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Abstract: In this article we study the connection of fractional Brownian motion, representation
theory and reflection positivity in quantum physics. We introduce and study reflection positivity for
affine isometric actions of a Lie group on a Hilbert space E and show in particular that fractional
Brownian motion for Hurst index 0 < H ≤ 1/2 is reflection positive and leads via reflection positivity
to an infinite dimensional Hilbert space if 0 < H < 1/2. We also study projective invariance of
fractional Brownian motion and relate this to the complementary series representations of GL2(R).
We relate this to a measure preserving action on a Gaussian L2-Hilbert space L2(E).

Keywords: fractional brownian motion; reflection positivity; reflection negative kernels; representations
of SL2(R)

1. Introduction

In this paper we continue our investigations of the representation theoretic aspects of
reflection positivity and its relations to stochastic processes ([1,2]). This is a basic concept in constructive
quantum field theory [3–6], where it arises as a requirement on the euclidean side to establish a duality
between euclidean and relativistic quantum field theories [7]. It is closely related to “Wick rotations”
or “analytic continuation” in the time variable from the real to the imaginary axis.

The underlying structure is that of a reflection positive Hilbert space, introduced in [8]. This is a triple
(E , E+, θ), where E is a Hilbert space, θ : E → E is a unitary involution and E+ is a closed subspace of
E which is θ-positive in the sense that the hermitian form 〈u, θv〉 is positive semidefinite on E+. We
write Ê for the corresponding Hilbert space and q : E+ → Ê , ξ 7→ ξ̂ for the canonical map.

To relate this to group representations, let us call a triple (G, S, τ) a symmetric semigroup if G is
a Lie group, τ is an involutive automorphism of G and S ⊆ G a subsemigroup invariant under the
involution s 7→ s] := τ(s)−1. The Lie algebra g of G decomposes into τ-eigenspaces g = h⊕ q and
we obtain the Cartan dual Lie algebra gc = h⊕ iq. We write Gc for a Lie group with Lie algebra gc.
The prototypical pair (G, Gc) consists of the euclidean motion group E(d) = Rd o Od(R) and the
orthochronous Poincaré group P(d)↑ = Rd o O1,d−1(R)↑. If (G, H, τ) is a symmetric Lie group and
(E , E+, θ) a reflection positive Hilbert space, then we say that a unitary representation U : G → U(E) is
reflection positive with respect to (G, S, τ) if

Uτ(g) = θUgθ for g ∈ G and USE+ ⊆ E+. (1)

If (π, E) is a reflection positive representation of G on (E , E+, θ), then Ûsq(v) := q(Usv) defines
a representation (Û, Ê) of the involutive semigroup (S, ]) by contractions ([8] Lemma 1.4, [4] or [9],

Symmetry 2018, 10, 191; doi:10.3390/sym10060191 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-2681-5753
http://www.mdpi.com/2073-8994/10/6/191?type=check_update&version=1
http://dx.doi.org/10.3390/sym10\num [minimum-integer-digits = 2]{6}\num [minimum-integer-digits = 4]{191}
http://www.mdpi.com/journal/symmetry


Symmetry 2018, 10, 191 2 of 39

Prop. 3.3.3). However, if S has interior points, we would like to have a unitary representation Uc

of a Lie group Gc with Lie algebra gc on Ê whose derived representation is compatible with the
representation of S. If such a representation exists, then we call (U, E) a euclidean realization of the
representation (Uc, Ê) of Gc. Sufficient conditions for the existence of Uc have been developed in [10].

Althought this is a rather general framework, the present paper is only concerned with
very concrete aspect of reflection positivity. The main new aspect we introduce is a notion of
reflection positivity for affine isometric actions of a symmetric semigroup (G, S, τ) on a real Hilbert
space. Here E+ is naturally defined by the closed subspace generated by the S-orbit of the origin.
On the level of positive definite functions, this leads to the notion of a reflection negative function.
For (G, S, τ) = (R,R+,− idR), reflection negative functions ψ are easily determined because reflection
negativity is equivalent to ψ|(0,∞) being a Bernstein function ([11]). An announcement of some of the
results in the present paper appeared in [2].

For a group G, affine isometric actions αgξ = Ugξ + βg on a real Hilbert space E are encoded in
real-valued negative definite functions ψ(g) = ‖βg‖2 satisfying ψ(e) = 0 (cf. [12,13]). Especially for
G = R, these structures have manifold applications in various fields of mathematics (see for
instance [14–16], and also [17] for the generalization to spirals which corresponds to actions of R
by affine conformal maps). For the group G = (R,+), the homogeneous function ψ(x) = |x|2H is
negative definite if and only if 0 ≤ H ≤ 1, and this leads to the positive definite kernels

CH(s, t) :=
1
2
(|s|2H + |t|2H − |s− t|2H),

which for 0 < H < 1 are the covariance kernels of fractional Brownian motion with Hurst index
H ([18–22]).

One of the central results of this paper is an extension of the well-known projective invariance
of Brownian motion in the sense of P. Lévy (cf. [23] §I.2, and [24]) to fractional Brownian motion.
Here we use the identification of R∞ := R ∪ {∞} with the real projective line, which leads to the

action of GL2(R) by Möbius transformations g.x = ax+b
cx+d for g =

(
a b
c d

)
. Starting from a realization

of fractional Brownian motion (BH
t )t∈R with Hurst index H ∈ (0, 1) in a suitable Hilbert spaceHH by

the functions
bH

t := sgn(t)χ[t∧0,t∨0] = χ[0,∞) − χ[t,∞), t ∈ R, (2)

we associate to every pair of distinct points α, γ in R∞ a normalized process whose covariance kernels
CH

α,γ transform naturally under Möbius transformations in the sense that

CH
g.α,g.β(g.s, g.t) = CH

α,β(s, t). (3)

Here the normalized fractional Brownian motion B̃H
t = |t|−H BH

t has the covariance kernel CH
0,∞

and the transformed process B̃H
g.t is equivalent to the original one.

The structure of this paper is as follows. In Section 2 we briefly recall the general background of
reflection positive Hilbert spaces and representations and in Section 3 we introduce reflection positive
affine isometric actions U : G → Mot(E) on real Hilbert spaces E . Since the group Mot(E) has a natural
unitary representation on the Fock space Γ(E), the L2-space of the canonical Gaussian measure of E ,
affine isometric representations are closely linked with symmetries of Gaussian stochastic processes for
which G acts on the corresponding index set. This is made precise in Appendix B.1, where we discuss
the measure preserving G-action corresponding to a stochasic process with stationary increments.
For square integrable processes, this connects with affine isometric actions on Hilbert spaces.

To pave the way for the analysis of the interaction of fractional Brownian motion with unitary
representations, we introduce in Section 4 a family of unitary representations (UH ,HH)0<H<1 of
GL2(R), respectively its projective quotient PGL2(R), i.e., the group of Möbius transformations on the
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real projective line. For H = 1
2 this is the natural representation on L2(R) (belonging to the principal

series), whereas for H 6= 1
2 it belongs to the complementary series ([4,25]). The Hilbert spaces HH

are obtained from positive definite distribution kernels by completion of S(R) with respect to the
scalar product

〈ξ, η〉H = −1
2

∫
R

∫
R

ξ ′(x)η′(y)|x− y|2H dx dy.

In Section 5 we realize fractional Brownian motion in a very natural way in terms of the cocycle (2)
defining an affine isometric action of the translation group (R,+) on HH . Acting with the group
GL2(R) on these functions leads naturally to the projective invariance of fractional Brownian motion,
both on the level of the normalized kernels as in (3), and with respect to our concrete realization
(Theorem 1).

Reflection positivity is then explored in Section 6. For α 6= γ in R∞ ∼= S1 we consider a reflection
θ with a fixed point and exchanging α and γ. Here our main result is Theorem 2, asserting that
the normalized kernels CH

α,γ on the complement of the two-element set {α, γ} in R∞ ∼= S1 is
reflection positive with respect to θ if and only if H ≤ 1

2 . In particular, this implies reflection
positivity for a Brownian bridge on a real interval [α, γ] with respect to the reflection in the midpoint.
Reflection positivity for the complementary series representations of SL2(R) has already been observed
in [4], where the representation Uc is identified as a holomorphic discrete series representation.

Reflection positivity for the affine action of the translation group inHH defined by the cocycle bH
t

realizing fractional Brownian motion is studied in Section 7. Although we always have involutions that
lead to reflection positive Hilbert spaces in a natural way, only for H ≤ 1

2 we obtain reflection positive
affine actions of (R,R+,− id). We conclude Section 7 with a discussion of the increments of a 1-cocycle
(βt)t∈R defining an affine isometric action. In particular, we characterize cocycles with orthogonal
increments as those corresponding to multiples of Brownian motion. Note that the increments of
fractional Brownian motion are positively correlated for H ≥ 1

2 and negatively correlated for H ≤ 1
2 .

We conclude this paper with a brief discussion of some related results concerning higher dimensional
spaces in Section 8. We plan to return to the corresponding representation theoretic aspects in the
near future.

In order not to distract the reader from the main line of the paper, we moved several auxiliary tools
and some definitions and calculations into appendices: Appendix A deals with affine isometries and
positive definite kernels and Appendix B reviews some properties of stochastic processes. In particular,
we provide in Proposition A3 a representation theoretic proof for the Lévy–Khintchine formula for the real
line, which represents a negative definite function in terms of its spectral measure ([19,20,23,26] Thm. 32).
Appendix C briefly recalls the measure theoretic perspective on Second Quantization, Appendix D
contains the verification that the representations UH mentioned above are unitary, and Appendix E
contains a calculation of the spectral measure for fractional Brownian motion.

A different kind of projective invariance, in the path parameter t, for one-dimensional Brownian
motion has been observed by S. Takenaka in [27]: For a Brownian motion (Bt)t∈R, the process

Bg
t := (ct + d)Bg.t − ct · Bg.∞ − d · Bg.0, g =

(
a b
c d

)
∈ SL2(R), t ∈ R∞, g.t 6= ∞,

also is a Brownian motion, and the relation (Bg)h = Bgh leads to a unitary representation of SL2(R)
on the realization space. From that he derives the projective invariance in the sense of Lévy, and he
argues that his method does not extend to fractional Brownian motion. In [28], Takenaka shows that
the representation of SL2(R) he obtains belongs to the discrete series, so that it is differet from ours.
He also hints at the possibility of extending Hida’s method [24] to fractional Brownian motion, and in
a certain sense this is carried out in the present paper.
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2. Reflection Positive Functions and Representations

Since our discussion is based on positive definite kernels and the associated Hilbert spaces ([29,30]
Ch. I, [9]), we first recall the pertinent definitions. As customary in physics, we follow the convention
that the inner product of a complex Hilbert space is linear in the second argument.

Definition 1. (a) Let X be a set. A kernel Q : X× X → C is called hermitian if Q(x, y) = Q(y, x).
A hermitian kernel Q is called positive definite if for x1, . . . , xn ∈ X, c1, . . . , cn ∈ C, we have
∑n

j,k=1 cjckQ(xj, xk) ≥ 0. It is called negative definite if ∑n
j,k=1 cjckQ(xj, xk) ≤ 0 holds for x1, . . . , xn ∈ X

and c1, . . . , cn ∈ C with ∑ cj = 0 ([31]).
(b) If (S, ∗) is an involutive semigroup, then ϕ : S→ C is called positive (negative) definite if the kernel

(ϕ(st∗))s,t∈S is positive (negative) definite. If G is a group, then we consider it as an involutive semigroup with
g∗ := g−1 and definite positive/negative definite functions accordingly.

We shall use the following lemma to translate between positive definite and negative definite
kernels ([31], Lemma 3.2.1):

Lemma 1. Let X be a set, x0 ∈ X and Q : X× X → C be a hermitian kernel. Then the kernel

K(x, y) := Q(x, x0) + Q(x0, y)−Q(x, y)−Q(x0, x0)

is positive definite if and only if Q is negative definite.

Remark 1. According to Schoenberg’s Theorem ([31] Thm. 3.2.2), a kernel Q : X× X → C is negative definite
if and only if, for every h > 0, the kernel e−hQ is positive definite.

