−1)

n
∏

i=1,j=i
(Vij−Wij)

2
n(n+1)

) 1
p+q

+(γ−1)

(
n
∏

i=1,j=i
(Vij+(γ2−1)Wij)

2
n(n+1) −

n
∏

i=1,j=i
(Vij−Wij)

2
n(n+1)

) 1
p+q

Vij = (1 + (γ− 1)vi)
p(1 + (γ− 1)vj

)q Wij = (1− vi)
p(1− vj

)q

(47)

With respect to the parameter γ, some cases of the NIFHHM operator are discussed.

(1) If γ = 1, then

µ =

(
1−

n

∏
i=1,j=i

(
1− µ

p
i µ

q
j

) 2
n(n+1)

) 1
p+q

(48)

v = 1−

1−
n

∏
i = 1
j = i

(
1− (1− vi)

p(1− vj
)q
) 2

n(n+1)



1
p+q

(49)

We call (43)–(45), (48), and (49) the normal intuitionistic fuzzy Heronian mean (NIFHM) operator.

(2) When γ = 2,

µ =
2

(
n
∏

i=1,j=i

(
(2−µi)

p(2−µj)
q
+3µ

p
i µ

q
j

) 2
n(n+1) −

n
∏

i=1,j=i

(
(2−µi)

p(2−µj)
q−µ

p
i µ

q
j

) 2
n(n+1)

) 1
p+q


n
∏

i=1,j=i

(
(2− µi)

p(2− µj
)q

+ 3µ
p
i µ

q
j

) 2
n(n+1)

+3
n
∏

i=1,j=i

(
(2− µi)

p(2− µj
)q − µ

p
i µ

q
j

) 2
n(n+1)



1
p+q

+


n
∏

i=1,j=i

(
(2− µi)

p(2− µj
)q

+ 3µ
p
i µ

q
j

) 2
n(n+1)

−
n
∏

i=1,j=i

(
(2− µi)

p(2− µj
)q − µ

p
i µ

q
j

) 2
n(n+1)



1
p+q

(50)

v =


n
∏

i=1,j=i

(
(1 + vi)

p(1 + vj
)q

+ 3(1− vi)
p(1− vj

)q
) 2

n(n+1)

+3
n
∏

i=1,j=i

(
(1 + vi)

p(1 + vj
)q − (1− vi)

p(1− vj
)q
) 2

n(n+1)



1
p+q

−


n
∏

i=1,j=i

(
(1 + vi)

p(1 + vj
)q

+ 3(1− vi)
p(1− vj

)q
) 2

n(n+1)

−
n
∏

i=1,j=i

(
(1 + vi)

p(1 + vj
)q − (1− vi)

p(1− vj
)q
) 2

n(n+1)



1
p+q


n
∏

i=1,j=i

(
(1 + vi)

p(1 + vj
)q

+ 3(1− vi)
p(1− vj

)q
) 2

n(n+1)

+3
n
∏

i=1,j=i

(
(1 + vi)

p(1 + vj
)q − (1− vi)

p(1− vj
)q
) 2

n(n+1)



1
p+q

+


n
∏

i=1,j=i

(
(1 + vi)

p(1 + vj
)q

+ 3(1− vi)
p(1− vj

)q
) 2

n(n+1)

−
n
∏

i=1,j=i

(
(1 + vi)

p(1 + vj
)q − (1− vi)

p(1− vj
)q
) 2

n(n+1)



1
p+q

(51)
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We call (43)–(45), (50), and (51) the normal intuitionistic fuzzy Einstein Heronian mean
(NIFEHM) operator.

The NIFHHM operator is generalization of the above operators and has some properties
as follows.

Theorem 3. If all Ai = A = 〈(α, σ), µ, v〉 (i = 1, 2, · · · , n), then

NIIFHHMp,q(A1, A2, · · · , An) = NIFHHMp,q(A, A, · · · , A) = A

Theorem 4. If
·

Ai(i = 1, 2, · · · , n) is any permutation of Ai(i = 1, 2, · · · , n) then

NIFHHMp,q(A1, A2, · · · , An) = NIFHHMp,q
( ·

A1,
·

A2, · · · ,
·

An

)

Theorem 5. Let p ≥ 0, q ≥ 0 and p, q are not simultaneously equal to the value of zero, Ai =〈(
αAi , σAi

)
, µAi , vAi

〉
, Bi =

〈(
αBi , σBi

)
, µBi , vBi

〉
i = 1, 2, · · · , n, are two sets of NIFNs if the following

conditions hold

n

∑
i=1

n

∑
j=i

α
p
Ai

α
q
Aj

=
n

∑
i=1

n

∑
j=i

α
p
Bi

α
q
Bj

, µAi ≤ µBi , vAi ≥ vBi (i = 1, 2, · · · , n) (52)

n

∑
i=1

n

∑
j=i

√
pα

2p−2
Ai

α
2q
Aj

σ2
Ai

+ qα
2p
Ai

α
2q−2
Aj

σ2
Aj

=
n

∑
i=1

n

∑
j=i

√
pα

2p−2
Bi

α
2q
Bj

σ2
Bi
+ qα

2p
Bi

α
2q−2
Bj

σ2
Bj

(53)

then, for
n
∑

i=1

n
∑
j=i

α
p
Ai

α
q
Aj

=
n
∑

i=1

n
∑
j=i

α
p
Bi

α
q
Bj
≥ 0

NIFHHMp,q(A1, A2, · · · , An) ≤ NIFHHMp,q(B1, B2, · · · , Bn) (54)

for
n
∑

i=1

n
∑
j=i

α
p
Ai

α
q
Aj

=
n
∑

i=1

n
∑
j=i

α
p
Bi

α
q
Bj

< 0

NIFHHMp,q(A1, A2, · · · , An) ≥ NIFHHMp,q(B1, B2, · · · , Bn) (55)

Theorem 6. Let Ai = 〈(αi, σi), µi, vi〉 be a set of NIFNs, and

A− =

〈( 2
n(n+1)

n
∑

i=1

n
∑
j=i

α
p
i α

q
j

) 1
p+q

,
(

1
p+q

) 1
2
(

2
n(n+1)

) 1
p+q

(
n
∑

i=1

n
∑
j=i

α
p
i α

q
j

) 1
p+q−1

n
∑

i=1

n
∑
j=i

√
pα

2p−2
i α

2q
j σ2

i + qα
2p
i α

2q−2
j σ2

j

, min
i
{µi}, max

i
{vi}

〉

A+ =

〈( 2
n(n+1)

n
∑

i=1

n
∑
j=i

α
p
i α

q
j

) 1
p+q

,
(

1
p+q

) 1
2
(

2
n(n+1)

) 1
p+q

(
n
∑

i=1

n
∑
j=i

α
p
i α

q
j

) 1
p+q−1

n
∑

i=1

n
∑
j=i

√
pα

2p−2
i α

2q
j σ2

i + qα
2p
i α

2q−2
j σ2

j

, max
i
{µi}, min

i
{vi}

〉

then, when
n
∑

i=1

n
∑
j=i

α
p
i α

q
j ≥ 0, A− ≤ NIFHHMp,q(A1, A2, · · · , An) ≤ A+ holds, and when

n
∑

i=1

n
∑
j=i

α
p
i α

q
j <

0, A+ ≤ NIFHHMp,q(A1, A2, · · · , An) ≤ A− is right.

From the aforementioned analysis, we can see that the NIFHHM operator does not consider the
significance of the input data. However, the importance of the attributes should be considered in a real
MCGDM procedure. So, the weighted form of the NIFHHM operator is defined.
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Definition 8. If Ai = 〈(αi, σi), µi, vi〉 (i = 1, 2, · · · , n) is a collection of NIFNs and ωi is the weight of

Ai, ωi ∈ [0, 1],
n
∑

i=1
ωi = 1, then normal intuitionistic fuzzy Hamacher weighted Heronian mean operator

(NIFHWHM) is defined

NIFHWHMp,q
w (A1, A2, · · · , An) =

(
2

n(n + 1)
n
⊕H

i=1,j=i

(
(ωi Ai)

p ⊗H
(
ωj Aj

)q
)) 1

p+q

(56)

Theorem 7. If Ai = 〈(αi, σi), µi, vi〉(i = 1, 2, · · · , n) is a collection of NIFNs and p, q ≥ 0, then the
aggregation result of Equation (56) is an NIFN and

NIFHWHMp,q
ω (A1, A2, · · · , An) = 〈(α, σ), µ, v〉 (57)

α =

(
2

n(n + 1)

n

∑
i=1

n

∑
j=i

(ωiαi)
p(ωjαj

)q
) 1

p+q

(58)

σ =
(

1
p+q

) 1
2
(

2
n(n+1)

) 1
p+q

(
n
∑

i=1

n
∑
j=i

(ωiαi)
p(ωjαj

)q
) 1

p+q−1
n
∑

i=1

n
∑
j=i

√
pω

2p
i α

2p−2
i α

2q
j σ2

i + qα
2p
i ω

2q
j α

2q−2
j σ2

j (59)

µ = (46) Vij =

(
(1+(γ−1)µi)

ωi+(γ2−1)(1−µi)
ωi

(1+(γ−1)µi)
ωi+(γ−1)(1−µi)

ωi

)p(
(1+(γ−1)µj)

ωj+(γ2−1)(1−µj)
ωj

(1+(γ−1)µj)
ωj+(γ−1)(1−µj)

ωj

)q
Wij =

(
(1+(γ−1)µi)

ωi−(1−µi)
ωi

(1+(γ−1)µi)
ωi+(γ−1)(1−µi)

ωi

)p
(

(1+(γ−1)µj)
ωj−(1−µj)

ωj

(1+(γ−1)µj)
ωj+(γ−1)(1−µj)

ωj

)q
(60)

v = (47) Vij =

(
(1+(γ−1)(1−vi))

ωi+(γ2−1)viωi

(1+(γ−1)(1−vi))
ωi+(γ−1)viωi

)p(
(1+(γ−1)(1−vj))

ωj+(γ2−1)vjωi

(1+(γ−1)(1−vj))
ωj+(γ−1)vjωi

)q
Wij =

(
(1+(γ−1)(1−vi))

ωi−viωi
(1+(γ−1)(1−vi))

ωi+(γ−1)viωi

)p
(

(1+(γ−1)(1−vj))
ωj−vjωi

(1+(γ−1)(1−vj))
ωj+(γ−1)vjωi

)q
(61)

It is likely to be noticed that the NIFHWHM operator involves monotonicity and boundedness,
but not the properties of commutativity and idempotency.

Theorem 8. Let p ≥ 0, q ≥ 0 and p, q is not simultaneously equal to zero, Ai =
〈(

αAi , σAi

)
, µAi , vAi

〉
, Bi =〈(

αBi , σBi

)
, µBi , vBi

〉
i = 1, 2, · · · , n are NIFNs, and ωi(i = 1, 2, · · · n) is the weight of Ai(i = 1, 2, · · · , n),

ωi ∈ [0, 1],
n
∑

i=1
ωi = 1. If the following conditions are satisfied

n

∑
i=1

n

∑
j=i

ω
p
i α

p
Ai

ω
q
j α

q
Aj

=
n

∑
i=1

n

∑
j=i

ω
p
i α

p
Bi

ω
q
j α

q
Bj

, µAi ≤ µBi , vAi ≥ vBi (i = 1, 2, · · · , n) (62)

n

∑
i=1

n

∑
j=i

√
pω

2p
i α

2p−2
Ai

α
2q
Aj

σ2
Ai

+ qα
2p
Ai

ω
2q
j α

2q−2
Aj

σ2
Aj

=
n

∑
i=1

n

∑
j=i

√
pω

2p
i α

2p−2
Bi

α
2q
Bj

σ2
Bi
+ qα

2p
Bi

ω
2q
j α

2q−2
Bj

σ2
Bj

(63)

then, for
n
∑

i=1

n
∑
j=i

ω
p
i α

p
Ai

ω
q
j α

q
Aj

=
n
∑

i=1

n
∑
j=i

ω
p
i α

p
Bi

ω
q
j α

q
Bj
≥ 0

NIFHWHMp,q
w (A1, A2, · · · , An) ≤ NIFHWHMp,q

w (B1, B2, · · · , Bn) (64)

for
n
∑

i=1

n
∑
j=i

ω
p
i α

p
Ai

ω
q
j α

q
Aj

=
n
∑

i=1

n
∑
j=i

ω
p
i α

p
Bi

ω
q
j α

q
Bj

< 0

NIFHWHMp,q
w (A1, A2, · · · , An) ≥ NIFHWHMp,q

w (B1, B2, · · · , Bn) (65)
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Theorem 9. Let Ai = 〈(αi, σi), µi, vi〉 be a set of NIFNs, and ωi(i = 1, 2, · · · n) is the weight of

Ai(i = 1, 2, · · · , n), ωi ∈ [0, 1],
n
∑

i=1
ωi = 1

A−i =

〈
(αi, σi), min

i
{µi}, max

i
{vi}

〉
, A+

i =

〈
(αi, σi), max

i
{µi}, min

i
{vi}

〉
(66)

then, when
n
∑

i=1

n
∑
j=i

(ωiαi)
p(ωjαj

)q ≥ 0,

NIFHWHMp,q
w
(

A−1 , A−2 , · · · , A−n
)
≤ NIFHWHMp,q(A1, A2, · · · , An) ≤ NIFHWHMp,q

w
(

A+
1 , A+

2 , · · · , A+
n
)

(67)

when
n
∑

i=1

n
∑
j=i

(ωiαi)
p(ωjαj

)q
< 0,

NIFHWHMp,q
w
(

A+
1 , A+

2 , · · · , A+
n
)
≤ NIFHWHMp,q(A1, A2, · · · , An) ≤ NIFHWHM

p,q
w
(

A−1 , A−2 , · · · , A−n
)

(68)

The NIFHWHM operator also has some cases.

(1) When the parameter γ = 1,

µ =

(
1−

n

∏
i=1,j=i

(
1−

(
1− (1− µi)

wi
)p ×

(
1−

(
1− µj

)wj
)q) 2

n(n+1)

) 1
p+q

(69)

v = 1−
(

1−
n

∏
i=1,j=i

(
1−

(
1− vwi

i
)p
(

1− v
wj
j

)q) 2
n(n+1)

) 1
p+q

(70)

We call (57)–(59), (66), and (67) the normal intuitionistic fuzzy weighted Heronian mean
(NIFWHM) operator.

(2) If γ = 2, then

µ =

2


n
∏

i=1,j=i

((
(1 + µi)

ωi + 3(1− µi)
ωi
)p
((

1 + µj
)ωj + 3

(
1− µj

)ωj
)q

+ 3
(
(1 + µi)

ωi − (1− µi)
ωi
)p
((

1 + µj
)ωj −

(
1− µj

)ωj
)q) 2

n(n+1)

−
n
∏

i=1,j=i

((
(1 + µi)

ωi + 3(1− µi)
ωi
)p
((

1 + µj
)ωj + 3

(
1− µj

)ωj
)q
−
(
(1 + µi)

ωi − (1− µi)
ωi
)p
((

1 + µj
)ωj −

(
1− µj

)ωj
)q) 2

n(n+1)



1
p+q


n
∏

i=1,j=i

((
(1 + µi)

ωi + 3(1− µi)
ωi
)p
((

1 + µj
)ωj + 3

(
1− µj

)ωj
)q

+ 3
(
(1 + µi)

ωi − (1− µi)
ωi
)p
((

1 + µj
)ωj −

(
1− µj

)ωj
)q) 2

n(n+1)

+3
n
∏

i=1,j=i

((
(1 + µi)

ωi + 3(1− µi)
ωi
)p
((

1 + µj
)ωj + 3

(
1− µj

)ωj
)q
−
(
(1 + µi)

ωi − (1− µi)
ωi
)p
((

1 + µj
)ωj −

(
1− µj

)ωj
)q) 2

n(n+1)


1

p+q

+


n
∏

i=1,j=i

((
(1 + µi)

ωi + 3(1− µi)
ωi
)p
((

1 + µj
)ωj + 3

(
1− µj

)ωj
)q

+ 3
(
(1 + µi)

ωi − (1− µi)
ωi
)p
((

1 + µj
)ωj −

(
1− µj

)ωj
)q) 2

n(n+1)

−
n
∏

i=1,j=i

((
(1 + µi)

ωi + 3(1− µi)
ωi
)p
((

1 + µj
)ωj + 3

(
1− µj

)ωj
)q
−
(
(1 + µi)

ωi − (1− µi)
ωi
)p
((

1 + µj
)ωj −

(
1− µj

)ωj
)q) 2

n(n+1)


1

p+q

(71)

v =


n
∏

i = 1
j = i

((
(2− vi)

ωi + 3vωi
i
)p
((

2− vj
)ωj + 3v

ωj
j

)q
+ 3
(
(2− vi)

ωi − vi
ωi
)p
((

2− vj
)ωj − vj

ωj
)q) 2

n(n+1)
+ 3

n
∏

i = 1
j = i

((
(2− vi)

ωi + 3vωi
i
)p
((

2− vj
)ωj + 3v

ωj
j

)q
−
(
(2− vi)

ωi − vi
ωi
)p
((

2− vj
)ωj − vj

ωj
)q) 2

n(n+1)



1
p+q

−


n
∏

i = 1
j = i

((
(2− vi)

ωi + 3vωi
i
)p
((

2− vj
)ωj + 3v

ωj
j

)q
+ 3
(
(2− vi)

ωi − vi
ωi
)p
((

2− vj
)ωj − vj

ωj
)q) 2

n(n+1) −
n
∏

i = 1
j = i

((
(2− vi)

ωi + 3vωi
i
)p
((

2− vj
)ωj + 3v

ωj
j

)q
−
(
(2− vi)

ωi − vi
ωi
)p
((

2− vj
)ωj − vj

ωj
)q) 2

n(n+1)



1
p+q


n
∏

i = 1
j = i

((
(2− vi)

ωi + 3vωi
i
)p
((

2− vj
)ωj + 3v

ωj
j

)q
+ 3
(
(2− vi)

ωi − vi
ωi
)p
((

2− vj
)ωj − vj

ωj
)q) 2

n(n+1)
+ 3

n
∏

i = 1
j = i

((
(2− vi)

ωi + 3vωi
i
)p
((

2− vj
)ωj + 3v

ωj
j

)q
−
(
(2− vi)

ωi − vi
ωi
)p
((

2− vj
)ωj − vj

ωj
)q) 2

n(n+1)



1
p+q

+


n
∏

i = 1
j = i

((
(2− vi)

ωi + 3vωi
i
)p
((

2− vj
)ωj + 3v

ωj
j

)q
+ 3
(
(2− vi)

ωi − vi
ωi
)p
((

2− vj
)ωj − vj

ωj
)q) 2

n(n+1) −
n
∏

i = 1
j = i

((
(2− vi)

ωi + 3vωi
i
)p
((

2− vj
)ωj + 3v

ωj
j

)q
−
(
(2− vi)

ωi − vi
ωi
)p
((

2− vj
)ωj − vj

ωj
)q) 2

n(n+1)



1
p+q

(72)

We call (57)–(59), (68), and (69) the normal intuitionistic fuzzy Einstein weighted Heronian mean
(NIFEWHM) operator.
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4. Normal Intuitionistic Fuzzy Hamacher Geometric Heronian Mean Operator and Its
Weighted Form

In this section, the GHM is extended to contain the position where the attribute values are NIFNs,
and we introduce the normal intuitionistic fuzzy Hamacher geometric Heronian mean (NIFHGHM)
aggregation operator and its weighted form.