Remark 2. Let X be a set, K : X × X → C be a positive definite kernel and HK ⊆ CX be the corresponding
reproducing kernel Hilbert space. This is the unique Hilbert subspace of CX on which all point evaluations
f 7→ f (x) are continuous and given by

f (x) = 〈Kx, f 〉 for K(x, y) = Ky(x) = 〈Kx, Ky〉.

Then the map γ : X → HK, γ(x) = Kx has total range and satisfies K(x, y) = 〈γ(x), γ(y)〉. The latter
property determines the pair (γ,HK) up to unitary equivalence ([30] Ch. I).

Definition 2. A reflection positive Hilbert space is a triple (E , E+, θ), where E is a Hilbert space, θ a unitary
involution and E+ is a closed subspace which is θ-positive in the sense that the hermitian form 〈ξ, η〉θ := 〈ξ, θη〉
is positive semidefinite on E+.

For a reflection positive Hilbert space (E , E+, θ), let N := {ξ ∈ E+ : 〈ξ, θξ〉 = 0} and write Ê for
the completion of E+/N with respect to the inner product 〈·, ·〉θ . We write q : E+ → Ê , ξ 7→ ξ̂ for the
canonical map.

Example 1. Suppose that K : X× X → C is a positive definite kernel and τ : X → X is an involution leaving
K invariant and that X+ ⊆ X is a subset with the property that the kernel Kτ(x, y) := K(x, τy) is also positive
definite on X+. We call such kernels K reflection positive with respect to (X, X+, τ). Then the closed subspace
E+ ⊆ E := HK generated by (Kx)x∈X+ is θ-positive for (θ f )(x) := f (τx). We thus obtain a reflection positive
Hilbert space (E , E+, θ).

In this context, the space Ê can be identified with the reproducing kernel space HKτ ⊆ CX+ , where q
corresponds to the map

q : E+ → HKτ , q( f )(x) := f (τ(x))

([9] Lemma 2.4.2).
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For a symmetric semigroup (G, S, τ), we obtain natural classes of reflection positive kernels:

Definition 3. A function ϕ : G → C on a group G is called reflection positive ([11]) if the kernel
K(x, y) := ϕ(xy−1) is reflection positive with respect to (G, S, τ) in the sense of Example 1 with X = G
and X+ = S. These are two simultaneous positivity conditions, namely that the kernel ϕ(gh−1)g,h∈G is positive
definite on G and that the kernel ϕ(st])s,t∈S is positive definite on S.

The usal Gelfand–Naimark–Segal construction naturally extends to reflection positive functions
and provides a correspondence with reflection positive representations (see [9] Thm. 3.4.5).

Definition 4. For a symmetric semigroup (G, S, τ), a unitary representation U of G on a reflection positive
Hilbert space (E , E+, θ) is called reflection positive if θUgθ = Uτ(g) for g ∈ G and UsE+ ⊆ E+ for every s ∈ S.

Remark 3. (a) If (Ug)g∈G is a reflection positive representation of (G, S, τ) on (E , E+, θ), then we obtain
contractions (Ûs)s∈S on Ê , determined by

Ûs ◦ q = q ◦Us|E+ for s ∈ S,

and this leads to an involutive representation (Û, Ê) of S by contractions (cf. [32] Cor. 3.2, [8] or [9]). We then
call (U, E , E+, θ) a euclidean realization of (Û, Ê).

(b) For (G, S, τ) = (R,R+,− idR), continuous reflection positive unitary one-parameter groups (Ut)t∈R
lead to a strongly continuous semigroup (Û, Ê) of hermitian contractions and every such semigroup (C,H)

has a natural euclidean realization obtained as the GNS representation associated to the positive definite
operator-valued function ϕ(t) := C|t|, t ∈ R ([33] [Prop. 6.1]).

Example 2. On (R,R+,− id), we have:

(a) For 0 ≤ α ≤ 2, the function |x|α on (R,+) is negative definite by [31] Cor. 3.2.10 because x2 is obviously
negative definite.

(b) For α ≥ 0, the function |x|α is reflection negative if and only if 0 ≤ α ≤ 1 ([11] Ex. 4.3(a)).
(c) The function −|x|α is reflection negative for 1 ≤ α ≤ 2 ([31] Ex. 6.5.15, [11] Ex. 4.4(a)).

3. Reflection Positivity for Affine Actions

In this section we introduce reflection positive affine isometric actions U : G → Mot(E) on
real Hilbert spaces E and relate it to the corresponding measure preserving action on the Gaussian
L2-space Γ(E).

Let (G, S, τ) be a symmetric semigroup and E be a real Hilbert space, endowed with an isometric
involution θ. We consider an affine isometric action

αgv = Ugv + βg for g ∈ G, v ∈ E , (4)

where U : G → O(E) is an orthogonal representation and β : G → E a 1-cocycle, i.e.,

βgh = βg + Ugβh = αgβh for g, h ∈ G. (5)

Note that (5) in particular implies βe = 0 and thus βg−1 = −U−1
g βg. We further assume that

θαgθ = ατ(g), which is equivalent to

θUgθ = Uτ(g) and θβg = βτ(g) for g ∈ G. (6)

If βG is total in E , then we can realize E as a reproducing kernel Hilbert spaceHC ⊆ RG with kernel

C(s, t) := 〈βs, βt〉, s, t ∈ G.
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For the function
ψ : G → R, ψ(g) := ‖βg‖2 = C(g, g),

we then obtain

ψ(s−1t) = ‖βs−1t‖2 = ‖βs−1 + U−1
s βt‖2 = ‖Usβs−1 + βt‖2 = ‖βt − βs‖2 = ψ(s) + ψ(t)− 2C(s, t),

so that

C(s, t) =
1
2
(
ψ(s) + ψ(t)− ψ(s−1t)

)
and ψ(s−1t) = C(s, s) + C(t, t)− 2C(t, s). (7)

In view of (7), ψ is negative definite by Lemma 1. Equation (7) implies that, if βG is total, then the
affine action α can be recovered completely from the function ψ and every real-valued negative definite
function ψ : G → R with ψ(e) = 0 is of this form (cf. [12,13]). We also note that θβg = βτ(g) implies
that ψ ◦ τ = ψ.

Definition 5. (Reflection positive affine actions) The closed subspace E+ generated by (βs)s∈S is invariant
under the affine action of S on E because αsβt = βst for s, t ∈ S. We call the affine action (α, E) reflection
positive with respect to (G, S, τ) if E+ is θ-positive.

Example 3. (A universal example) Let (E , E+, θ) be a reflection positive real Hilbert space, E− := θ(E+) and
write Mot(E) ∼= E o O(E) for its motion group. We define an involution on Mot(E) by τ(b, g) := (θb, θgθ).
For γ ∈ Mot(E) we put γ] := τ(γ)−1. Then

S := {γ ∈ Mot(E) : γE+ ⊆ E+, γ]E+ ⊆ E+} = {γ ∈ Mot(E) : γE+ ⊆ E+, γE− ⊇ E−}

is a ]-invariant subsemigroup of Mot(E) with

S ∩ S−1 = {γ ∈ Mot(E) : γ(E+) = E+, γ(E−) = E−}.

By construction, the affine action of Mot(E) on E is reflection positive in the sense of Definition 5.
For γ = (b, g), the relation γ(E+) = E+ is equivalent to b ∈ E+ and gE+ = E+. This shows that

(b, g) ∈ S ∩ S−1 is equivalent to b ∈ E+ ∩ θ(E+) = (E+)θ (because of θ-positivity) and to the condition that
the restrictionss of g to E± are unitary.

The positive definite kernel Q(x, y) := e−‖x−y‖2/2 (Appendix C) is reflection positive with respect to
(G, S, τ) because the kernel Qθ(x, y) = Q(x, θy) = e−‖x−θy‖2/2 is positive definite on E+ (cf. Example 1).
From the Mot(E)-invariance of Q, we thus obtain a reflection positive representation of (Mot(E), S, τ) on the
corresponding reflection positive Hilbert space (Γ(E), Γ(E+), Γ(θ)).

It is instructive to make the corresponding space Γ̂(E) more explicit and to see how it identifies with Γ(Ê).
From

〈êiϕ(v), êiϕ(w)〉 = 〈eiϕ(v), Γ(θ)eiϕ(w)〉 = 〈eiϕ(v), eiϕ(θw)〉 = e−
1
2 ‖v−θw‖2

= e−
1
2 (‖v‖

2+‖w‖2)+〈v,θw〉

and
〈eiϕ(v̂), eiϕ(ŵ)〉 = e−

1
2 ‖v̂−ŵ‖2

= e−
1
2 (〈v,θv〉+〈w,θw〉)+〈v,θw〉 in Γ(Ê),

we derive that
eiϕ(v̂) = e

1
2 (‖v‖

2−〈v,θv〉) êiϕ(v) and êiϕ(v) = e
1
2 (〈v,θv〉−‖v‖2)eiϕ(v̂). (8)

For γ ∈ S, this leads to

γ̂eiϕ(v̂) = e
1
2 (‖v‖

2−〈v,θv〉) êiϕ(γv) = e
1
2 (‖v‖

2−〈v,θv〉+〈γv,θγv〉−‖γv‖2)eiϕ(γ̂v).
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In particular, the cyclic subrepresentation generated by the constant function 1 = eiϕ(0) is determined for
γ = (b, g) by the positive definite function

ϕ(b, g) = 〈eiϕ(0), γ̂eiϕ(0)〉 = e
1
2 (〈b,θb〉−‖b‖2)〈eiϕ(0), eiϕ(b̂)〉 = e

1
2 (〈b,θb〉−‖b‖2)e−

1
2 ‖b̂‖

2

= e
1
2 (〈b,θb〉−‖b‖2)e−

1
2 〈b,θb〉 = e−

1
2 ‖b‖

2
.

It follows that the function ϕ(b, g) = e−
1
2 ‖b‖

2
on Mot(E) is reflection positive for (Mot(E), S, τ).

The following lemma provides a characterization of reflection positive affine actions in terms
of kernels.

Lemma 2. Let (G, S, τ) be a symmetric semigroup and (α, E) be an affine isometric action of (G, τ) on the real
Hilbert space E . We write E+ := span βS for the closed subspace generated by αS(0) = βS. Then the following
are equivalent:

(a) The kernel Qθ(x, y) = Q(x, θy) = e−‖x−θy‖2/2 is positive definite on E+.
(b) (α, E) is reflection positive with respect to (G, S, τ), i.e., E+ is θ-positive.
(c) The kernel Cτ(s, t) := C(s, τ(t)) = 1

2
(
ψ(s) + ψ(t)− ψ(s]t)

)
is positive definite on (S, ]).

(d) The function ψ|S : S→ R is negative definite on (S, ]).

Proof. (a) ⇔ (b): In view of Q(x, θy) = e−
‖x‖2

2 e−
‖θy‖2

2 e〈x,θy〉 = e−
‖x‖2

2 e−
‖y‖2

2 e〈x,θy〉, the kernel Qθ is
positive definite on E+ if and only if the kernel e〈x,θy〉 is positive definite on E+, but this is equivalent
to E+ being θ-positive ([33] Rem. 2.8).

(b)⇔ (c): Since E+ is generated by (βs)s∈S, this follows from (7) and the definition of C.
(c)⇔ (d): By Lemma 1, the kernel Cτ is positive definite if and only if the kernel (ψ(s]t))s,t∈S is

negative definite, which is (d).

This leads us to the following concept:

Definition 6. We call a continuous function ψ : G → R reflection negative with respect to (G, S, τ) if ψ is
a negative definite function on G and ψ|S is a negative definite function on the involutive semigroup (S, ])
(Definition 1).

From Schoenberg’s Theorem for kernels (Remark 1) we immediately obtain from Lemma 2:

Corollary 1. Let (α, E) be a reflection positive affine action of (G, S, τ). Then, for every h > 0, the function
ϕh(g) := e−h‖βg‖2

is reflection positive, i.e., the function ‖βg‖2 is reflection negative.

Remark 4. (a) Let H be a real Hilbert space. For h > 0, the function ϕh(b, g) := e−h‖b‖2
on Mot(H) is

positive definite. A corresponding cyclic representation can be realized as follows. We consider the unitary
representation of Mot(H) on L2(H∗, γh) given by

ρ(b, g)F = eiϕ(b)g∗F, i.e., (ρ(b, g)F)(α) = eiα(b)F(α ◦ g), α ∈ H∗,

where γh is the Gaussian measure on H∗ with Fourier transform γ̂h(v) = e−h‖v‖2
and ϕ(v)(α) = α(v) as

in Definition A6 (see also Remark A3). Then the constant function 1 is a cyclic vector, and the corresponding
positive definite function is

〈1, ρ(b, g)1〉 = E(eiϕ(b)) = e−h‖b‖2
= ϕh(b, g). (9)
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(b) We conclude that, for every reflection positive affine action (α, E), for (G, S, τ), a cyclic reflection
positive representation of (G, S, τ) corresponding to ϕh(g) = e−h‖βg‖2

is obtained on the cyclic subspace of
L2(E∗, γh) generated by the constant function 1.

4. Some Unitary Representations of GL2(R)

In this section we introduce a family of unitary representations (UH ,HH)0<H<1 of GL2(R),
respectively of the projective group PGL2(R) ∼= GL2(R)/R×.

We identify the real projective line P1(R) ∼= S1 of one-dimensional linear subspaces of R2 with
R∞ = R∪ {∞}. On this space the group G := GL2(R) acts naturally by fractional linear maps

g.x = g(x) =
ax + b
cx + d

for g =

(
a b
c d

)
.

Note that
g′(x) =

ad− bc
(cx + d)2 , (10)

which shows that g acts on the circle R∞ in an orientation preserving fashion if and only if det g > 0.

Definition 7. For two different elements α 6= γ ∈ R∞, we write (α, γ) for the open interval between α and γ

with respect to the cyclic order. For γ < α in R this means that

(α, γ) = (α, ∞) ∪ {∞} ∪ (−∞, γ).

Definition 8. For the action of G on R∞, Lebesgue measure λ on R, resp., the corresponding measure on

S1 ∼= R∞ with λ({∞}) = 0 is quasi-invariant with d(g−1
∗ λ)
dλ (x) = |g′(x)|. A unitary representation of GL2(R)

(resp., of PGL2(R)) on L2(R) = L2(R, λ) is given by

(Ugξ)(x) = sgn(det g)
|ad− bc|1/2

|cx + d| ξ
( ax + b

cx + d

)
for g−1 =

(
a b
c d

)
. (11)

We could as well work without the sgn(det g)-factor, but we shall see below that it is more natural this
way when it comes to the relation with fractional Brownian motion.

We now explain how this representation can be embedded into a family of unitary representations
(UH)0<H<1. For H 6= 1

2 , these representations belong to the so-called complementary series (cf. [4,8,25]).
For H > 1

2 , the corresponding Hilbert spaceHH is the completion of the Schwartz space S(R) with
respect to the inner product

〈ξ, η〉H := H(2H − 1)
∫
R

∫
R

ξ(x)η(y)
dx dy

|x− y|2−2H . (12)

Note that 2− 2H ∈ (0, 1), so that the kernel |x− y|2H−2 is locally integrable and defines a positive
definite distribution kernel on R. This implies in particular that (12) makes sense for any pair of
compactly supported bounded measurable functions on R and that any such function defines an
element ofHH . In Appendix D we show that

〈ξ, η〉H = −1
2

∫
R

∫
R

ξ ′(x)η′(y)|x− y|2H dx dy. (13)

Definition 9. As we have seen in Example 2(a), the continuous function DH(x) = |x|2H on R is negative
definite for 0 < H ≤ 1. Therefore (13) defines for 0 < H < 1 a positive semidefinite form on S(R). We write
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HH for the corresponding Hilbert space. Here we use that the total integrals of ξ ′ and η′ vanish (cf. Remark 12).
Note that this definition also makes sense for H = 0 and H = 1, butH0 = {0} andH1 is one-dimensional.

Definition 10. We obtain unitary representations of GL2(R) (resp., the quotient PGL2(R)) on HH ,
0 < H < 1 by

(UH
g ξ)(x) = sgn(det g)

|ad− bc|H
|cx + d|2H ξ

( ax + b
cx + d

)
for g−1 =

(
a b
c d

)
. (14)

For the verification of unitarity we refer to Appendix D. For H = 1
2 , we obtain the representation on

L2(R) ∼= H1/2 from (11).

Remark 5. (a) Considering the singularities of the factors in the formula for UH
g , we see that the operators UH

g
preserve the class of locally bounded measurable functions for which

sup
x∈R
|x|2H |ξ(x)| < ∞.

For H > 1
2 , all these functions are contained inHH , so that we obtain a dense subspace ofHH invariant

under the operators UH
g .

(b) We note that the representation (UH ,HH) is equivalent to (U1−H ,H1−H), as can be seen by realizing
these representations on S1 (see [9] Ch. 7). We will not use this duality here.

Remark 6. The unitary representations (UH)0<H<1 of GL2(R) yield in particular three important
one-parameter groups:

• Translations: (SH
t ξ)(x) = ξ(x− t) for t ∈ R.

• Dilations: (τH
a ξ)(x) = sgn(a)|a|Hξ(ax) for a ∈ R×.

• Inverted translations: (κH
t ξ)(x) = 1

|1−tx|2H ξ( x
1−tx ) for t ∈ R.

Note that
τH

r−1 SH
t τH

r = SH
rt for t ∈ R, r ∈ R×. (15)

For σ =

(
0 1
1 0

)
∈ GL2(R) with σ.x = 1

x , we have

UH
σ (ξ)(x) = −|x|−2Hξ(x−1) and UH

σ SH
t UH

σ = κH
t . (16)

5. Fractional Brownian Motion

In this section we introduce fractional Brownian motion in terms of its covariance kernel. We then
show that the unitary representations (UH)0<H<1 of GL2(R) and a realization of fractional Brownian
motion in the Hilbert space HH , resp., on its Fock space, can be used to obtain in a very direct and
simple fashion the projective invariance of fractional Brownian motion.

5.1. A Realization of Fractional Brownian Motion

Definition 11. Fractional Brownian motion with Hurst index H ∈ (0, 1) is a real-valued Gaussian process
(BH

t )t∈R with zero means and covariance kernel

CH(s, t) = E(BH
s BH

t ) =
1
2
(|s|2H + |t|2H − |s− t|2H) for s, t ∈ R

(cf. [34] Satz 7 for the determination of those parameters for which this kernel is positive definite). A curve
γ : R → H with values in a Hilbert space H satisfying 〈γ(s), γ(t)〉 = CH(s, t) is called a fractional
Wiener spiral.
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Brownian motion arises for H = 1/2, and in this case

C1/2(s, t) =
1
2
(|s|+ |t| − |s− t|) =

{
|t| ∧ |s| for st ≥ 0.

0 for st < 0.

We refer to the monograph [22] for a stochastic calculus for fractional Brownian motion.

Example 4. (Bifractional Brownian motion) For 0 < H ≤ 1 and 0 < K ≤ 1, the kernel

C(s, t) = (|t|2H + |s|2H)K − |t− s|2HK

on R is positive definite (Lemma 1). The corresponding centered Gaussian process BH,K is called bifractional
Brownian motion ([35]). For K = 1 we obtain fractional Brownian motion which has stationary increments,
but for K < 1 the process BH,K does not have this property since the kernel

D(t, s) = C(t, t) + C(s, s)− 2C(t, s) = 2K(|t|2HK + |s|2HK)− (|t|2H + |s|2H)K + |t− s|2HK

on R is not translation invariant.
For a concept of trifractional Brownian motion and decompositions of fractional Brownian motion into

independent bifractional and trifractional components we refer to [36].

Remark 7. For 0 < H < 1, the kernel CH satisfies

CH(λs, λt) = |λ|2HC(s, t) and CH(s−1, t−1) = |st|−2HCH(s, t) for s, t ∈ R×, λ ∈ R. (17)

These transformation rules show that:

(a) For a fractional Brownian motion (BH
t )t∈R with Hurst index H, the centered Gaussian process (Xt)t∈R

defined by
X0 := 0 and Xt := |t|2H B1/t for t 6= 0

also is a fractional Brownian motion with Hurst index H.
(b) For c ∈ R× and Xt := |c|−H BH

ct , the process (Xt)t∈R is a fractional Brownian motion with Hurst
index H.

(c) For h ∈ R, the process Xt := BH
t+h − BH

h also is a fractional Brownian motion with Hurst index H.

Lemma 3. For t ∈ R and 0 < H < 1, consider the random variables

BH
t = ϕ(bH

t ) for bH
t := sgn(t)χ[t∧0,t∨0] = χ[0,∞) − χ[t,∞) ∈ HH .

Then 〈bH
s , bH

t 〉H = CH(s, t), i.e., (BH
t )t∈R is a realization of fractional Brownian motion with Hurst

index H.

Proof. Case H ≥ 1
2 : As CH(s, t) = CH(−s,−t) = CH(t, s), we only have to show that

CH(s, t) = H(2H − 1)
∫ t

0

∫ s

0

dx dy
|x− y|2−2H for 0 < s ≤ t

and

CH(s, t) = −H(2H − 1)
∫ 0

t

∫ s

0

dx dy
|x− y|2−2H for t < 0 < s.

This is an elementary calculation.
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Case H < 1
2 : In this case we can calculate the scalar product (A12) by using the formula

(bH
t )′ = δ0 − δt (a difference of two point evaluations). This leads to

〈bH
s , bH

t 〉H = −1
2

∫
R
(bH

s )′(y)(|y|2H − |t− y|2H) dy

= −1
2
(
− |t|2H − (|s|2H − |t− s|2H)) =

1
2
(
|t|2H + |s|2H − |t− s|2H).

For H > 1
2 , the preceding lemma follows from [21] (p. 168) and for H = 1

2 it is already contained
in [34] (p. 117). Other realizations of fractional Brownian motion are discussed in [18].

Remark 8. For Brownian motion (H = 1
2 ), an alternative realization is obtained by b′t := χ[t∧0,t∨0] for t ∈ R

(see [37] p. 130). For H 6= 1/2 this sign change does no longer work because CH(s, t) 6= 0 for st < 0.

5.2. Projective Invariance of the Covariance Kernels

Recall the cross ratio

CR(z, z1, z2, z3) :=
(z− z1)(z2 − z3)

(z− z3)(z2 − z1)
of four different elements z, z1, z2, z3 ∈ R∞

and that it is invariant under the action of GL2(R). As CR(z, 0, 1, ∞) = z, we obtain for
g(α, β, γ) = (0, 1, ∞) the relation

g(z) = CR(g(z), 0, 1, ∞) = CR(z, α, β, γ) =
z− α

z− γ
· β− γ

β− α
, (18)

expressing g as a cross ratio. Accordingly, we obtain for each triple (α, β, γ) of mutually different
elements of R∞ the following kernel

CH
α,β,γ(s, t) := CH(g(s), g(t)) = CH

( (s− α)(β− γ)

(s− γ)(β− α)
,
(t− α)(β− γ)

(t− γ)(β− α)

)
(19)

=
∣∣∣ β− γ

β− α

∣∣∣2H
CH
( s− α

s− γ
,

t− α

t− γ

)
,

where the last expression only makes sense for α, β, γ ∈ R. By construction we then have

CH
h.α,h.β,h.γ(h(s), h(t)) = CH

α,β,γ(s, t) for h ∈ GL2(R), s, t 6= γ. (20)

Note that CH
0,1,∞ = CH and that, for β ∈ R×, α = 0 and γ = ∞, we obtain in particular for the

dilation g.x = β−1x:
CH

0,β,∞(s, t) = CH(β−1s, β−1t) = |β|−2HCH(s, t),

which is a multiple of CH . In particular, normalization of CH and CH
0,β,∞ leads on R× to the same

kernels. We also observe that

CH
∞,β,0(s, t) = CH

( β

s
,

β

t

)
=
|β|2H

|st|2H CH(s, t)

implies the equality of the normalized kernels C̃H
∞,β,0(s, t) = C̃H

0,β,∞(s, t).
From (19) and the preceding discussion we obtain immediately:

Lemma 4. For α 6= γ in R∞, the normalized kernel CH
α,γ := C̃H

α,β,γ on R∞ \ {α, γ} does not depend on β and
satisfies the symmetry condition CH

α,γ = CH
γ,α.
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Proposition 1. For g ∈ GL2(R) we have

CH
g.α,g.γ(g(s), g(t)) = CH

α,γ(s, t) for s, t 6∈ {α, γ}. (21)

In particular, if g ∈ GL2(R) preserves the 2-element set {α, γ}, then the kernel CH
α,γ on R∞ \ {α, γ}

is g-invariant.