Definition 9. Let Ai = 〈(αi, σi), µi, vi〉 (i = 1, 2, · · · , n) be a collection of NIFNs, and p, q ≥ 0 cannot take
the value of zero at the same time, a normal intuitionistic fuzzy Hamacher geometric Heronian mean operator
(NIFHGHM) is defined

NIFHGHMp,q(A1, A2, · · · , An) =
1

p + q

(
n
⊗H

i=1,j=i

(
pAi ⊕H qAj

) 2
n(n+1)

)
(73)

Theorem 10. If Ai = 〈(αi, σi), µi, vi〉 (i = 1, 2, · · · , n) is a set of NIFNs, and p, q ≥ 0 cannot take the value
of zero at the same time, then the aggregation value of Equation (70) is an NIFN and

NIFHGHMp,q(A1, A2, · · · , An) = 〈(α, σ), µ, v〉 (74)

α =
1

p + q

(
n

∏
i=1,j=i

(
pαi + qαj

) 2
n(n+1)

)
(75)

σ =
1

p + q

( n

∏
i=1,j=i

(
pαi + qαj

) 2
n(n+1)

)
×
(

n

∑
i=1,j=i

(
2

n(n + 1)

(
pσi + qσj

)2(
pαi + qαj

)2

)) 1
2

 (76)

µ =


n
∏

i=1,j=i
(Vij+(γ2−1)Wij)

2
n(n+1) +(γ2−1)

n
∏

i = 1
j = i

(Vij−Wij)
2

n(n+1)



1
p+q

−
(

n
∏

i=1,j=i
(Vij+(γ2−1)Wij)

2
n(n+1) −

n
∏

i=1,j=i
(Vij−Wij)

2
n(n+1)

) 1
p+q

(
n
∏

i=1,j=i
(Vij+(γ2−1)Wij)

2
n(n+1) +(γ2−1)

n
∏

i=1,j=i
(Vij−Wij)

2
n(n+1)

) 1
p+q

+(γ−1)

(
n
∏

i=1,j=i
(Vij+(γ2−1)Wij)

2
n(n+1) −

n
∏

i=1,j=i
(Vij−Wij)

2
n(n+1)

) 1
p+q

Vij = (1 + (γ− 1)µi)
p(1 + (γ− 1)µj

)qWij = (1− µi)
p(1− µj

)q

(77)

v =
γ

(
n
∏

i=1,j=i
(Vij+(γ2−1)Wij)

2
n(n+1) −

n
∏

i=1,j=i
(Vij−Wij)

2
n(n+1)

) 1
p+q

( n
∏

i=1,j=i
(Vij+(γ2−1)Wij)

2
n(n+1) +(γ2−1)

n
∏

i=1,j=i
(Vij−Wij)

2
n(n+1)

) 1
p+q

+(γ−1)

(
n
∏

i=1,j=i
(Vij+(γ2−1)Wij)

2
n(n+1) −

n
∏

i=1,j=i
(Vij−Wij)

2
n(n+1)

) 1
p+q


Vij =

(
(1 + (γ− 1)(1− vi))

p ×
(
1 + (γ− 1)

(
1− vj

))q
)

Wij = vp
i vq

j

(78)

Especially,

(1) When γ = 1, the NIFHGHM reduces to normal intuitionistic fuzzy geometric Heronian mean
(NIFGHM), which is presented by Formulas (71)–(73) and (76).

µ = 1−
(

1−
n

∏
i=1,j=i

(
1− (1− µi)

p(1− µj
)q
) 2

n(n+1)

) 1
p+q

v =

1−
n

∏
i = 1
j = i

(
1− vp

i vq
j

) 2
n(n+1)



1
p+q

(79)
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(2) If γ = 2, then

v =
2

(
n
∏

i=1,j=i

(
(2−vi)

p(2−vj)
q
+3(vi)

p(vj)
q) 2

n(n+1) −
n
∏

i=1,j=i

(
(2−vi)

p(2−vj)
q−(vi)

p(vj)
q) 2

n(n+1)

) 1
p+q

(
n
∏

i=1,j=i

(
(2− vi)

p(2− vj
)q

+ 3(vi)
p(vj

)q
) 2

n(n+1)
+ 3

n
∏

i=1,j=i

(
(2− vi)

p(2− vj
)q − (vi)

p(vj
)q
) 2

n(n+1)

) 1
p+q

+

(
n
∏

i=1,j=i

(
(2− vi)

p(2− vj
)q

+ 3(vi)
p(vj

)q
) 2

n(n+1) −
n
∏

i=1,j=i

(
(2− vi)

p(2− vj
)q − (vi)

p(vj
)q
) 2

n(n+1)

) 1
p+q

(80)

µ =

(
n
∏

i=1,j=i

(
(1 + µi)

p(1 + µj
)q

+ 3(1− µi)
p(1− µj

)q
) 2

n(n+1)
+ 3

n
∏

i=1,j=i

(
(1 + µi)

p(1 + µj
)q − (1− µi)

p(1− µj
)q
) 2

n(n+1)

) 1
p+q

−
(

n
∏

i=1,j=i

(
(1 + µi)

p(1 + µj
)q

+ 3(1− µi)
p(1− µj

)q
) 2

n(n+1) −
n
∏

i=1,j=i

(
(1 + µi)

p(1 + µj
)q − (1− µi)

p(1− µj
)q
) 2

n(n+1)

) 1
p+q

(
n
∏

i=1,j=i

(
(1 + µi)

p(1 + µj
)q

+ 3(1− µi)
p(1− µj

)q
) 2

n(n+1)
+ 3

n
∏

i=1,j=i

(
(1 + µi)

p(1 + µj
)q − (1− µi)

p(1− µj
)q
) 2

n(n+1)

) 1
p+q

+

(
n
∏

i=1,j=i

(
(1 + µi)

p(1 + µj
)q

+ 3(1− µi)
p(1− µj

)q
) 2

n(n+1) −
n
∏

i=1,j=i

(
(1 + µi)

p(1 + µj
)q − (1− µi)

p(1− µj
)q
) 2

n(n+1)

) 1
p+q

(81)

So, the NIFHGHM operator reduces to Formulas (71)–(73), (77), and (78), and it is called the
normal intuitionistic fuzzy Einstein geometric Heronian mean (NIFEGHM).

The NIFHGHM operator has some properties considered in the following.

Theorem 11. If all Ai = A = 〈(α, σ), µ, v〉 (i = 1, 2, · · · , n), then

NIIFHGHMp,q(A1, A2, · · · , An) = NIFHGHMp,q(A, A, · · · A) = A (82)

Theorem 12. If
·

Ai(i = 1, 2, · · · , n) is any permutation of Ai(i = 1, 2, · · · , n), then

NIFHGHMp,q(A1, A2, · · · , An) = NIFHGHMp,q
( ·

A1,
·

A2, · · · ,
·

An

)

Theorem 13. Let p ≥ 0, q ≥ 0, p, q do not simultaneously take the value of zero, and Ai =〈(
αAi , σAi

)
, µAi , vAi

〉
, Bi =

〈(
αBi , σBi

)
, µBi , vBi

〉
i = 1, 2, · · · , n, are NIFNs which satisfy the following

conditions

n

∏
i=1,j=i

(
pαAi + qαAj

)
=

n

∏
i=1,j=i

(
pαBi + qαBj

)
, µAi ≤ µBi , vAi ≥ vBi (i = 1, 2, · · · , n) (83)

n

∑
i=1,j=i

((
pσAi + qσAj

)2
/
(

pαAi + qαAj

)2
)
=

n

∑
i=1,j=i

((
pσBi + qσBj

)2
/
(

pαBi + qαBj

)2
)

(84)

then, for
n
∏

i=1,j=i

(
pαAi + qαAj

)
=

n
∏

i=1,j=i

(
pαBi + qαBj

)
≥ 0

NIFHGHMp,q(A1, A2, · · · , An) ≤ NIFHGHMp,q(B1, B2, · · · , Bn) (85)

for
n
∏

i=1,j=i

(
pαAi + qαAj

)
=

n
∏

i=1,j=i

(
pαBi + qαBj

)
< 0

NIFHGHMp,q(A1, A2, · · · , An) ≥ NIFHGHMp,q(B1, B2, · · · , Bn) (86)
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Theorem 14. Let Ai = 〈(αi, σi), µi, vi〉, (i = 1, 2, · · · , n) be a set of NIFNs, and

A− =

〈(
1

p+q

(
n
∏

i=1,j=i

(
pαi + qαj

) 2
n(n+1)

)
, 1

p+q

((
n
∏

i=1,j=i

(
pαi + qαj

) 2
n(n+1)

)√
n
∑

i=1,j=i

(
2

n(n+1)

(
pσi + qσj

)2/
(

pαi + qαj
)2
)) )

, min
i
{µi}, max

i
{vi}

〉
(87)

A+ =

〈(
1

p+q

(
n
∏

i=1,j=i

(
pαi + qαj

) 2
n(n+1)

)
, 1

p+q

((
n
∏

i=1,j=i

(
pαi + qαj

) 2
n(n+1)

)√
n
∑

i=1,j=i

(
2

n(n+1)

(
pσi + qσj

)2/
(

pαi + qαj
)2
)) )

, max
i
{µi}, min

i
{vi}

〉
(88)

then, when
n
∏

i=1,j=i

(
pαi + qαj

)
≥ 0, A− ≤ NIFHGHMp,q(A1, A2, · · · , An) ≤ A+ is right, and when

n
∏

i=1,j=i

(
pαi + qαj

)
< 0, A+ ≤ NIFHGHMp,q(A1, A2, · · · , An) ≤ A− holds.

Similarly, the weighted form of the NIFHGHM operator is defined in the following.

Definition 10. If Ai = 〈(αi, σi), µi, vi〉(i = 1, 2, · · · , n) is a collection of NIFNs, ωi ∈ [0, 1] is the weight

of Ai(i = 1, 2, · · · , n) with
n
∑

i=1
ωi = 1, then the normal intuitionistic fuzzy Hamacher weighted geometric

Heronian mean (NIFHWGHM) operator is presented as follows

NIFHWGHMp,q
ω (A1, A2, · · · , An) =

1
p + q

(
n
⊗H

i=1,j=i

(
pAωi

i ⊕H qA
ωj
j

) 2
n(n+1)

)
(89)

Theorem 15. Let Ai = 〈(αi, σi), µi, vi〉(i = 1, 2, · · · , n) be a set of NIFNs and p, q ≥ 0 which cannot
simultaneously take the value of zero, the aggregation result of Equation (83) is an NIFN and

NIFHWGHMp,q
ω (A1, A2, · · · , An) = 〈(α, σ), µ, v〉 (90)

α =
1

p + q

n

∏
i=1,j=i

(
pα

ωi
i + qα

ωj
j

) 2
n(n+1) (91)

σ = 1
p+q

 n
∏

i=1,j=i

(
pα

ωi
i + qα

ωj
j

) 2
n(n+1) ×

 n
∑

i=1,j=i

 2
n(n+1)

(
pω

1
2
i α

ωi−1
i σi+qω

1
2
j α

ωj−1

j σj

)2

(
pα

ωi
i +qα

ωj
j

)2




1
2
 (92)

µ =

(
n
∏

i=1,j=i

(
Vij +

(
γ2 − 1

)
Wij
) 2

n(n+1) +
(
γ2 − 1

) n
∏

i=1,j=i

(
Vij −Wij

) 2
n(n+1)