Proof. Equation (21) follows directly from (20) and the remainder is a consequence of Lemma 4.
The preceding proposition expresses the projective invariance of fractional Brownian motion in

the sense of P. Lévy. For H = 1/2, this is classical ([23] §I.2, [24,37] Thm. 5.2).

Remark 9. The identity component Gα,γ
0 of the stabilizer Gα,γ of {α, γ} in G = PGL2(R) is a (hyperbolic)

one-parameter group of SL2(R) whose fixed points are α and β (these are the orientation preserving
transformations mapping the interval (α, γ) onto itself). The full stabilizer of the pair (α, γ) is isomorphic to
R×. It also contains an involution in PSL2(R) exchanging the two connected components of R∞ \ {α, γ}.

Moreover, there exists for each β 6= α, γ a unique involution θα,β,γ ∈ GL2(R) exchanging α and γ and
fixing β. It satisfies

θα,β,γgθα,β,γ = g−1 and gθα,β,γg−1 = θα,g.β,γ for g ∈ Gα,γ
0 .

The subgroup Gα,γ ⊆ PGL2(R) has four connected components.

5.3. Projective Invariance of the Realization

We now link the projective invariance of fractional Brownian motion to the specific realization in
the Hilbert spaceHH . Formula (b) in the theorem below connects the normalized projective transforms
of the kernel CH to the unitary representation UH of GL2(R) onHH .

Theorem 1. For a triple (α, t, γ) of mutually different points in R∞, there exists a uniquely determined Möbius
transformation gt ∈ PSL2(R) with (gt(α), gt(t), gt(γ)) = (0, 1, ∞). We thus obtain functions of the form

f α,γ
t (x) :=

(
UH

g−1
t

χ[0,1]
)
(x) = sgn(det gt)

|det gt|H
|cx + d|2H χg−1

t ([0,1])(x) for t ∈ R∞ \ {α, γ}. (22)

Then the following assertions hold:

(a) All functions f α,γ
t are unit vectors inHH .

(b) 〈 f α,γ
s , f α,γ

t 〉HH = CH
α,γ(s, t) for s, t 6∈ {α, γ}.

Proof. (a) As ‖χ[0,1]‖HH = 1 and the representation UH is unitary, the functions f α,γ
t are unit vectors

inHH .

(b) For g =

(
t 0
0 1

)
with g.x = tx,

we have
Ugχ[0,1] = |t|−HbH

t , resp. bH
t = |t|H ·Ugχ[0,1] for t ∈ R×. (23)

This relation is the reason for the sgn(det g)-factor in the definition of UH .
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For s, t 6∈ {α, γ}, the element gsg−1
t fixes 0 and ∞, hence is linear and given by multiplication with

(gsg−1
t )(1) = gs(t). We thus obtain with Remark 7, (18) and (23)

〈 f α,γ
s , f α,γ

t 〉HH = 〈UH
g−1

s
χ[0,1], UH

g−1
t

χ[0,1]〉HH = 〈χ[0,1], UH
gsg−1

t
χ[0,1]〉HH

= 〈bH
1 , |gs(t)|−HbH

gs(t)〉HH = |gs(t)|−HCH(1, gs(t))

=
|t− γ|H |s− α|H
|t− α|H |s− γ|H CH

(
1,

(t− α)(s− γ)

(t− γ)(s− α)

)
=
|t− γ|H |s− γ|H
|t− α|H |s− α|H CH

( s− α

s− γ
,

t− α

t− γ

)
=
|t− γ|H |s− γ|H
|t− α|H |s− α|H

|β− α|2H

|β− γ|2H CH
α,β,γ(s, t).

Since the kernel on the left hand side is normalized, (b) follows.
From Proposition 1 and Theorem 1, we obtain:

Corollary 2. The normalized stochastic process defined by ( f α,γ
t )t 6=α,γ is stationary with respect to the stabilizer

of the two-point set {α, γ} in GL2(R).

Remark 10. Since the representations (UH ,HH) of GL2(R) are irreducible, [1] (Prop. 5.20) implies that the
space H∞

H of smooth vectors is nuclear. Therefore [1] (Cor. 5.19) shows that the Gaussian measure γHH can
be realized on the space H−∞

H of distribution vectors for this representation (cf. Appendix C). Therefore our
construction leads to a realization of fractional Brownian motion on the topological dual space H−∞

H of the
GL2(R)-invariant subspaceH∞

H of smooth vectors.
From the proof of [1] (Prop. 5.20(b)), we further derive that an element ξ ∈ HH is a smooth vector if and

only if it is a smooth vector for the compact subgroup K = O2(R). ConsideringHH as a space of distributions
on the circle S1, it is not hard to see that H∞

H = C∞(S1) and hence that H−∞
H = C−∞(S1) is the space of

distributions on the circle.

6. Fractional Brownian Motion and Reflection Positivity

We now turn to reflection positivity in connection with fractional Brownian motion. Our main
result is Theorem 2 on the reflection positivity of the normalized kernels CH

α,γ for H ≤ 1
2 . We start with

the normalization of the kernel CH , which corresponds to the pair (α, γ) = (0, ∞).

Proposition 2. The kernel

CH
0,∞(s, t) = C̃H(s, t) =

CH(s, t)
|s|H |t|H on X := R×

is invariant under the involution θ(x) = x−1. It is reflection positive on X+ := (−1, 1) ∩R× if and only of
0 < H ≤ 1

2 . If this is the case, then Ê ∼= L2((0, ∞), µ), with the measure

µ = δ2H +
∞

∑
k=1

(
2H
k

)
(−1)k−1δk.

For H = 1
2 , we have µ = 2δ1, and Ê is one-dimensional.

Proof. Reflection positivity with respect to (X, X+, θ) is equivalent to the positive definiteness of
the kernel

CH
0,∞(s, t−1) = |t|H |s|−HCH(s, t−1) = |t|−H |s|−HCH(st, 1) =

1
2|t|H |s|H (1 + |st|2H − (1− st)2H)
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for |t|, |s| < 1 (cf. Example 1). This kernel is positive definite on (−1, 1) if and only if the function

ϕ(t) := 1 + t2H − (1− t)2H = t2H −
∞

∑
k=1

(
2H
k

)
(−1)ktk

on the multiplicative semigroup S = ((0, 1), id) is positive definite. For k ≥ 1 we have

(−1)k−1
(

2H
k

)
=

2H(1− 2H)(2− 2H) · · · (k− 1− 2H)

k!
.

For 1
2 < H < 1, we have 1− 2H < 0 and all other factors are positive. As ϕ is increasing, it is

positive definite if and only if there exists a positive Radon measure µ on [0, ∞) with

ϕ(t) =
∫ ∞

0
tλ dµ(λ)

(use [31] (Prop. 4.4.2) or apply [30] (Cor. VI.2.11) to S ∼= ((0, ∞),+)). Therefore ϕ is positive definite if
and only if H ≤ 1

2 . In this case the description of Ê follows from the proof of [30] (Thm. VI.2.10).

Remark 11. (Reflection positivity of fractional Brownian motion) For θ =

(
0 1
1 0

)
with θ.x = θ0,1,∞(x) = x−1,

we have (U1/2
θ ξ)(x) = −|x|−2Hξ(x−1). In particular,

(UH
θ χ[0,t])(x) = −|x|−2Hχ[t−1,∞).

Therefore UH
θ is not the unique unitary involution θ̂ ofHH transforming bH

t into |t|2Hb1/t (cf. Remark 7).

With the kernels CH
α,γ (Lemma 4), we obtain a family of normalized Gaussian processes, covariant

with respect to the action of GL2(R) on R∞. The following proposition shows that, for H ≤ 1
2 , these

kernels are reflection positive with respect to involutions exchanging α and γ.

Theorem 2. Let α, β, γ in R∞ be mutually different and let θ := θα,β,γ be the projective involution exchanging
α and γ and fixing β. Let X := R∞ \ {α, γ} and X± ⊆ X be the intersection of X with the two connected
components of the complement of the fixed point set of θ (which consists of two points). Then the kernel CH

α,γ is
reflection positive with respect to (X, X+, θ) if and only if H ≤ 1

2 .

Proof. Since the family of kernels CH
α,γ is invariant under the action of GL2(R) and

gθα,β,γg−1 = θg.α,g.β,g.γ,

it suffices to verify the assertion for (α, β, γ) = (0, 1, ∞). Then θ(x) = x−1 and we may put
X+ = (−1, 1) \ {0}. Hence the assertion follows from Proposition 2.

Example 5. For (α, β, γ) = (−1, 0, 1), the involution θ := θα,β,γ is given by θ(x) = −x. It has the two fixed
points 0 and ∞. From (19) we obtain

C(s, t) := CH
−1,0,1(s, t) = CH

( s + 1
s− 1

,
t + 1
t− 1

)
= CH

(1 + s
1− s

,
1 + t
1− t

)
and

C̃(s, t) =
(1− s

1 + s

)H(1− t
1 + t

)H
CH
(1 + s

1− s
,

1 + t
1− t

)
.

Theorem 2 now implies that the kernel C̃ is reflection positive with respect to (R×,R×+, θ).
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Brownian Bridges

As we shall see below, for H = 1
2 , the covariance kernels C1/2

α,γ turn out to correspond to
Brownian bridges.

Definition 12. ([37] Def. 2.8, p. 109) (a) A Gaussian process (Xt)α≤t≤γ is called a Brownian bridge if
m(t) := E(Xt) is an affine function and

C(t, s) := E((Xt −m(t))(Xs −m(s))) =
(t ∧ s− α)(γ− t ∨ s)

γ− α
.

If m(t) = 0 for every t, then (Xt)α≤t≤β is called a pinned Brownian motion.
(b) A normalized Brownian bridge is a Brownian bridge whose variance is normalized to 1, so that its

covariance kernels is

C̃(t, s) =
(s ∧ t− α)(γ− s ∨ t)√

(s− α)(γ− s)(t− α)(γ− t)
=

√
(s ∧ t− α)(γ− s ∨ t)
(s ∨ t− α)(γ− s ∧ t)

. (24)

Proposition 3. (Reflection positivity of the Brownian bridge) For α < γ in R and H = 1
2 , the kernel

C1/2
α,γ is the covariance of a normalized Brownian bridge on the interval [α, γ]. This kernel is reflection positive

for (X, X+, θ), where X = [α, γ], X+ = [α, β] and θ(t) = α + γ − t is the reflection in the midpoint.
The corresponding Hilbert space Ê is one-dimensional.

Proof. First we observe that

C1/2
( s− α

s− γ
,

t− α

t− γ

)
= C1/2

( s− α

γ− s
,

t− α

γ− t

)
=

s− α

γ− s
∧ t− α

γ− t
=

s ∧ t− α

γ− s ∧ t
,

so that we obtain for the associated normalized kernel

C(s, t) := C1/2
α,γ (s, t) =

s∧t−α
γ−s∧t( s−α

γ−s
)1/2( t−α

γ−t
)1/2 =

√
s ∧ t− α

s ∨ t− α

√
γ− s ∨ t
γ− s ∧ t

.

This is the kernel (24) of a normalized Brownian bridge on [α, γ].
For β := α+γ

2 , the reflection θα,β,γ is given by θ(t) := α + γ − t, which leaves the kernel C1/2
α,γ

invariant by Proposition 1. For α ≤ t, s ≤ β, we have

Cθ(s, t) = C(s, θ(t)) =

√
(s ∧ θ(t)− α)(γ− s ∨ θ(t))
(s ∨ θ(t)− α)(γ− s ∧ θ(t))

=

√
(s− α)(γ− θ(t))
(γ− s)(θ(t)− α)

=

√
s− α

γ− s

√
t− α

γ− t
.