) 1
p+q

−
(

n
∏

i=1,j=i

(
Vij +

(
γ2 − 1

)
Wij
) 2

n(n+1) −
n
∏

i=1,j=i

(
Vij −Wij

) 2
n(n+1)

) 1
p+q

(
n
∏

i=1,j=i

(
Vij +

(
γ2 − 1

)
Wij
) 2

n(n+1) +
(
γ2 − 1

) n
∏

i=1,j=i

(
Vij −Wij

) 2
n(n+1)

) 1
p+q

+(γ− 1)

(
n
∏

i=1,j=i

(
Vij +

(
γ2 − 1

)
Wij
) 2

n(n+1) −
n
∏

i=1,j=i

(
Vij −Wij

) 2
n(n+1)

) 1
p+q

Vij =
(
(1 + (γ− 1)(1− µi))

ωi +
(
γ2 − 1

)
µ

ωi
i
)p
((

1 + (γ− 1)
(
1− µj

))ωj +
(
γ2 − 1

)
µ

ωj
j

)q

Wij =
(
(1 + (γ− 1)(1− µi))

ωi − µ
ωi
i
)p
((

1 + (γ− 1)
(
1− µj

))ωj − µ
ωj
j

)q

(93)
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v =
γ

(
n
∏

i=1,j=i
(Vij+(γ2−1)Wij)

2
n(n+1) −

n
∏

i=1,j=i
(Vij−Wij)

2
n(n+1)

) 1
p+q



(
n
∏

i=1,j=i

(
Vij +

(
γ2 − 1

)
Wij
) 2

n(n+1) +
(
γ2 − 1

) n
∏

i=1,j=i

(
Vij −Wij

) 2
n(n+1)

) 1
p+q

+(γ− 1)

(
n
∏

i=1,j=i

(
Vij +

(
γ2 − 1

)
Wij
) 2

n(n+1) −
n
∏

i=1,j=i

(
Vij −Wij

) 2
n(n+1)

) 1
p+q


Vij =

(
(1 + (γ− 1)vi)

ωi +
(
γ2 − 1

)
(1− vi)

ωi
)p
((

1 + (γ− 1)vj
)ωj +

(
γ2 − 1

)(
1− vj

)ωj
)q

Wij =
(
(1 + (γ− 1)vi)

ωi − (1− vi)
ωi
)p
((

1 + (γ− 1)vj
)ωj −

(
1− vj

)ωj
)q

(94)

From the above, the NIFHWGHM operator has monotonicity and boundedness.

Theorem 16. Let p ≥ 0, q ≥ 0, p, q do not simultaneously equal zero, and Ai =
〈(

αAi , σAi

)
, µAi , vAi

〉
,

Bi =
〈(

αBi , σBi

)
, µBi , vBi

〉
i = 1, 2, · · · , n are NIFNs, and the following conditions are in place

n

∏
i=1,j=i

(
pα

wi
Ai

+ qα
wj
Aj

)
=

n

∏
i=1,j=i

(
pαwi

Bi
+ qα

wj
Bj

)
, µAi ≤ µBi , vAi ≥ vBi (i = 1, 2, · · · , n) (95)

n
∑

i=1,j=i

((
p
√

wiα
wi−1
Ai

σAi + q√wjα
wj−1
Aj

σAj

)2
/
(

pαwi
Ai
+ qα

wj
Aj

)2
)
=

n
∑

i=1,j=i

((
p
√

wiα
wi−1
Bi

σBi + q√wjα
wj−1
Bj

σBj

)2
/
(

pαwi
Bi
+ qα

wj
Bj

)2
)

(96)

then, for
n
∏

i=1,j=i

(
pαwi

Ai
+ qα

wj
Aj

)
=

n
∏

i=1,j=i

(
pαwi

Bi
+ qα

wj
Bj

)
≥ 0

NIFHWGHM
p,q

w (A1, A2, · · · , An) ≤ NIFHWGHM
p,q

w (B1, B2, · · · , Bn) (97)

for
n
∏

i=1,j=i

(
pαwi

Ai
+ qα

wj
Aj

)
=

n
∏

i=1,j=i

(
pαwi

Bi
+ qα

wj
Bj

)
< 0

NIFHWGHM
p,q

w (A1, A2, · · · , An) ≥ NIFHWGHM
p,q

w (B1, B2, · · · , Bn) (98)

Theorem 17. Let Ai = 〈(αi, σi), µi, vi〉 be a set of NIFNs, andωi(i = 1, 2, · · · n) is the weight of

Ai(i = 1, 2, · · · , n), ωi ∈ [0, 1],
n
∑

i=1
ωi = 1

A−i =

〈
(αi, σi), min

i
{µi}, max

i
{vi}

〉
, A+

i =

〈
(αi, σi), max

i
{µi}, min

i
{vi}

〉

then, when
n
∏

i=1,j=i

(
pαwi

i
+ qα

wj
j

)
≥ 0,

NIFHWGHM
p,q
w
(

A−1 , A−2 , · · · , A−n
)
≤ NIFHWGHMp,q(A1, A2, · · · , An) ≤ NIFHWGHM

p,q
w
(

A+
1 , A+

2 , · · · , A+
n
) (99)

when
n
∏

i=1,j=i

(
pαwi

i
+ qα

wj
j

)
< 0,

NIFHWGHM
p,q
w
(

A+
1 , A+

2 , · · · , A+
n
)
≤ NIFHWGHMp,q(A1, A2, · · · , An) ≤ NIFHWGHM

p,q
w
(

A−1 , A−2 , · · · , A−n
)

The NIFHWGHM operator has also some special cases, discussed in the following.
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(1) When γ = 1, Formulas (87) and (88) reduce to the following equations.

µ = 1−
(

1−
n

∏
i=1,j=i

(
1−

(
1− µ

wi
i
)p
(

1− µ
wj
j

)q) 2
n(n+1)

) 1
p+q

(100)

v =

(
1−

n

∏
i=1,j=i

(
1−

(
1− (1− vi)

ωi
)p ×

(
1−

(
1− vj

)ωj
)q) 2

n(n+1)

) 1
p+q

(101)

So, the normal intuitionistic fuzzy weighted geometric Heronian mean (NIFWGHM) operator
can be defined by Formulas (84)–(86), (93), and (94).

(2) When γ = 2, then

µ =


n
∏

i=1,j=i

((
(2− µi)

wi + µ
wi
i
)p
((

2− µj
)wj + µ

wj
j

)q
+ 3
(
(2− µi)

wi − µ
wi
i
)p
((

2− µj
)wj − µ

wj
j

)q) 2
n(n+1)

+3
n
∏

i=1,j=i

((
(2− µi)

wi + µ
wi
i
)p
((

2− µj
)wj + µ

wj
j

)q
−
(
(2− µi)

wi − µ
wi
i
)p
((

2− µj
)wj − µ

wj
j

)q) 2
n(n+1)


1

p+q

−


n
∏

i=1,j=i

((
(2− µi)

wi + µ
wi
i
)p
((

2− µj
)wj + µ

wj
j

)q
+ 3
(
(2− µi)

wi − µ
wi
i
)p
((

2− µj
)wj − µ

wj
j

)q) 2
n(n+1)

−
n
∏

i=1,j=i

((
(2− µi)

wi + µ
wi
i
)p
((

2− µj
)wj + µ

wj
j

)q
−
(
(2− µi)

wi − µ
wi
i
)p
((

2− µj
)wj − µ

wj
j

)q) 2
n(n+1)


1

p+q


n
∏

i=1,j=i

((
(2− µi)

wi + µ
wi
i
)p
((

2− µj
)wj + µ

wj
j

)q
+ 3
(
(2− µi)

wi − µ
wi
i
)p
((

2− µj
)wj − µ

wj
j

)q) 2
n(n+1)

+3
n
∏

i=1,j=i

((
(2− µi)

wi + µ
wi
i
)p
((

2− µj
)wj + µ

wj
j

)q
−
(
(2− µi)

wi − µ
wi
i
)p
((

2− µj
)wj − µ

wj
j

)q) 2
n(n+1)


1

p+q

+


n
∏

i=1,j=i

((
(2− µi)

wi + µ
wi
i
)p
((

2− µj
)wj + µ

wj
j

)q
+ 3
(
(2− µi)

wi − µ
wi
i
)p
((

2− µj
)wj − µ

wj
j

)q) 2
n(n+1)

−
n
∏

i=1,j=i

((
(2− µi)

wi + µ
wi
i
)p
((

2− µj
)wj + µ

wj
j

)q
−
(
(2− µi)

wi − µ
wi
i
)p
((

2− µj
)wj − µ

wj
j

)q) 2
n(n+1)


1

p+q

(102)

v =

2


n
∏

i=1,j=i

((
(1 + vi)

wi + 3(1− vi)
wi
)p
((

1 + vj
)wj + 3

(
1− vj

)wj
)q

+ 3
(
(1 + vi)

wi − (1− vi)
wi
)p
((

1 + vj
)wj −

(
1− vj

)wj
)q) 2

n(n+1)

−
n
∏

i=1,j=i

((
(1 + vi)

wi + 3(1− vi)
wi
)p
((

1 + vj
)wj + 3

(
1− vj

)wj
)q
−
(
(1 + vi)

wi − (1− vi)
wi
)p
((

1 + vj
)wj −

(
1− vj

)wj
)q) 2

n(n+1)



1
p+q




n
∏

i=1,j=i

((
(1 + vi)

wi + 3(1− vi)
wi
)p
((

1 + vj
)wj + 3

(
1− vj

)wj
)q

+ 3
(
(1 + vi)

wi − (1− vi)
wi
)p
((

1 + vj
)wj −

(
1− vj

)wj
)q) 2

n(n+1)

+3
n
∏

i=1,j=i

((
(1 + vi)

wi + 3(1− vi)
wi
)p
((

1 + vj
)wj + 3

(
1− vj

)wj
)q
−
(
(1 + vi)

wi − (1− vi)
wi
)p
((

1 + vj
)wj −

(
1− vj

)wj
)q) 2

n(n+1)


1

p+q

+


n
∏

i=1,j=i

((
(1 + vi)

wi + 3(1− vi)
wi
)p
((

1 + vj
)wj + 3

(
1− vj

)wj
)q

+ 3
(
(1 + vi)

wi − (1− vi)
wi
)p
((

1 + vj
)wj −

(
1− vj

)wj
)q) 2

n(n+1)

−
n
∏

i=1,j=i

((
(1 + vi)

wi + 3(1− vi)
wi
)p
((

1 + vj
)wj + 3

(
1− vj

)wj
)q
−
(
(1 + vi)

wi − (1− vi)
wi
)p
((

1 + vj
)wj −

(
1− vj

)wj
)q) 2

n(n+1)


1

p+q



(103)

We can see that the NIFHWGHM operator transforms into the normal intuitionistic fuzzy
Einstein weighted geometric Heronian mean (NIFEWGHM) operator, which is defined by
Formulas (84)–(86), (95), and (96).