This is a positive definite kernel defining a one-dimensional Hilbert space. We conclude that the
kernel C is reflection positive for (X, X+, θ), where X = [α, γ] and X+ = [α, β].

7. Affine Actions and Fractional Brownian Motion

In this section we discuss reflection positivity for the affine isometric action of R corresponding to
fractional Brownian motion (BH

t )t∈R. In Subsection 7.2 we shall encounter the curious phenomenon
that, for every H there exists a natural unitary involution θ that leads to a reflection positive Hilbert
space, but only for H ≤ 1

2 it can be implemented in such a way that θbH
t = bH

−t, so that we obtain
a reflection positive affine action of (R,R+,− id). In a third subsection we discuss increments of
a 1-cocycle (βt)t∈R defining an affine isometric action and characterize cocycles with orthogonal
increments as those corresponding to multiples of Brownian motion.
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7.1. Generalities

If (α, E) with αtξ = Utξ + βt is an affine isometric action of R on the complex Hilbert space E ,
then Proposition A2 implies that, up to unitary equivalence, E ∼= L2(R, σ) for a Borel measure σ on R.
We may assume that

(Ut f )(x) = eitx f (x) and βt(x) = et(x) :=

{
eitx−1

ix for x 6= 0

t for x = 0.

Then second quantization leads to the centered Gaussian process Xt := ϕ(βt) whose covariance
kernel is given by

Cσ(s, t) = 〈es, et〉E = r(t) + r(s)− r(t− s) for r(t) =
∫
R

(
1− eitu +

itu
1 + u2

)dσ(u)
u2 (25)

(Proposition A3). Below we only consider real Hilbert spaces. This corresponds to the situation
where the measure σ is symmetric. Then the function is also real and given by

r(t) =
∫
R
(1− cos(tu))

dσ(u)
u2 =

1
2

Cσ(t, t).

Lemma 5. Let C : R×R→ C be a continuous positive definite kernel with C0 = C(·, 0) = 0. For ξ ∈ C∞
c (R),

we put

Cξ(x) :=
∫
R

ξ(t)Ct(x) dt =
∫
R

C(x, t)ξ(t) dt.

Then the subspace

{Cξ : ξ ∈ C∞
c (R)0} with C∞

c (R)0 :=
{

ξ ∈ C∞
c (R) :

∫
R

ξ(t) dt = 0
}

is dense in the corresponding reproducing kernel Hilbert spaceHC.

Proof. From the existence of theHC-valued integral defining Cξ , it follows that these are elements of
HC. LetH1 denote the closed subspace generated by the elements Cξ , ξ ∈ C∞

c (R)0.
If δn ∈ C∞

c (R) is a δ-sequence, we obtain Cδn → 0. For ξ ∈ C∞
c (R) with

∫
R ξ(t) dt = 1, we have

ξ − δn ∈ C∞
c (R)0, so that Cξ − Cδn ∈ H1 and Cδn → 0 imply that Cξ ∈ H1. Using a sequences of the

form ξn := δn(· − t) ∈ C∞
c (R), which converges to δt, we see that Cξn → Ct for t ∈ R, hence that

H1 = HC.

In the following we write S(R)0 :=
{

ξ ∈ S(R) :
∫
R ξ = 0

}
.

Corollary 3. Let αtξ = Utξ + βt define a continuous affine isometric action of R on the real Hilbert space
H. For ξ ∈ S(R) we put βξ :=

∫
R ξ(t)βt dt. Then {βξ : ξ ∈ S(R)0} generates the same closed subspace as

(βt)t∈R.

Remark 12. (a) A function D : R→ R with D(0) = 0 is negative definite if and only if

C(s, t) :=
1
2
(D(s) + D(t)− D(s− t)) (26)

is a positive definite kernel (Lemma 1). Then D(s) = C(s, s) yields

D(s− t) = C(s, s) + C(t, t)− 2C(s, t)
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On S(R)0 we therefore obtain with (26)

− 1
2

∫
R

ξ(x)η(y)D(x− y) dx dy =
∫
R

ξ(x)η(y)C(x, y) dx dy for ξ, η ∈ S(R)0 (27)

(cf. [38] (p. 222) for a corresponding statement on more general homogeneous spaces).
(b) Write C(s, t) = 〈βs, βt〉 and D(t) = C(t, t) for a cocycle (βt)t∈R of an orthogonal representation

(Ut)t∈R of R on the real Hilbert space E (see Section 3 and [12,13]). We also assume that the family (βt)t∈R is
total in E . Then

〈βξ , βη〉E =
∫
R

∫
R

ξ(s)η(t)C(s, t) dt ds = −1
2

∫
R

∫
R

ξ(s)η(t)D(s− t) dt ds for ξ, η ∈ S(R)0.

As E is generated by the (βt)t∈R, the Hilbert space E can be identified with the reproducing kernel Hilbert
space HC ⊆ S ′(R) corresponding to the positive definite distribution C, but the preceding argument adds
another picture. It can also be identified with the Hilbert spaceHD obtained by completing S(R)0 with respect
to the scalar product (27). Taking into account that S(R)0 = {ξ ′ : ξ ∈ S(R)}, this is how we introduced the
Hilbert spaceHH in (A12).

7.2. Fractional Brownian Motion

For fractional Brownian motion with Hurst index H ∈ (0, 1), we have

CH(s, t) =
1
2
(|s|2H + |t|2H − |s− t|2H) and DH(t) = CH(t, t) = |t|2H .

As in (25), the spectral measure σ (a Borel measure on R) of fractional Brownian motion is
determined by

CH(s, t) =
∫
R

es(λ)et(λ) dσ(λ) for et(λ) =

{
eiλt−1

iλ for λ 6= 0

t for λ = 0.

The corresponding realization is obtained by βt := et ∈ L2(R, σ) =: E (Proposition A2).
According to [18] p. 40, the measure σ is given by

dσ(λ) =
sin(πH)Γ(1 + 2H)

2π
· |λ|1−2H dλ

(see (A22) in Appendix E for a derivation of this formula).

Example 6. For H = 1
2 , the spectral measure σ is a multiple of Lebesgue measure:

dσ(λ) =
sin(π/2)Γ(2)

2π
dλ =

dλ

2π
.

This leads to a natural realization of Brownian motion by a cocycle of the multiplication representation of
R on L2(R) and, by Fourier transform, to the realization of Brownian motion as a cocycle for the translation
representation of R on L2(R).

Remark 13. Combining Remark 12 with (A12) in Section 4, we see that the Hilbert spaceHH can alternatively
be constructed from the scalar product

〈ξ, η〉CH = −1
2

∫
R

∫
R

ξ(x)η(y)|x− y|2H dx dy =
∫
R

∫
R

ξ(x)η(y)CH(x, y) dx dy for ξ, η ∈ S(R)0
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as the completion of S(R)0. This implies that the map

D : S(R)→ S(R)0, ξ 7→ ξ ′ satisfies ‖Dξ‖CH = ‖ξ‖H ,

so that D extends to a unitary operator D : HH → HCH . Here we writeHCH ⊆ S ′(R) for the Hilbert space of
distributions defined by CH , obtained by completing S(R) with respect to the scalar product 〈·, ·〉CH , defined
by the positive definite distribution kernel CH and associating to ξ ∈ S(R)0 the distribution CH

ξ := 〈·, ξ〉CH .
Note that

D(bH
t ) = D(χ[0,∞) − χ[t,∞)) = δ0 − δt,

where we consider the δ-functionals as elements ofHCH with

〈δs, ξ〉CH =
∫
R

∫
R

δs(x)ξ(y)CH(x, y) dx dy =
∫
R

CH(s, y)ξ(y) dy = CH
ξ (s).

As a distribution, δs corresponds to the function CH
s which corresponds to the evaluation in s in the

reproducing kernel Hilbert spaceHCH ⊆ S ′(R). Compare also with the corresponding discussion in [8,9] Ch. 7.
The inverse of the unitary operator D : HH → HCH is given by

I : HCH → HH , I(ξ)(x) =
∫ x

−∞
ξ(y) dy = −

∫ ∞

x
ξ(y) dy for ξ ∈ S(R)0.

Proposition 4. Consider the realization (bH
t )t∈R of fractional Brownian motion in the Hilbert space E := HH ,

the affine isometric R-action defined by
αH

t ξ = SH
t ξ + bH

t ,

where SH
t denotes the translation by t onHH , and the closed subspace E+ generated by (bH

t )t≥0. Then

(θξ)(x) := −ξ(−x)

defines a unitary involution with θbH
t = bH

−t for t ∈ R. Now (E , E+, θ) is reflection positive if and only if
H ≤ 1

2 , so that we obtain in this case a reflection positive affine action. For H ≥ 1
2 , the triple (E , E+,−θ) is

also reflection positive, but it does not lead to a reflection positive affine action because −θbH
t 6= −bH

t 6= bH
t for

t > 0.

Proof. By Example 2(a), the function DH(t) = |t|2H is negative definite on the additive group
(R,+) and it is reflection positive for (R,R+,− id) if and only if H ≤ 1/2 by Example 2(b).
Accordingly, the reflection σ(t) = −t on R leads to the twisted kernel

CH(s,−t) =
1
2
(|s|2H + |t|2H − |t + s|2H)

on R+ which is positive definite if and only if DH is negative definite on (R+, id) (Lemma 1), which in
turn is equivalent to H ≤ 1

2 .
For H ≥ 1

2 , the unitary involution −θ satisfies −θbH
t = −bH

−t, which leads to the twisted kernel

(s, t) 7→ 〈bH
s ,−θbH

t 〉 = 〈bH
s ,−bH

−t〉 = −CH(s,−t) = −1
2
(|s|2H + |t|2H − |t + s|2H).

As −DH(t) = −|t|2H is negative definite on the semigroup (R+, id) if 1
2 ≤ H ≤ 1 (Example 2(c)),

the assertion follows.

We conclude that the affine actions of R corresponding to fractional Brownian motion with Hurst
parameter H ≤ 1

2 leads to a reflection positive affine action, and from the calculation in Example 3
we derive that the reflection positive function on (R,R+,− id) corresponding to the constant function
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1 = eiϕ(0) ∈ Γ(E) is given by ϕ(t) = e−‖b
H
t ‖2/2 = e−t2H/2. The preceding proposition also explains

why we obtain trivial reflection positivity for H = 1
2 since in this case (E , E+,±θ) are both reflection

positive.

Remark 14. For h > 0 and H ≤ 1
2 and the kernel Qh(x, y) := e−h‖x−y‖2

on E , we obtain with the same
arguments the positive definite functions ϕ(t) = e−ht2H

on R+.

7.3. Cocycles with Orthogonal Increments

In this subsection we discuss the question when a cocycle (βt)t∈R for an orthogonal representation
(U,H) of R has orthogonal increments in the sense that, for t1 ≤ t2 ≤ t3 ≤ t4 we have

〈βt2 − βt1 , βt4 − βt3〉 = 0

(cf. [34]).

Proposition 5. The following are equivalent:

(i) β has orthogonal increments.
(ii) For s, t > 0, we have 〈βt, β−s〉 = 0.
(iii) There exists a c ≥ 0 such that C(t, s) := 〈βt, βs〉 = c

2 (|s|+ |t| − |s− t|) for all t, s ∈ R. If c > 0,
then (c−1/2 ϕ(βt))t∈R realizes a two-sided Brownian motion in Γ(H).

Proof. (cf. [34] Satz 8 for a variant of this observation)
(i)⇒ (ii) follows with t1 = −s, t2 = t3 = 0 and t4 = t.
(ii)⇒ (i): LetH± ⊆ H be the closed subspaces generated by the βt for ±t ≥ 0. Then (ii) means

thatH+⊥H−. For t1 ≤ t2 ≤ t3 ≤ t4 we now observe that

βt1 − βt2 = βt2+(t1−t2)
− βt2 = Ut2 βt1−t2

and similary βt4 − βt3 = Ut3 βt4−t3 . Therefore

〈βt1 − βt2 , βt4 − βt3〉 = 〈Ut2 βt1−t2 , Ut3 βt4−t3〉 = 〈βt1−t2 , Ut3−t2 βt4−t3〉
= 〈βt1−t2 , βt3−t2+t4−t3 − βt3−t2〉 = 0.

(ii) ⇒ (iii): Put ψ(t) := C(t, t) = ‖βt‖2 and note that this function is increasing for t ≥ 0.
For 0 ≤ s ≤ t we have

C(s, t) = 〈βs, βt〉 = 〈βs, (βt − βs) + βs〉 = 〈βs, βs〉 = ψ(s),

and therefore
C(s, t) = ψ(s ∧ t) for t, s ≥ 0. (28)

Further,

‖βt − βs‖2 = C(t, t) + C(s, s)− 2C(t, s) = ψ(t) + ψ(s)− 2ψ(s ∧ t) = |ψ(t)− ψ(s)|,

so that translation invariance of this kernel leads to

‖βt − βs‖2 = ψ(|t− s|).

From the orthogonality of the increments, we further derive for 0 ≤ s ≤ t the relation

ψ(t)− ψ(s) = ψ(t− s),



Symmetry 2018, 10, 191 20 of 39

so that
ψ(a + b) = ψ(a) + ψ(b) for a, b ≥ 0.

Since ψ is continuous, there exists a c ≥ 0 with ψ(t) = ct for t ≥ 0, and therefore (28) yields
C(s, t) = c · s ∧ t for t, s ≥ 0.

We likewise find some c′ ≥ 0 with

C(s, t) = c′ · |s| ∧ |t| for s, t ≤ 0.

Now ψ(−t) = ψ(t) implies that c′ = c, and this completes the proof.
(iii) ⇒ (ii) follows from the fact that C(s, t) = 0 for ts < 0 holds for the covariance kernel of

Brownian motion.

If (E , E+, θ) is reflection positive for an affine R-action, E+ is generated by (βt)t≥0 and θβt = β−t,
then the space Ê is trivial if and only if

〈βs, βt〉 = 0 for ts < 0,

which in turn means that β has orthogonal increments by Proposition 5. In view pf Proposition 5(iii),
Brownian motion can, up to positive multiples, be characterized as a process with stationary orthogonal
increments.

Remark 15. Consider the stochastic process (ϕ(βt))t∈R associated to the cocycle (βt)t∈R in E . We say that
the increments of this process are positively (negatively) correlated if, for t1 ≤ t2 ≤ t3 ≤ t4, we have

±〈βt2 − βt1 , βt4 − βt3〉 ≥ 0.

As

〈βt2 − βt1 , βt4 − βt3〉 = 〈Ut1 βt2−t1 , Ut3 βt4−t3〉 = 〈Ut1−t3 βt2−t1 , βt4−t3〉 = 〈βt2−t3 − βt1−t3 , βt4−t3〉,

we may w.l.o.g. assume that t3 = 0, i.e., t1 ≤ t2 ≤ 0 ≤ t4. Therefore the process has positively (negatively)
correlated increments if and only if, for every t ≥ 0, the functions

Ct(s) := C(s, t) := 〈βs, βt〉

are increasing (decreasing) on (−∞, 0]. Note that this implies in particular that C(s, t) ≥ 0, resp., ≤ 0 for
s ≤ 0 ≤ t.

For fractional Brownian motion, we have for s ≤ 0 ≤ t

CH(s, t) =
1
2
((−s)2H + t2H − (t− s)2H).

As
∂

∂s
CH(s, t) = H((t− s)2H−1 − (−s)2H−1)

is non-negative for H ≥ 1
2 and non-positive for H ≤ 1

2 , it follows that fractional Brownian motion has positively
correlated increments for H ≥ 1

2 and negatively correlated increments for H ≤ 1
2 .

8. Perspectives

In this final section we briefly discuss some results that are possibly related to far reaching
generalizations of what we discuss in the present paper on the real line, resp., on its conformal
compactification S1.
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8.1. Helices and Hilbert Distances

Let G be a Lie group, K ⊆ G be a closed subgroup. We write X = G/K for the corresponding
homogeneous space and x0 := eK for the base point in X.

In [38] Def. 2.3, a kernel C : X× X → R on X = G/K is called a Lévy–Schoenberg kernel if

(LS1) C is positive definite and Cx0 = 0.
(LS2) The kernel r(s, t) := C(s, s) + C(t, t)− 2C(s, t) is G-invariant.

Then ψ(g) := r(x0, x) = C(x, x), where x = g.x0, defines a function on G with

C(gK, hK) =
1
2
(ψ(g) + ψ(h)− ψ(h−1g)), (29)

so that ψ is a negative definite K-biinvariant function with ψ(e) = 0 on G (Lemma 1). Conversely,
every such function defines by (29) a Lévy–Schoenberg kernel on G/K.

For a Lévy–Schoenberg kernel C, there exists a map ξ : X → E into a real Hilbert space E with
ξ(x0) = 0, unique up to orthogonal equivalence (Lemma A1), such that

r(x, y) = ‖ξ(x)− ξ(y)‖2 for x, y ∈ X.

Then ξ is called a helix and
√

r is called an invariant Hilbert distance on X. The uniqueness of ξ

further implies the existence of an affine isometric action α : G → Mot(E) for which ξ is equivariant.
Writing αgξ = Ugξ + βg, we then have ξ(gK) = βg for g ∈ G. In particular, any helix specifies an
orthogonal representation (U, E) of G.

Classification results for Lévy–Schoenberg kernels, resp., invariant Hilbert distances, resp.,
affine isometric actions of G with a K-fixed points, are mostly stated in terms of integral formulas
(Lévy–Khintchine formulas). Results are nown in various contexts:

• for G locally compact and K compact ([39]); see [40,41] for locally compact abelian groups.
• for the euclidean motion group G = E(d) ⊇ Od(R) = K ([38,42] p. 135)
• for G compact ([38] Thm. 3.15); see [43] for G = SOd+1(R) and X = Sd.
• for G/K Riemannian symmetric ([38] (Thm. 3.31) and [38] (Thm. 4.1) for G = SL2(R))
• for G the additive group of a Hilbert space and K a closed subspace ([44]).
• for G = O1,∞(R) and K = O∞(R) and X the infinite dimensional hyberbolic space ([39] Thm. 8.1).

It is shown in particular that the kernel Q(x, y) = log cosh(d(x, y)) is negative definite, so that
all kernels e−sQ(x,y) = cosh(d(x, y))−s are positive definite; they correspond to the spherical
functions of X (cf. [13] Thm. 21, p. 79).

Example 7. (a) If E is a real Hilbert space and G = Mot(E) ∼= E o O(E) its isometry group,
then ψ(b, g) := ‖b‖2H defines for 0 < H ≤ 1 a negative definite O(E)-biinvariant function on G with
ψ(e) = 0 ([31] Ex. 3.2.13(b)). The corresponding Lévy–Schoenberg kernel on E is

C(s, t) :=
1
2
(‖s‖2H + ‖t‖2H − ‖s− t‖2H) with r(s, t) = ‖s− t‖2H

(cf. [38] p. 135).
(b) The kernel

C(s, t) :=
1
2
(d(s, e0) + d(t, e0)− d(s, t)) with r(s, t) = d(s, t) (30)

on the sphere Sd, where d denotes the Riemannian metric on Sd and e0 ∈ Sd is fixed. Here G = Od+1(R) and
K = Od(R) is the stabilizer of e0 ([38] p. 174, [23]). This means that the Riemannian metric on Sd is a negative
definite kernel.

(c) From (a) it follows that for any real-valued negative definite function ψ satisfying ψ(e) = 0 on the
group G, the functions ψH , 0 ≤ H ≤ 1, are negative definite as well ([38] p. 189).
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8.2. Brownian Motion on Metric Spaces

Definition 13. Let (M, d) be a metric space. In [23] a real-valued Gaussian process (Bm)m∈M is called a
Brownian motion with parameter space (M, d) if there exists a point m0 ∈ M with

E(BnBm) =
1
2
(
d(m, m0) + d(n, m0)− d(m, n)

)
for m, n ∈ M.

Remark 16. For a metric space (M, d) a Brownian motion with parameter space (M, d) exists if and only if
the metric d : M×M→ R is a negative definite kernel, which is equivalent to the kernels

C(n, m) =
1
2
(
d(m, m0) + d(n, m0)− d(m, n)

)
being positive definite for every m0 ∈ M (Lemma 1; see also [45] and [23] (Cor. 58)). This is verified for M = Rd

in [45] (Thm. 7) and for M = Sd in [45] (Thm. 5).

Definition 14. If d is negative definite, then there exists an isometric embedding η : M→ E into a real Hilbert
space with η(m0) = 0 and then

C(n, m) =
1
2
(
‖η(m)‖+ ‖η(n)‖ − ‖η(m)− η(n)‖

)
.

Example 7(a) then implies that the kernels

CH(n, m) =
1
2
(
‖η(m)‖2H + ‖η(n)‖2H − ‖η(m)− η(n)‖2H), 0 ≤ H ≤ 1,

are positive definite as well. This suggests to call a Gaussian process (BH
m )m∈M a fractional Brownian motion with

parameter space (M, d) and Hurst index H ∈ (0, 1) if there exists an m0 ∈ M with E(BH
n BH

m ) = CH(n, m)

for n, m ∈ M. Note that (ϕ(η(m)))m∈M yields a realization of fractional Brownian motion with parameter
space (M, d) in the Fock space Γ(E). If M = G/K is a homogeneous space, then the map η is called a fractional
Brownian helix (cf. [14] for the terminology).

For various aspects of fractional Brownian motion on Rd, we refer to [19] and [46].

Problem 1. The natural analog of the function χR+
which generates the realization of the fractional Brownian

motion in HH has a natural higher dimensional analog in χRd
+

, the characteristic function of a half space.

Does this correspond to some “fractional Brownian motion” on Rd?

8.3. Complementary Series of the Conformal Group

The function ‖x‖−α on Rd is locally integrable if and only if α < d, and it defines a positive
definite distribution if and only if α ≥ 0 ([8] Lemma 2.13). We thus obtain a family of Hilbert subspaces
Hα ⊆ C−∞(Rd) for 0 ≤ α < d. For α = 0 this space is one-dimensional, consisting of constant
functions.

From [8] (Prop. 6.1) we also know that, for 0 ≤ α < d, the distribution ‖x‖−α is reflection positive
with respect to θ(x) = (−x0, x) if and only if α = 0 or d− 2 ≤ α < d.

Let G := Conf(Rd) ⊆ Diff(Sd) be the conformal group of Rd, considered as a group of
diffeomorphisms of the conformal compactification Sd (implemented by a stereographic projection).
We consider the kernels

Q(x, y) := ‖x− y‖ and Qα(x, y) := ‖x− y‖−α.
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We then have

Q(g(x), g(y)) = ‖dg(x)‖1/2Q(x, y)‖dg(y)‖1/2 if g(x), g(y) ∈ Rd. (31)

In fact, this relation is obvious for affine maps g(x) = Ax + b, A ∈ R×Od(R). As the conformal
group is generated by the affine conformal group Rd o (R×Od(R)) and the inversion σ(x) := x

‖x‖2 in
the unit sphere, it now suffices to verify the relation also for σ. It is a consequence of

‖σ(x)− σ(y)‖2 =
∥∥∥ x
‖x‖2 −

y
‖y‖2

∥∥∥2
=

1
‖x‖2‖y‖2

∥∥∥‖y‖x‖x‖ −
‖x‖y
‖y‖

∥∥∥2

=
1

‖x‖2‖y‖2 (‖y‖
2 − 2〈x, y〉+ ‖x‖2) =

‖y− x‖2

‖x‖2‖y‖2 ,

combined with

dσ(x)y =
y
‖x‖2 − 2

〈x, y〉
‖x‖4 x =

rx(y)
‖x‖2 ,

where rx is the reflection in x⊥, so that ‖dσ(x)‖ = ‖x‖−2.
As a consequence, we obtain

Qα(g.x, g.y) = ‖dg(x)‖−α/2Qα(x, y)‖dg(y)‖−α/2 (32)

(see [8] (Lemma 5.8) for the corresponding relation on the sphere Sd).
The transformation Formula (31) implies in particular that the conformal cross ratio

CR(x, y, z, u) :=
Q(x, y)Q(z, u)
Q(x, u)Q(z, y)

is invariant under the conformal group.
In view of (32), we obtain with Jg(x) := ‖dg(x)‖ a representation

(Uα
g ξ)(x) := Jg−1(x)d− α

2 ξ(g−1.x)

on test functions. The same calculation as in [8] (Lemma 5.8) now implies that Uα defines a unitary
representation of G on the spaceHα, specified by the scalar product

〈ξ, η〉α :=
∫
Rd

∫
Rd

ξ(x)η(y)Qα(x, y) dx dy =
∫
Rd

∫
Rd

ξ(x)η(y)‖x− y‖−α dx dy for ξ, η ∈ S(Rd).