5. New Methods Based on Hamacher Heronian Mean Operator for Normal Intuitionistic
Fuzzy Information

Here, we apply the developed operators to the MCGDM problem where the input arguments are
some NIFNs.

(1) Description of an MCGDM problem.

We take into account an MCGDM problem with the NIFN information and suppose the following:
a collection of decision makers E =

{
e1, e2, · · · , eq

}
;

a collection of alternatives: A = {A1, A2, · · · , Am};
attributes set: C = {C1, C2, · · · , Cn};
weight of attributes set: ω = {ω1, ω2, · · · , ωn}, ωj ∈ [0, 1]

n
∑

j=1
ωj = 1;
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weight of decision makers: λ =
{

λ1, λ2, · · · , λq
}

, λk ∈ [0, 1]
q
∑

k=1
λk = 1;

a NIFNs decision matrix given by ek for A with respect to C:

Ek =
[
ek

ij

]
mxn

k = 1, 2, · · · , q ek
ij =

〈(
αk

ij, σk
ij

)
, µk

ij, vk
ij

〉
Consequently, the proposed operators are applied to solve the above MCGDM problem,

alternatives are ranked in descending order, and the best one is determined.

(2) The new method based on the developed operators (including NIFHHM, NIFHWHM, NIFHGHM,
and NIFHWGHM operators).

Step 1. Normalization of decision-making information.

In nature, the bigger values of some benefit attributes (I1) are better and the smaller values of
some cost attributes (I2) are better, therefore, decision-making information should be normalized for
the unity of input data. Hence, the NIFN decision matrices Ek =

[
ek

ij

]
mxn

can be transformed into

matrices Rk =
[
γk

ij

]
mxn

, (k = 1, 2, · · · , q) by Wang’s method [31], where

γk
ij =

〈(
αk

Nij
, σk

Nij

)
, µk

Nij
, vk

Nij

〉
=



〈(
αij

max
i
{αij} ,

σij

max
i
{σij} ,

σij
αij

)
, µk

ij, vk
ij

〉
Cj ∈ I1〈(

min
i
{αij}
αij

,
σij

max
i
{σij} ,

σij
αij

)
, µk

ij, vk
ij

〉
Cj ∈ I2

(104)

Step 2. Determine weight vector of the criteria and decision makers and select the aggregation operator.

The weights of the criteria are determined by decision expert or manager, who are experienced
in the corresponding field. Generally, if the weights of the criteria and decision maker are given, we
utilize the NIFHWHM operator or NIFHWGHM operator, however, if the weights are unknown, the
NIFHHM operator or NIFHGHM operator can be applied.

Step 3. Choose the values of the parameters γ, p, and q.

On the whole, if decision experts are pessimistic, the bigger parameter values are chosen, while the
smaller parameter values are used when decision experts take an optimistic view of the decision results.
For convenience, γ = p = q = 1 or γ = 2, p = q = 1 is selected, especially, when γ = p = q = 1,
calculation can decrease.

Step 4. For any pair (i, j) i = 1, 2, · · · , m j = 1, 2, · · · , n, apply the selected operator to integrate(
γ1

ij, γ2
ij, · · · , γ

q
ij

)
into the collection of the matrix R =

[
rij
]

mxn, where

rij =



NIFHHMp,q
λ

(
γ1

ij, γ2
ij, · · · , γ

q
ij

)
i f NIFHHM operator

NIFHWHMp,q
λ

(
γ1

ij, γ2
ij, · · · , γ

q
ij

)
i f NIFHWHM operator

NIFHGHMp,q
λ

(
γ1

ij, γ2
ij, · · · , γ

q
ij

)
i f NIFHGHM operator

NIFHWGHMp,q
λ

(
γ1

ij, γ2
ij, · · · , γ

q
ij

)
i f NIFHWGHM operator

(105)
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Step 5. For any value i = 1, 2, · · · , m, apply the chosen operator to integrate (ri1, ri2, · · · , rin) and get
the value ri(i = 1, 2, · · · , m) of alternative Ai(i = 1, 2, · · · , m), i.e., aggregate each line of each NIFN
decision matrix, where

ri =


NIFHHMp,q

ω (ri1, ri2, · · · , rin) i f NIFHHM operator

NIFHWHMp,q
ω (ri1, ri2, · · · , rin) i f NIFHWHM operator

NIFHGHMp,q
ω (ri1, ri2, · · · , rin) i f NIFHGHM operator

NIFHWGHMp,q
ω (ri1, ri2, · · · , rin) i f NIFHWGHM operator

(106)

Step 6. Utilize the ranking method of the NIFNs to rank ri(i = 1, 2, · · · , m) in descending order
and derive the priority of each alternative Ai(i = 1, 2, · · · , m) according to the score function value
S(ri)(i = 1, 2, · · · , m). If S(rl) = max

i
{S(ri)|i = 1, 2, · · · , m}, then the best one of all the alternatives

is Al .

6. An Application Example

A real MCGDM problem will be introduced to show the practical application of the new method
in this paper (a stock value evaluation problem), which is adapted from [47]. In the intricate stock
market, a real problem is how to analyze the stock investment value and choose the stock. Therefore,
an effective stock evaluation approach is very significant. However, most of the financial indicators
approximately obey normal distribution, and the NIFNs can effectively describe the phenomenon
of normal distribution and evaluate the stock investment value information. To evaluate the stock
alternatives, we suppose that there are four stocks (alternatives) denoted as {A1, A2, A3, A4}, and
we extract the four key financial attributes described as undistributed profits per share (C1), net
asset value per share (C2), earnings per share (C3), and equity ratio (C4), whose weight vector is
ω = (0.33, 0.26, 0.16, 0.25)T .

Obviously, these attributes are all benefit attributes under which three decision workers
ek(k = 1, 2, 3) utilize NIFNs to evaluate the four alternatives. Three decision makers can evaluate the
four alternatives under the four attributes (C1, C2, C3, C4), and three decision matrices Ek =

[
ek

ij

]
4×4

are set out in the following tables (see Tables 1–3).

Table 1. Decision matrix E1 from e1.

C1 C2 C3 C4

A1 <(3.07,2.14),0.7,0.15> <(0.94,0.69),0.7,0.15> <(1.82,0.90),0.6,0.2> <(1.76,3.67),0.65,0.15>
A2 <(2.12,1.21),0.7,0.2> <(0.42,0.35),0.6,0.15> <(2.16,0.98),0.55,0.2> <(2.35,3.23),0.6,0.1>
A3 <(1.55,1.63),0.7,0.2> <(0.73,0.41),0.6,0.2> <(1.55,0.79),0.7,0.2> <(4.25,2.54),0.7,0.2>
A4 <(1.23,0.96),0.75,0.25> <(0.63,0.50),0.6,0.15> <(1.14,0.66),0.6,0.15> <(4.96,2.93),0.75,0.2>

Table 2. Decision matrix E2 from e2.

C1 C2 C3 C4

A1 <(3.07,2.14),0.6,0.15> <(0.94,0.69),0.65,0.1> <(1.82,0.90),0.7,0.2> <(1.76,3.67),0.65,0.2>
A2 <(2.12,1.21),0.7,0.25> <(0.42,0.35),0.7,0.2> <(2.16,0.98),0.6,0.2> <(2.35,3.23),0.65,0.2>
A3 <(1.55,1.63),0.6,0.2> <(0.73,0.41),0.6,0.15> <(1.55,0.79),0.6,0.2> <(4.25,2.54),0.65,0.15>
A4 <(1.23,0.96),0.8,0.2> <(0.63,0.50),0.65,0.15> <(1.14,0.66),0.7,0.15> <(4.96,2.93),0.7,0.2>
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Table 3. Decision matrix E3 from e3.

C1 C2 C3 C4

A1 <(3.07,2.14),0.65,0.2> <(0.94,0.69),0.60,0.2> <(1.82,0.90),0.65,0.2> <(1.76,3.67),0.7,0.15>
A2 <(2.12,1.21),0.65,0.2> <(0.42,0.35),0.75,0.15> <(2.16,0.98),0.7,0.15> <(2.35,3.23),0.7,0.15>
A3 <(1.55,1.63),0.8,0.2> <(0.73,0.41),0.65,0.15> <(1.55,0.79),0.7,0.25> <(4.25,2.54),0.6,0.1>
A4 <(1.23,0.96),0.7,0.1> <(0.63,0.50),0.7,0.2> <(1.14,0.66),0.7,0.2> <(4.96,2.93),0.6,0.2>

6.1. An MCGDM Procedure Related to the NIFHWHM and NIFHWGHM Operators

According to the following steps, all of the alternatives are ranked in order to get the
best alternative.

Step 1. Normalizing the input data with the NIFN information, which is shown in Tables 1–3.

Considering that all the criteria are benefit criteria, Equation (97) is utilized to integrate the NIFN
decision matrix Ek =

[
ek

ij

]
4x4

k = 1, 2, · · · , 3, ek
ij =

〈(
αk

ij, σk
ij

)
, µk

ij, vk
ij

〉
into the normalized matrix

Rk =
[
γk

ij

]
4x4

=
[〈(

α̃k
ij, σ̃k

ij

)
, µ̃k

ij, ṽk
ij

〉]
4×4

, (k = 1, 2, 3) (shown in Tables 4–6).

Table 4. Normalization matrix R1 given by e1.

C1 C2 C3 C4

A1 <(1.0,0.697),0.7,0.15> <(1.0,0.734),0.7,0.15> <(0.843,0.454),0.6,0.2> <(0.355,2.085),0.65,0.15>
A2 <(0.69,0.323),0.7,0.2> <(0.447,0.423),0.6,0.15> <(1.0,0.454),0.55,0.2> <(0.474,1.21),0.6,0.1>
A3 <(0.505,0.801),0.7,0.2> <(0.777,0.334),0.6,0.12> <(0.718,0.411),0.7,0.2> <(0.857,0.414),0.7,0.2>
A4 <(0.401,0.35),0.75,0.25> <(0.67,0.575),0.6,0.15> <(0.528,0.39),0.6,0.15> <(1.0,0.472),0.75,0.2>

Table 5. Normalization matrix R2 given by e2.

C1 C2 C3 C4

A1 <(1.0,0.697),0.6,0.15> <(1.0,0.734),0.65,0.1> <(0.843,0.454),0.7,0.2> <(0.355,2.085),0.65,0.2>
A2 <(0.69,0.323),0.7,0.25> <(0.447,0.423),0.7,0.2> <(1.0,0.454),0.6,0.2> <(0.474,1.21),0.65,0.2>
A3 <(0.505,0.801),0.6,0.2> <(0.777,0.334),0.6,0.15> <(0.718,0.411),0.6,0.2> <(0.857,0.414),0.65,0.15>
A4 <(0.401,0.35),0.8,0.2> <(0.67,0.575),0.65,0.15> <(0.528,0.39),0.7,0.15> <(1.0,0.472),0.7,0.2>

Table 6. Normalization matrix R3 given by e3.

C1 C2 C3 C4

A1 <(1.0,0.697),0.65,0.2> <(1.0,0.734),0.6,0.2> <(0.843,0.454),0.65,0.2> <(0.355,2.085),0.7,0.15>
A2 <(0.69,0.323),0.65,0.2> <(0.447,0.423),0.75,0.15> <(1.0,0.454),0.7,0.15> <(0.474,1.21),0.7,0.15>
A3 <(0.505,0.801),0.8,0.2> <(0.777,0.334),0.65,0.15> <(0.718,0.411),0.7,0.25> <(0.857,0.414),0.6,0.1>
A4 <(0.401,0.35),0.7,0.1> <(0.67,0.575),0.7,0.2> <(0.528,0.39),0.7,0.2> <(1.0,0.472),0.6,0.2>

Step 2. Decision expert provides that weights of the criteria are ω = (0.33, 0.26, 0.16, 0.25)T and
weights of decision makers are λ = (0.4, 0.31, 0.29)T , and the NIFHWHM operator and NIFHWGHM
operator are chosen.

Step 3. Without the loss of generality, choose the parameter values γ = 2, p = q = 1. From Tables 1–6,
data values are not equal to zero. Thus, according to Formulas (84)–(88), the NIFHWHM operator and
NIFHWGHM operator have the following formulas in this example:

NIFHWHM1,1
w (A1, A2, · · · , An) = 〈(α, σ), µ, v〉 (107)

α =

√√√√( 2
n(n + 1)

n

∑
i=1

n

∑
j=i

(ωiαi)
(
ωjαj

))
σ =

(
1
2

) 1
2
(

2
n(n + 1)

)
α−1

n

∑
i=1

n

∑
j=i

√
ω2

i
α2

j σ2
i + α2

i ω2
j
σ2

j (108)
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µ = 2/


1 + 4/

 n
∏

i=1,j=i

(
1 +

((1+µi)
ωi−(1−µi)

ωi )
(
(1+µj)

ωj−(1−µj)
ωj
)

(
((1+µi)

ωi+(1−µi)
ωi )(1−µj)

ωj+
(
(1+µj)

ωj+(1−µj)
ωj
)
(1+µi)

ωi
)
) 2

n(n+1)

− 1


1
2

+ 1

 (109)

v = 1/

1 + 2/


1 + 4/

 n
∏

i=1,j=i

(
1 +

((2−vi)
ωi−vi

ωi )
(
(2−vj)

ωj−vj
ωj
)

((2−vi)
ωi+vi

ωi )vj
ωj +

(
(2−vj)

ωj+vj
ωj
)

vi
ωi

) 2
n(n+1)

− 1


1
2

− 1


 (110)

NIFHWGHM1,1
w (A1, A2, · · · , An) = 〈(α, σ), µ, v〉 (111)

α = 1
2

n
∏

i=1,j=i

(
α

ωi
i + α

ωj
j

) 2
n(n+1)

σ = α

√
n
∑

i=1,j=i

(
2

n(n+1)

(√
ωiα

ωi−1
i σi +

√
ωjα

ωj−1
j σj

)2
/
(

α
ωi
i + α

ωj
j

)2
)

(112)

µ = 1/

1 + 2/


1 + 4/

 n
∏

i=1,j=i

(
1 +

((2−µi)
ωi−µi

ωi )
(
(2−µj)

ωj−µj
ωj
)

((2−µi)
ωi+µi

ωi )µj
ωj +

(
(2−µj)

ωj+µj
ωj
)

µi
ωi

) 2
n(n+1)

− 1


1
2

− 1


 (113)

v = 2/


1 + 4/

 n
∏

i=1,j=i

(
1 +

((1+vi)
ωi−(1−vi)

ωi )
(
(1+vj)

ωj−(1−vj)
ωj
)

(
((1+vi)

ωi+(1−vi)
ωi )(1−vj)

ωj+
(
(1+vj)

ωj+(1−vj)
ωj
)
(1+vi)

ωi
)
) 2

n(n+1)

− 1


1
2

+ 1

 (114)

Step 4. Apply the NIFHWHM operator to integrate normalization matrices Rk =
[
rk

ij

]
4×4

(k = 1,2,3)

into a matrix Rk =
[
rij
]

4×4 (see Table 7).

rij = NIFHWHM1,1
λ

(
γ1

ij, γ2
ij, γ3

ij

)
=
〈(

αij, σij
)
, µij, vij

〉
(115)

αij =

√(
1
6

3
∑

m=1

3
∑

l=m

(
λm
∼
α

m
ij

)(
λl
∼
α

l
ij

))
σij =

√
2

12

(√(
1
6

3
∑

m=1

3
∑

l=m

(
λm
∼
α

m
ij

)(
λl
∼
α

l
ij

)))−1
3
∑

m=1

3
∑

l=m

√
λ2

m

(
∼
α

l
ij

)2(∼
σ

m
ij

)2
+
(∼

σ
m
ij

)2
λ2

l

(
∼
σ

l
ij

)2

µij = 2/


1 + 4/

 3
∏

m=1,l=m

1 +

((
1+µ̃m

ij

)λm
−
(

1−µ̃m
ij

)λm
)((

1+µ̃l
ij

)λl−
(

1−µ̃l
ij

)λl
)

(((
1+µ̃m

ij

)λm
+
(

1−µ̃m
ij

)λm
)(

1−µ̃l
ij

)λl
+

((
1+µ̃l

ij

)λl
+
(

1−µ̃l
ij

)λl
)(

1+µ̃m
ij

)λm
)


1
6

− 1




1
2

+ 1

 (116)

vij = 1/

1 + 2/


1 + 4/

 3
∏

m=1,l=m

1 +

((
2−ṽm

ij

)λm
−
(

ṽm
ij

)λm
)((

2−ṽl
ij

)λl−
(

ṽl
ij

)λl
)

((
2−ṽm

ij

)λm
+
(

ṽm
ij

)λm
)(

ṽl
ij

)λl
+

((
2−ṽl

ij

)λl
+
(

ṽl
ij

)λl
)(

ṽm
ij

)λm


1
6

− 1




1
2

− 1


 (117)

Table 7. The collective decision matrix R of the Hamacher weighted Heronian mean
(NIFHWHM) operator.

C1 C2 C3 C4

A1 <(0.664,0.073),0.872,0.064> <(0.664,0.085),0.863,0.082> <(0.605,0.049),0.872,0.038> <(0.413,0.002),0.851,0.049>
A2 <(0.555,0.069),0.881,0.050> <(0.443,0.059),0.989,0.031> <(0.660,0.072),0.849,0.071> <(0.463,0.082),0.842,0.047>
A3 <(0.480,0.898),0.893,0.056> <(0.575,0.065),0.850,0.048> <(0.562,0.096),0.859,0.073> <(0.612,0.061),0.862,0.050>
A4 <(0.431,0.113),0.868,0.062> <(0.538,0.062),0.879,0.043> <(0.481,0.102),0.83,0.062> <(0.662,0.063),0.912,0.053>

Step 5. Apply the NIFHWGHM operator to aggregate normalized matrices Rk =
[
rk

ij

]
4×4

(k = 1,2,3)

into a matrix Rk =
[
rij
]

4×4 (see Table 8).

rij = NIFHWGHM1,1
w

(
γ1

ij, γ2
ij, γ3

ij

)
=
〈(

αij, σij
)
, µij, vij

〉
(118)

αij =
1
2

3

∏
m=1,l=m

((
α̃m

ij

)λm
+
(

α̃l
ij

)λl
) 1

6
(119)

σij = αij

√√√√ 3
∑

m=1,l=m

(
1
6

(√
λm

(
α̃m

ij

)λm−1(
σ̃m

ij

)
+
√

λl

(
α̃l

ij

)λl−1(
σ̃l

ij

))2
/
((

α̃m
ij

)λm
+
(

α̃l
ij

)λl
)2
)

(120)
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µij = 1/
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∏
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(
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vij = 2/
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∏
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Table 8. The collective decision matrix R of the Hamacher weighted geometric Heronian mean
(NIFHWGHM) operator.

C1 C2 C3 C4

A1 <(1.00,0.402),0.786,0.202> <(1.00,0.423),0.787,0.20> <(0.945,0.293),0.78,0.207> <(0.708,2.397),0.792,0.202>
A2 <(0.884,0.239),0.805,0.209> <(0.765,0.417),0.795,0.202> <(1.00,0.262),0.757,0.205> <(0.78,1.147),0.779,0.199>
A3 <(0.797,0.729),0.81,0.207> <(0.919,0.228),0.762,0.198> <(0.896,0.296),0.794,0.209> <(0.95,0.265),0.787,0.201>
A4 <(0.738,0.371),0.843,0.206> <(0.875,0.433),0.779,0.202> <(0.808,0.344),0.788,0.202> <(1.00,0.272),0.807,0.207>

Step 6. Utilizing the NIFHWHM operator to obtain preference values of R =
[
rij
]

4×4, get the collection
preference value ri (i = 1,2,3,4) of alternative Ai (i = 1,2,3,4) (see Table 9).

ri = NIFHWHM1,1
w (ri1, ri2, ri3, ri4) = 〈(αi, σi), µi, vi〉 (123)
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Table 9. Aggregation result of the NIFHWHM operator.