For g−1(x) = Ax + b, we have in particular

(Uα
g−1 ξ)(x) = ‖A‖d− α

2 ξ(Ax + b),

and for the involution σ(x) = ‖x‖−2x we have

(Uα
σξ)(x) = ‖x‖α−2dξ(σ(x)).

Remark 17. Up to the factor sgn(det g), this specializes for d = 1 and α = 2(1− H) to the representation
UH for 1

2 < H < 1. We refer to Appendix D for more detailed discussion of this case.

As the kernel DH(x, y) := ‖x − y‖2H , 0 < H ≤ 1, on Rd is negative definite,
the corresponding kernel

CH(x, y) :=
1
2
(
‖x‖2H + ‖y‖2H − ‖x− y‖2H)



Symmetry 2018, 10, 191 24 of 39

is positive definite. We thus obtain on S(Rd)0 =
{

ξ ∈ S(Rd) :
∫
Rd ξ(x) dx = 0

}
a positive semidefinite

hermitian form by

〈ξ, η〉CH :=
∫
Rd

∫
Rd

ξ(x)η(y)CH(x, y) dx dy

= −1
2

∫
Rd

∫
Rd

ξ(x)η(y)‖x− y‖2H dx dy, ξ, η ∈ S(R)0. (33)

Example 8. For H = 1, we have

C1(x, y) =
1
2
(
‖x‖2 + ‖y‖2 − ‖x− y‖2) = 〈x, y〉,

so that the corresponding reproducing kernel Hilber space isHC1 ∼= Cd. For ξ, η ∈ S(Rd), we then have

〈ξ, η〉C1 = 〈[ξ], [η]〉, where [ξ] :=
∫
Rd

ξ(x)x dx ∈ Rd

is the center of mass of the measure ξ dx.

Remark 18. In [47] (Thm. 7) Takenaga derives some “conformal invariance” of Brownian motion in Rd but it
seems that his method only works on the parabolic subgroups of the conformal group stabilizing either 0 or ∞.
So it would be interesting to use the complementary series representations of the conformal group to derive a
more complete conformal invariance in the spirit of the present paper for d > 1.

Remark 19. Similar arguments as in Remark 10 apply in the higher dimensional context: Since the
complementary series representations (Uα,Hα) of O1,d(R)↑ are irreducible, [1] (Prop. 5.20) implies that the
spaceH∞

α of smooth vectors is nuclear. From the proof of [1] (Prop. 5.20(b)), we further derive that an element
ξ ∈ Hα is a smooth vector if and only if it is a smooth vector for the maximal compact subgroup K ∼= Od(R).
ConsideringHα as a space of distributions on the sphere Sd, it is not hard to see thatH∞

α = C∞(Sd) and hence
thatH−∞

α = C−∞(Sd) is the space of distributions on the sphere.

8.4. The Ornstein—Uhlenbeck Process

In this section we describe shortly the connection to the Ornstein–Uhlenbeck process. For that let
H = 1

2 . Then Yt := ϕ(τ1/2
et χ[0,1]), t ∈ R, is a stationary Gaussian process realized inH1/2

∼= L2(R). It is
the Ornstein–Uhlenbeck process. The corresponding covariance kernel is

C(t, s) := E(YtYs) =
∫ es−t

0
e(t−s)/2 du = e(s−t)/2 = e−|s−t|/2 for s ≤ t

which is reflection positive with respect to (R,R+,− idR) because the kernel

C(−t, s) = e−(s+t)/2

on R+ is positive definite leading to a one-dimensional Hilbert space via the Osterwalder-Schrader
construction (cf. Example 1).

For 0 < H < 1, we also obtain by YH
t := ϕ(τH

et χ[0,1]) = ϕ(etHχ[0,e−t ]), t ∈ R, in HH a stationary
Gaussian process. The corresponding covariance kernel is

C(t, s) = E(YsYt) = e(t+s)HCH(e−s, e−t) =
e(t+s)H

2
(e−2sH + e−2tH − |e−t − e−s|2H)

=
1
2
(
e(t−s)H + e(s−t)H − |e(s−t)/2 − e(t−s)/2|2H)

= cosh((t− s)H)− 22H−1| sinh((s− t)/2)|2H =: ϕ(s− t).
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We then have

C(s,−t) = ϕ(s + t) = cosh((t + s)H)− 22H−1| sinh((s + t)/2)|2H

and

2ϕ(x) = eHx + e−Hx − (ex/2 − e−x/2)2H = eHx + e−Hx − eHx(1− e−x)2H

= e−Hx + eHx
∞

∑
k=1

(
2H
k

)
(−1)k−1e−kx.

In Proposition 2 we have seen that this function is positive definite if and only if 0 < H ≤ 1/2.
Hence C is reflection positive for 0 < H ≤ 1/2.

Now let H = 1/2 so that C(t, s) corresponds to the Ornstein–Uhlenbeck process. In this case
C(t, s) is invariant under the reflection θ(t) = −t. As χ[0,1] is cyclic in L2(R+) for the dilation group,
there exists a unique unitary isometry V on L2(R+) with V(τet χ[0,1]) = τe−t χ[0,1] for t ∈ R. The latter
relation is is equivalent to et/2V(χ[0,e−t ]) = e−t/2χ[0,et ], resp.,

V(χ[0,t]) = tχ[0,t−1] for t > 0. (34)

Therefore V coincides with the unitary involution θ̂ corresponding to the symmetry of Brownian
motion under inverstion of t (see Remark 7(a), and also Lemma 6 below).

Note that (θξ)(x) = 1
x ξ
( 1

x
)

also defines an isometric involution on L2(R×+) having the same
intertwining properties with the dilation group as θ̂, but this involution does not fix χ[0,1].

To derive a formula for the involution θ̂, we recall the Sobolev space H1
∗(R).

Definition 15. Let H1
∗(R) denote the Sobolev space of all absolutely continuous functions F : R→ R satisfying

F(0) = 0 and F′ ∈ L2(R). Then

I : L2(R+)→ H1
∗(R), I( f )(t) :=

∫ t

0
f (s) ds = 〈b1/2

t , f 〉

is a bijection. We define a real Hilbert space structure on H1
∗(R) in such a way that I is isometric. The inverse

isometry is then given by F 7→ F′.

Remark 20. (a) From the relation I( f )(t) = 〈 f , b1/2
t 〉, it follows that H1

∗(R) is the real reproducing kernel
Hilbert space with kernel C = C1/2, i.e., the covariance kernel of Brownian motion (Bt)t∈R.

(b) We observe that |F(t)| ≤ ‖F‖|
√

t| for F ∈ H1
∗(R) and t ∈ R follows immediately from the

Cauchy–Schwarz inequality and ‖b1/2
t ‖2

2 = C1/2(t, t) = |t|.

Lemma 6. There exists a uniquely determined isometric involution θ̂ on L2(R+) satisfying

θ̂(χ[0,t]) = tχ[0,t−1] for t > 0.

It is given by

(θ̂ξ)(t) =
∫ 1/t

0
ξ(s) ds− 1

t
ξ
(1

t

)
for t > 0. (35)

Proof. First we observe that the family bt = χ[0,t], t > 0, is total in L2(R+). Since the family b̃t := tb1/t

satisfies 〈b̃t, b̃s〉 = 〈bt, bs〉 = t ∧ s (Remark 7), there exists a uniquely determined isometry θ̂ with
θ̂(bt) = b̃t for t > 0. As (b̃t)t>0 is also total, θ̂ is surjective. Now θ̂(b̃t) = t 1

t bt = bt for t > 0 implies
θ̂2 = 1.
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Let θ̃ denote the involutive isometry of H1
∗(R) specified by θ̃ ◦ I = I ◦ θ̂, resp., θ̂(F′) = θ̃(F)′. Then

we obtain

(θ̃ I( f ))(t) = I(θ̂ f )(t) = 〈θ̂ f , χ[0,t]〉 = 〈 f , θ̂χ[0,t]〉 = t〈 f , χ[0,t−1]〉 = tI( f )(t−1)

and thus
(θ̃F)(t) = tF(t−1).

For f = F′, this leads to

(θ̂ f )(t) = (θ̂F′)(t) = (θ̃F)′(t) = F(t−1)− 1
t

F′(t−1) =
∫ t−1

0
f (s) ds− 1

t
f (t−1).

This proves (35).

Remark 21. (a) Note that (35) has a striking similarity with the formula for TJ one finds in [28] p. 273.
This suggests these operators correspond to a discrete series representation of SL2(R), hence cannot be
implemented in the complementary series representation that we consider.

(b) From the explicit formula for θ̂, we can also make the natural map q from E+ := L2([0, 1]) ⊆ E =

L2(R+) to the space Ê ∼= C more explicit. It is given by

q( f ) =
∫ 1

0
f (x) dx.

This follows from

〈 f , θ̂ f 〉 =
∫ 1

0

∫ 1/x

0
f (u) du f (x) dx−

∫ 1

0
f (x)

1
x

f (x−1) dx =
∫ 1

0

∫ 1

0
f (u) f (x) du =

∣∣∣ ∫ 1

0
f (x) dx

∣∣∣2.

Here χ[0,1] ∈ E+ spans the one-dimensional subspace of θ̂-fixed points, so that q : E+ → Ê can be identified
with the projection onto Cχ[0,1].

Takenaga’s formula ([27])

Bg
t := (ct + d)Bg.t − ct · Bg.∞ − d · Bg.0, g =

(
a b
c d

)
∈ SL2(R), t ∈ R∞, g.t 6= ∞,

defines for each g ∈ SL2(R) on H1
∗(R) ∼= HC1/2 a unitary operator which acts on the point evaluations

(bt)t∈R by
U−1

g bt := bg
t := (ct + d)bg.t − ct · bg.∞ − d · bg.0,

where we put cbg.∞ = 0 for c = 0 (g.∞ = ∞), d · bg.0 = 0 for d = 0 (g.0 = ∞) and (ct + d)bg.t = 0 for
ct + d = 0 (g.t = ∞). On general functions F ∈ H1

∗(R), the operator Ug acts by

(UgF)(t) = 〈bt, UgF〉 = 〈U−1
g bt, F〉 = (ct + d)F(g−1.t)− ctF(a/c)− dF(b/d), g−1 =

(
a b
c d

)
.

Note that all summands are well defined for c = 0, d = 0, resp., ct + d = 0 because
|F(t)| ≤ ‖F‖ · |t|1/2 implies

lim
t→0

tF(s/t) = 0 for s ∈ R.

The relation (bg)h
t = bgh

t for g, h ∈ SL2(R) now leads to

U−1
gh bt = bgh

t = U−1
h bg

t = U−1
h U−1

g bt for g, h ∈ SL2(R), t ∈ R,
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and hence to UgUh = Ugh. We thus obtain on H1
∗(R) a continuous unitary representation of SL2(R).

Note that U−1 = −1, so that this representation does NOT factor through a representation of PSL2(R).
The most economical way to verify the assertion that the operators Ug are unitary is to do that for

g.t = at+ b and σ.t = −t−1 and then to verify that (bg)h
t = bgh

t holds for all g ∈ SL2(R) and h.t = at+ b
or h.t = −t−1. As SL2(R) is generated by elements of this form, it follows that U defines a unitary
representation on H1

∗(R) ∼= HC1/2 .
With the aforementioned conventions concerning expressions of the form tF(s/t) = 0 for t = 0,

the representation is given by

(UgF)(t) = (ct + d)F(g−1.t)− ctF(a/c)− dF(b/d)

= (ct + d)F(g−1.t)− ct · F(g−1.∞)− d · F(g−1.0). (36)

If g−1.t = αt + β with α > 0 is affine, then g−1 =

(√
α
√

αβ

0
√

α
−1

)
and we get

(UgF)(t) = α−1/2(F(αt + β)− F(β)).