Alternatives Ai Collection Preference Value ri Score Function S(ri) Ranking

A1 <(0.0451,0.1054),0.0537,0.9268> −0.0394 2
A2 <(0.0440,0.0568),0.0525,0.9235> −0.0383 1
A3 <(0.0506,0.0335),0.0547,0.9297> −0.0443 4
A4 <(0.0489,0.0308),0.0581,0.9166> −0.0420 3

Step 7. Utilizing the NIFHWGHM operator to get the preference values of R =
[
rij
]

4×4, obtain the
collection preference value ri (i = 1,2,3,4) of alternative Ai (i = 1,2,3,4) (see Table 10).

ri = NIFHWGHM1,1
w (ri1, ri2, ri3, ri4) = 〈(αi, σi), µi, vi〉 (128)

αi =
1
2

4

∏
m=1,l=m

(
(αim)

ωm + (αil)
ωl
) 1

6 (129)
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Table 10. Aggregation result of the NIFHWGHM operator.

Alternatives Ai Collection Preference Value ri Score Function S(ri) Ranking

A1 <(0.8463,0.6660),0.8967,0.1569> 0.6261 1
A2 <(0.6460,0.2203),0.8977,0.1572> 0.4784 4
A3 <(0.6539,0.0832),0.8979,0.1571> 0.4844 3
A4 <(0.6543,0.0725),0.9073,0.1572> 0.4908 2

Step 8. Calculate the values of score function S(ri) = αi(µi − vi), i = 1, 2, 3, 4 S(ri)(i = 1,2,3,4) (see
Tables 9 and 10).

Step 9. Arrange all of the alternatives Ai (i = 1,2,3,4) as follows (see Tables 9 and 10).

6.2. Sensitivity Analysis

In the method proposed in this paper, three parameters (γ, p, and q) are involved and influence
the aggregation result. Therefore, we performed a sensitivity analysis for studying the influence of
generalized parameters with respect to the ordering results of the above example. In other words, we
chose different parameters γ, p and q in Step (3) to rank all the alternatives and to investigate the effect
of parameter value changes on the ordering results. The aggregation results are provided in Table 11
and Figures 1–5.

From Table 11 and Figures 1–5, we can observe that different parameter values have a certain
influence on the ordering results. In general, the best alternative is A1 with respect to the NIFWHM
operator, while A2 is the best one with respect to the NIFHWGHM operator.

(1) From Table 11 and Figures 1 and 2, the best resolution and ordering results of the alternatives
are concordant when γ > 1.33 and p, q are given in the NIFHWHM or NIFHWGHM operators. When
γ ≤ 1.33 and there is a zero in p and q, the ordering results are different.

(2) From Figures 3 and 4, we can see that when γ, q are given in the NIFHWHM or NIFHWGHM
operators and p takes the values of the different intervals, the best resolution and the orderings
are different. For example, with the NIFHWHM operator, when γ = 1, q = 1, p ∈ (0, 0.83], the
ranking is A1 � A2 � A4 � A3; when p ∈ (0.83, 0.1.36], the ranking is A2 � A1 � A4 � A3;
when p ∈ (1.36, 1.78], the ranking is A2 � A4 � A1 � A3; and when p ∈ (1.78, 5], the ranking is
A2 � A4 � A3 � A1. Additionally, we notice that when p ∈ (0.83, 0.1.36], the best one is A1; when
p ∈ (0.83, 5], the best one is A2.

(3) Figure 5 shows that sensitivity of the parameter q is similar to the parameter p, but the influence
of the value of q is less in the NIFHWGHM operator. As long as q > 0.11, the rankings are concordant
A1 � A4 � A3 � A2.

(4) From Table 11 and Figures 1–5, on the whole, the score function values of the NIFHWHM
or NIFHWGHM operators become smaller when the parameters γ, p, and q increase. Therefore, the
parameters γ, p, and q play crucial roles in the MCGDM procedure. In practical cases, the decision
makers can take different values of the parameter, for example, the bigger parameter values are chosen
by decision experts who are pessimistic, while smaller parameter values are adopted when decision
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experts take an optimistic view of the decision results. For convenience, we can assign γ = p = q = 1
or γ = 2, p = q = 1; especially, when γ = p = q = 1, the mathematical calculation can be simplified.

In a word, based on the generalized parameters γ, p, and q in the NIFHWHM operator and
NIFHWGHM operator, the new method in this paper can offer more flexible or reliable decision-making
resolutions. Moreover, the reasonable and best alternative can be properly obtained on the basis of the
practical MAGDM problems, namely, the new method can offer a powerful and effective mathematic
tool for the MAGDM under uncertainty.

Table 11. Sensitivity analysis with respect to γ in the NIFHWHM operator.

γ S(r1) S(r2) S(r3) S(r4) Ranking

p = 1
q = 0

0.1 −0.0388 −0.0298 −0.0336 −0.0288 A4>A2>A3>A1
0.5 −0.0440 −0.0336 −0.0378 −0.0333 A4>A2>A3>A1
1.0 −0.0469 −0.0358 −0.0403 −0.0359 A2>A4>A3>A1
1.5 −0.0486 −0.0371 −0.0417 −0.0374 A2>A4>A3>A1
2.0 −0.0497 −0.0380 −0.0427 −0.0384 A2>A4>A3>A1
5.0 −0.0528 −0.0403 −0.0453 −0.0410 A2>A4>A3>A1
30 −0.0560 −0.0428 −0.0480 −0.0439 A2>A4>A3>A1

p = 0.5
q = 0.5

0.1 0.0283 −0.0280 −0.0326 −0.0291 A2>A1>A4>A3
0.5 −0.0311 −0.0309 −0.0357 −0.0324 A2>A1>A4>A3
1.0 −0.0328 −0.0326 −0.0376 −0.0313 A2>A1>A4>A3
1.5 −0.0337 −0.0336 −0.0387 −0.0355 A2>A1>A4>A3
2.0 −0.0344 −0.0343 −0.0394 −0.0362 A2>A1>A4>A3
5.0 −0.0361 −0.0360 −0.0413 −0.0383 A2>A1>A4>A3
30 −0.0381 −0.0379 −0.0434 −0.0404 A2>A1>A4>A3

p = 1
q = 1

0.1 −0.0326 −0.0315 −0.0368 −0.0340 A2>A1>A4>A3
0.5 −0.0354 −0.0344 −0.0400 −0.0374 A2>A1>A4>A3
1.0 −0.0374 −0.0363 −0.0421 −0.0397 A2>A1>A4>A3
1.5 −0.0385 −0.0375 −0.0434 −0.0411 A2>A1>A4>A3
2.0 −0.0394 −0.0383 −0.0443 −0.0420 A2>A1>A4>A3
5.0 −0.0416 −0.0406 −0.0468 −0.0447 A2>A1>A4>A3
30 −0.0441 −0.0430 −0.0495 −0.0476 A2>A1>A4>A3

p = 2
q = 1

0.1 −0.0398 −0.0341 −0.0390 −0.0362 A2>A4>A3>A1
0.5 −0.0433 −0.0372 −0.0424 −0.0398 A2>A4>A3>A1
1.0 −0.0459 −0.0395 −0.0448 −0.0425 A2>A4>A3>A1
1.5 −0.0475 −0.0410 −0.0464 −0.0442 A2>A4>A3>A1
2.0 −0.0487 −0.0420 −0.0475 −0.0454 A2>A4>A3>A1
5.0 −0.0518 −0.0448 −0.0505 −0.0487 A2>A4>A3>A1
30 −0.0553 −0.0478 −0.0539 −0.0524 A2>A4>A3>A1

p = 2
q = 5

0.1 −0.0334 −0.0342 −0.0434 −0.0458 A1>A2>A3>A4
0.5 −0.0361 −0.0372 −0.0466 −0.0494 A1>A2>A3>A4
1.0 −0.0382 −0.0396 −0.0492 −0.0523 A1>A2>A3>A4
1.5 −0.0395 −0.0411 −0.0509 −0.0542 A1>A2>A3>A4
2.0 −0.0404 −0.0422 −0.0520 −0.0556 A1>A2>A3>A4
5.0 −0.0431 −0.0450 −0.0553 −0.0596 A1>A2>A3>A4
30 −0.0472 −0.0491 −0.0608 −0.0667 A1>A2>A3>A4

p = 20
q = 5

0.1 −0.0420 −0.0376 −0.0445 −0.0466 A2>A1>A3>A4
0.5 −0.0454 −0.0409 −0.0478 −0.0503 A2>A1>A3>A4
1.0 −0.0483 −0.0437 −0.0507 −0.0537 A2>A1>A3>A4
1.5 −0.0501 −0.0455 −0.0526 −0.0560 A2>A1>A3>A4
2.0 −0.0515 −0.0468 −0.0540 −0.0577 A2>A1>A3>A4
5.0 −0.0613 −0.0556 −0.0647 −0.0712 A2>A1>A3>A4
30 −0.0613 −0.0556 −0.0647 −0.0712 A2>A1>A3>A4
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Figure 1. Sensitivity analysis with respect to γ in NIFHWHM operator based on different p, q:
(a) variation tendency of score function value when p = 1, q = 0; (b) variation tendency of score
function value when p = 0, q = 1; (c) variation tendency of score function value when p = 0.5, q = 0.5;
(d) variation tendency of score function value when p = 1, q = 1; (e) variation tendency of score
function value when p = 3, q = 1; (f) variation tendency of score function value when p = 1, q = 3.
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Figure 2. Sensitivity analysis with respect to γ in the NIFHWGHM operator based on different p, q: (a)
variation tendency of score function value when p = 1, q = 0; (b) variation tendency of score function
value when p = 0, q = 1; (c) variation tendency of score function value when p = 0.5, q = 0.5; (d)
variation tendency of score function value when p = 1, q = 1; (e) variation tendency of score function
value when p = 3, q = 1; (f) variation tendency of score function value when p = 1, q = 3.
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Figure 3. Sensitivity analysis with respect to p  in the NIFHWHM operator based on different ,γ q : 
(a) variation tendency of score function value when =1, 0γ q  ; (b) variation tendency of score function 
value when =2, 0γ q  ; (c) variation tendency of score function value when =1, 1γ q  ; (d) variation 
tendency of score function value when =2, 1γ q  ; (e) variation tendency of score function value when 

=1, 5γ q  ; (f) variation tendency of score function value when =2, 5γ q  . 

Figure 3. Sensitivity analysis with respect to p in the NIFHWHM operator based on different γ, q:
(a) variation tendency of score function value when γ = 1, q = 0; (b) variation tendency of score
function value when γ = 2, q = 0; (c) variation tendency of score function value when γ = 1, q = 1;
(d) variation tendency of score function value when γ = 2, q = 1; (e) variation tendency of score
function value when γ = 1, q = 5; (f) variation tendency of score function value when γ = 2, q = 5.
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Figure 4. Sensitivity analysis with respect to p in the NIFHWGHM operator based on different γ, q:
(a) variation tendency of score function value when γ = 1, q = 0; (b) variation tendency of score
function value when γ = 2, q = 0; (c) variation tendency of score function value when γ = 1, q = 1;
(d) variation tendency of score function value when γ = 2, q = 1; (e) variation tendency of score
function value when γ = 1, q = 5; (f) variation tendency of score function value when γ = 2, q = 5.
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Figure 5. Sensitivity analysis with respect to q  in the NIFHWHM and NIFHWGHM operators based 
on different ,γ p : (a) variation tendency of score function value when =1, 0γ p   in the NIFHWHM 
operator; (b) variation tendency of score function value when =1, 2γ p   in the NIFHWGHM operator; 
(c) variation tendency of score function value when =1, 1γ p   in the NIFHWHM operator; (d) variation 
tendency of score function value when =1, 1γ p   in the NIFHWGHM operator; (e) variation tendency 
of score function value when =1, 2γ p   in the NIFHWHM operator; (f) variation tendency of score 
function value when =1, 2γ p   in the NIFHWGHM operator. 
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Figure 5. Sensitivity analysis with respect to q in the NIFHWHM and NIFHWGHM operators based
on different γ, p: (a) variation tendency of score function value when γ = 1, p = 0 in the NIFHWHM
operator; (b) variation tendency of score function value when γ = 1, p = 2 in the NIFHWGHM
operator; (c) variation tendency of score function value when γ = 1, p = 1 in the NIFHWHM
operator; (d) variation tendency of score function value when γ = 1, p = 1 in the NIFHWGHM
operator; (e) variation tendency of score function value when γ = 1, p = 2 in the NIFHWHM operator;
(f) variation tendency of score function value when γ = 1, p = 2 in the NIFHWGHM operator.
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6.3. Comparison Analysis

6.3.1. A Comparison with Decision-Making Methods Using Triangular and Trapezoidal Intuitionistic
Fuzzy Information

For further comparison of the rationality and comprehensiveness of the new MCGDM approach
in this paper, a prospect value determination method with the TraIFNs [17] and a method with
TriIFNs [25] are applied in this section to deal with the aforementioned example. Thus, we need
transform the TraIFNs and TriIFNs by the transformation method in [33], which is shown in Table 12.
According to Table 12, the information rk

ij =
〈(

ak
ij, σk

ij

)
; µk

ij
, vk

ij

〉
from each expert is also transformed

into the TraIFNs and the TriIFNs. Moreover, the normalization method of the TraIFN and TriIFN
decision matrix is presented as follows.
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where B is benefit attributes set.

Table 12. Transformation method of the normal intuitionistic fuzzy number (NIFN), trapezoidal IFN
(TraIFN), and triangular IFN (TriIFN).

NIFN TraIFN TriIFN

〈(α, σ), µ, v〉

〈(a1, a2, a3, a4), (b1, b2, b3, b4); µ, v〉
a1 = α− 2.5σ b1 = α− 3σ
a2 = α− 1.5σ b2 = α− 2σ
a3 = α + 1.5σ b3 = α + 2σ
a4 = α + 2.5σ b4 = α + 3σ

〈(a, b, c); µ, v〉
a = α− 3σ, b = α, c = α + 3σ

From Table 13, it can be seen that the best resolution of the three methods is A2, but the ordering
results are different for these methods. The proposed method of this paper takes into account the
interrelations between input data, and it is more practical than the methods in [17,25,30]. The reason is
that there are many normal random factors under the social and economic environment. Furthermore,
in light of central limit theorem, the limit distribution of the sum of random variables is a normal
distribution. However, the TriIFNs and TraIFNs cannot better depict the laws of normal distribution
and accurately express corresponding normal random phenomena. Therefore, compared with the
TriIFNs and TraIFNs, the NIFNs can better describe the decision problems with normal distribution
information and can more realistically express the uncertainty information, and the MCGDM approach
in this paper is more reliable and reasonable to aggregate the normal distribution information than the
methods in [17,25,30].

Table 13. Comparison of the ranking results by methods in [17,25,30].

Method Measure A1 A2 A3 A4 Ranking

Value determination in [17] Prospect value
function −0.291 −0.137 −0.185 −0.243 A2>A3>A4>A1

Tended TODIM in [25] Closeness coefficient 0.786 0.279 0.491 0.431 A2>A4>A3>A1

TOPSIS in [30] Closeness coefficient 0.489 0.282 0.798 0.427 A2>A4>A1>A3

Method in this paper Score function
−0.035 −0.034 −0.040 −0.037 A2>A1>A4>A3

1

−0.037 −0.036 −0.042 −0.038 A2>A1>A4>A3
2

−0.039 −0.038 −0.044 −0.042 A2>A1>A4>A3
3

1 Parameter γ = 0.5, p = q = 1 by NIFHWHM operator; 2 Parameter γ = 1, p = q = 1 by NIFHWHM operator;
3 Parameter γ = 2, p = q = 1 by NIFHWHM operator.
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6.3.2. A Comparison with Decision-Making Methods Using the NIFNs

In order to study the advantages of the MCGDM approach in this paper, three methods were
applied to deal with the problem in the aforementioned example, and the aggregation results can be
seen in Table 14.

Table 14. Comparison of the ranking results by methods in [34,36,62].

Method Measure A1 A2 A3 A4 Ranking

MADM method by NIFI
operator in [34] Score function 0.486 0.779 0.491 0.531 A2>A4>A3>A1

MADM method by
NIFBM operator in [36] Score function 0.476 0.482 0.471 0.467 A2>A1>A3>A4

VIKOR-based dynamic
method in [62]

Compromise
value function 0.998 0.003 0.775 0.698 A2>A4>A3>A1

Method in this paper Score function

−0.035 −0.034 −0.040 −0.037 A2>A1>A4>A3
1

−0.037 −0.036 −0.042 −0.038 A2>A1>A4>A3
2

−0.039 −0.038 −0.044 −0.042 A2>A1>A4>A3
3

−0.044 −0.035 −0.041 −0.037 A2>A1>A4>A3
4

1 Parameter γ = 0.5, p = q = 1 by NIFHWHM operator; 2 Parameter γ = 1, p = q = 1 by NIFHWHM operator;
3 Parameter γ = 2, p = q = 1 by NIFHWHM operator; 4 Parameter γ = 1, p = 0, q = 1 by NIFHWHM operator.

From Table 14, we can observe that the best alternatives are all A2, but the solution ordering
results are completely different for four methods, which can all tackle NIF information. We consider
that there are wide interrelationships among the attributes or relationships between input argument
and itself in practical MAGDM problems. Moreover, the new method in this paper considers the
interrelationship factor between input arguments or between input argument and itself. Therefore,
compared with two methods in [34,62], the ranking results from the new method in this paper is more
effective and more reasonable.

In addition, if q = 0 or p = 0, then the interrelationships did not exist in the new method in this
paper. In the aforementioned example, we can obtain the aggregation ordering results, namely, the
relationships between arguments or among the attributes are not considered in the method proposed in
this paper. The solution ordering result is the same as that using the methods in [34,62], consequently,
this verifies the different ordering results.

Furthermore, for a group of attributes ci(i = 1, 2, · · · , n) and a collection of input arguments
ai(i = 1, 2, · · · , n), the method in [36] also takes into account the relationships between any pair of
attributes ci and cj (i 6= j) or between any pair of input arguments ai and aj(i 6= j), but it neglects the
correlation between input argument ai and itself or between the attribute ci and itself. Considering
that the correlation between ai and aj(i 6= j) or between ci and cj (i 6= j) is equal to the correlation
between ai and aj(i 6= j) or between ci and cj (i 6= j), the method in [36] deals with it separately and
brings about redundancy. Therefore, compared with the method in [36], the new method in this paper
not only considers relationships between the input arguments or the attributes, but also takes into
account the correlation between input argument and itself. Furthermore, interrelationships between
input arguments are tackled once.

7. Conclusions

In this work, enlightened by Heronian mean, we significantly investigated a family of generalized
fuzzy HM operators based on Hamacher operation for NIFNs, including NIFHHM, NIFHWHM,
NIFHGHM, and NIFHWGHM operators, and we discuss various properties of the proposed operators
which have the desirable quality of not only dealing with the normal intuitionistic fuzzy information,
but also considering the correlations of two input arguments once. Therefore, the new proposed
operators do not result in redundancy, and these operators also take into account the interrelationship
between input argument and itself at the same time. Furthermore, we have manifested that the
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operators related to Hamacher operation generalize the operators based on the algebraic or Einstein
operational rules, and they are more flexible to extend the choice scope of decision makers. On
the basis of the developed operators, a new MCGDM approach is introduced in order to deal with
normal intuitionistic fuzzy number information. The advantages of this new method are that: (1) it
is more reliable and reasonable to aggregate the normal distribution information under the normal
intuitionistic fuzzy numbers environment; (2) it offers an effective and powerful mathematic tool for the
MAGDM under uncertainty and can provide more reliable and flexible aggregation results in decision
making; (3) it not only considers relationships between the input arguments or the attributes, but also
takes into account the correlation between input argument and itself or the interrelations between
the attribute and itself, furthermore, interrelationships between input arguments or the attributes are
tackled once. The new methods provide some reasonable and reliable MCGDM aggregation operators,
which broaden the selection scope of the decision makers and offer theory evidence for the MCGDM
methods. Meanwhile, the proposed methods solve the interaction of the different criteria or input
arguments and do not bring about redundancy of the mathematical calculation. Lastly, an application
example revealed that the developed approach is effective and practical by the comparison with other
methods. In further research, it is important to investigate how to determine the weights and how to
transform other types of fuzzy numbers into the NIFNs, and it is essential to study the application
of the proposed operators in wide fields, such as uncertain programming, cluster analysis, pattern
recognition, and so on.
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