For J :=

(
0 −1
1 0

)
, we have J−1 = −J, so that

(UJ F)(t) = −t(F(−t−1)− F(0)) = −tF(−t−1).

We also note that (36) leads to

(UgF)′(t) = c(g∗F)(t) + (ct + d)(g∗F′)(t)
1

(ct + d)2 − cF(a/c)

= c
(

F(g−1.t)− F(g−1.∞)
)
+ (ct + d)−1(g∗F′)(t).

If g−1.t = αt + β is affine, then

(UgF′)(t) = α1/2F′(αt + β)

yields the usual action of Aff(R) on L2(R).

Remark 22. Since we want to express this in terms of the derivatives, we observe that, formally, we expect
something like

F(g−1.t)− F(g−1.∞) =
∫ g−1.t

g−1.∞
F′(x) dx =

∫ t

∞
F′(g−1.x) (g−1)′(x) dx

= −
∫ ∞

t

F′(g−1.x)
(cx + d)2 dx =

∫ t

−∞

F′(g−1.x)
(cx + d)2 dx.

In particular, we have

(UJ F)′(t) = −F(−t−1)− t · t−2F′(−t−1) = −F(−t−1)− t−1F′(−t−1) = −
∫ −t−1

0
F′(x) dx− t−1F′(−t−1).

For ξ = F′, this reads

(UJξ)(t) = −t−1ξ(−t−1)−
∫ −t−1

0
ξ(x) dx for t 6= 0.
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This formula describes the unique unitary involution on L2(R) mapping bt to b−t−1 (cf. Lemma 6).
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Appendix A. Existence of Affine Isometries

For a map γ : X → H into a Hilbert space, the closed subspace Hγ generated by all differences
γ(x)− γ(y), x, y ∈ X, is called the chordal space of γ (cf. [17]). The following lemma is an abstraction
of [48] Satz 1,3.

Lemma A1. Let X be a non-empty set,H be a real or complex Hilbert space and γ : X → H and γ′ : X → H′
be maps withHγ = H andHγ′ = H′. For x0 ∈ X, consider the kernel

Kx0
γ (x, y) := 〈γ(x)− γ(x0), γ(y)− γ(x0)〉 on X× X.

Then the following are equivalent:

(i) There exists an affine isometry V : H → H′ with V ◦ γ = γ′.
(ii) Kx0

γ = Kx0
γ′ for every x0 ∈ X.

(iii) Kx0
γ = Kx0

γ′ for some x0 ∈ X.

IfH andH′ are real, then these conditions are equivalent to

(iv) ‖γ(x)− γ(y)‖2 = ‖γ′(x)− γ′(y)‖2 for x, y ∈ X.

If (i)–(iii) are satisfied, then the affine isometry V in (i) is uniquely determined by the relation V ◦ γ = γ′.

Proof. (ii)⇒ (iii) is trivial.
(iii)⇒ (i): From [30] (Ch. I) it follows that there exists a unique unitary operator U : H → H with

U(γ(x)− γ(x0)) = γ′(x)− γ′(x0) for all x ∈ X.

Then we put Vξ := Uξ −U(γ(x0)) + γ′(x0).
(i)⇒ (ii): If Vξ = Uξ + b is an affine isometry with V ◦ γ = γ′, then

Kx0
γ′ (x, y) = 〈γ′(x)− γ′(x0), γ′(y)− γ′(x0)〉 = 〈Uγ(x)−Uγ(x0), Uγ(y)−Uγ(x0)〉

= 〈γ(x)− γ(x0), γ(y)− γ(x0)〉 = Kx0
γ (x, y).

(iv)⇔ (iii): The kernel Dγ(x, y) := ‖γ(x)− γ(y)‖2 satisfies

Dγ(x, y) = ‖γ(x)− γ(x0) + γ(x0)− γ(y)‖2

= ‖γ(x)− γ(x0)‖2 + ‖γ(x0)− γ(y)‖2 + 2 Re Kx0
γ (x, y)

= Kx0
γ (x, x) + Kx0

γ (y, y) + 2 Re Kx0
γ (x, y)

and, conversely,

Re Kx0
γ (x, y) =

1
2
(

Dγ(x, y)− Dγ(x, x0)− Dγ(y, x0)
)
.

Therefore (iv) is equivalent to Re Kx0
γ = Re Kx0

γ′ . IfH is real, this is equivalent to (iii).

Appendix B. Stochastic Processes

Definition A1. Let (Q, Σ, µ) be a probability space and (B,B) be a measurable space. A stochastic process
with state space (B,B) is a family (Xt)t∈T of measurable functions Xt : Q→ B, where T is a set.
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(a) We call the stochastic process (Xt)t∈T full if, up to sets of measure 0, Σ is the smallest σ-algebra for
which all functions Xt are measurable.

(b) For B = R or C, we say that (Xt)t∈T is square integrable if every Xt is square integrable. Then the
covariance kernel

C(s, t) := E(XsXt)

on T is positive definite. If C(t, t) = E(|Xt|2) > 0 for every t ∈ T, then X̃t := Xt/
√
E(|Xt|2) is called the

associated normalized process. Its covariance kernel is

C̃(s, t) =
C(s, t)√

C(s, s)C(t, t)
for s, t ∈ T.

(c) On the product space BT of all maps T → B, there exists a unique probability measure ν with the
property that, for t1, . . . , tn ∈ T, the image of ν under the evaluation map evt1,...,tn : BT → Bn is the image of µ

under the map (Xt1 , . . . , Xtn). We call ν the distribution of the process (Xt)t∈T ([37], Thm. 1.5).

Definition A2. Let (Xt)t∈T be a centered K-valued stochastic process and σ : G× T → T be a group acting
on T.

(a) The process (Xt)t∈T is called stationary if, for every g ∈ G, the process (Xg.t)t∈T has the
same distribution. Then we obtain a measure preserving G-action on the underlying path space KT by
(g.ω)(t) := ω(g−1.t), resp., g.Xt = Xg.t.

(b) The process (Xt)t∈T is said to have stationary increments if, for t0, t1, . . . , tn, t ∈ T, the random vectors

(Xt1 − Xt0 , . . . , Xtn − Xt0) and (Xg.t1 − Xg.t0 , . . . , Xg.tn − Xg.t0)

have the same distribution (cf. [34]).

Definition A3. ([49] Def. 2.8.1) A square integrable process (Zt)t≥0 is said to be wide sense stationary if
the function t 7→ E(Zt) is constant and there exists a function C : R → C such that C(s, t) = E(ZsZt) =

C(s− t).

Appendix B.1. Processes with stationary increments

Proposition A1. (The flow of a process with stationary increments) Let (Xt)t∈T be a K-valued stochastic
process and σ : G× T → T, (g, t) 7→ g.t be a G-action on T. Then the following are equivalent:

(i) (Xt)t∈T has stationary increments.
(ii) For every t0 ∈ T,

(g.ω)(t) := ω(g−1.t) + ω(t0)−ω(g−1.t0) (A1)

defines a measure preserving flow on the path space KT satisfying

g.Xt = Xg.t + Xt0 − Xg.t0 . (A2)

Proof. (i)⇒ (ii): For each g ∈ G, we consider the map

σg : KT → KT , σg(ω)(t) := ω(g−1.t) + ω(t0)−ω(g−1.t0). (A3)

Then
((σg)∗Xt)(ω) = Xt(σg−1 ω) = ω(g.t) + ω(t0)−ω(g.t0), (A4)

i.e.,
(σg)∗Xt = Xg.t + Xt0 − Xg.t0 , resp., Xg.t = (σg)∗Xt + Xg.t0 − Xt0 .
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Since, for every finite subset F ⊆ T, the random vector (Xg.t − Xg.t0)t∈F has the same distribution
as (Xt − Xt0)t∈F, the flow on KT defined by σ is measure preserving.

(ii)⇒ (i): If there exists a measure preserving G-action on KT satisfying (A2), then the distribution
of (Xg.t + Xt0 − Xg.t0)t∈T is the same as the distribution of (Xt)t∈T . Subtracting Xt0 , it follows that the
distribution of (Xgt − Xg.t0)t∈T is the same as the distribution of (Xt − Xt0)t∈T , i.e., that (Xt)t∈T has
stationary increments.

Remark A1. (a) If the K-valued process (Xt)t∈T on (Q, Σ, µ) is square integrable, then (Xt)t∈T generates
a closed linear subspace H1 ⊆ L2(Q, µ). The existence of a unitary representation (Ug)g∈G on H1 with
UgXt = Xg.t for g ∈ G, t ∈ T, is equivalent to the invariance of the covariance kernel

C(s, t) := E(XsXt) = 〈Xs, Xt〉

(cf. [30] Ch. I). This condition is in particular satisfied if the process is stationary.
(b) For a square integrable process, it likewise follows that the existence of an action of G by affine isometries

(αg)g∈G on the closed affine subspace A ⊆ L2(Q, µ) generated by (Xt)t∈T satisfying

Xg.t = αgXt for g ∈ G, t ∈ T

is equivalent to the independence from g ∈ G of the kernel

Qg(t, s) := E((Xg.t − Xg.t0)(Xg.s − Xg.t0)) for s, t ∈ T,

for some t0 ∈ T (and hence for all t0 ∈ T)) (Lemma A1). For a real-valued process (K = R), this condition is
equivalent to the G-invariance of the kernel

D(t, s) := E((Xt − Xs)
2) for t, s ∈ T

on T× T (Lemma A1).

Lemma A2. Let (αt)t∈R be a continuous isometric affine R-action of the form

αtξ = Utξ + βt for t ∈ R, ξ ∈ H

on the real or complex Hilbert spaceH. If βR is total inH, then the unitary representation (Ut)t∈R is cyclic.

Proof. First proof: We writeH = H0 ⊕H1, whereH0 = HU is the closed subspace of U-fixed vectors
andH1 := H⊥0 . Accordingly, we write β = β0 + β1. Then β0 : R→ H0 is a continuous homomorphism,
hence of the form β0(t) = tv0 for some v0 ∈ H0. We conclude that dimH0 ≤ 1, so that it suffices to
show that the representation onH1 is cyclic. We may therefore assume from now on thatHU = {0}.

Step 1: First we assume that Spec(U) is compact and does not contain 0. Then there exists an
ε > 0 such that the operators Ut − 1 are invertible for |t| < ε. For |t|, |s| < ε, we then have

(Ut − 1)βs = βt+s − βs − βt = (Us − 1)βt,

so that
v := (Ut − 1)−1βt for |t| < ε

is independent of t. Now the relation βt = Utv− v holds for |t| < ε, but since β is a continuous cocycle,
it follows for all t ∈ R. Clearly, v ∈ H is a U-cyclic vector.

Step 2: Now we consider the general case whereH is complex. We write R× =
⋃

n∈N Cn, where Cn

is relatively compact with 0 6∈ Cn. If P is the spectral measure of U, we accordingly obtain a U-invariant
decompositionH = ⊕̂n∈NP(Cn)H into subspace on which U has compact spectrum not containing 0.
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Now our assumption implies that every Hn is generated by the values of the Hn-component of β.
Step 1 now implies that eachHn is cyclic, and since representations on the subspacesHn are mutually
disjoint, the representation onH is cyclic.

Step 3: Finally, we consider the general case whereH is real. Then we may choose the sets Cn ⊆ R
such that they are symmetric, i.e., Cn = −Cn. Then the corresponding spectral subspaces of HC are
invariant under complex conjugation and we can proceed as in Step 2.

Alternative proof: A more direct argument can be derived from the work of P. Masani ([16];
see also [17]). For the element

ξ :=
∫ ∞

0
e−tβt dt

one shows that the shift operators

T(a, b) := Ub −Ua −
∫ b

a
Ut dt = −T(b, a)

satisfy βt = T(t, 0)ξ. Here the main point is to verify first the switching property ([16] Lemma 2.18)

T(a, b)(βc − βd) = T(c, d)(βa − βb) for a, b, c, d ∈ R,

and that
∫ ∞

0 e−tTU(t, 0) ds = 1 ([16] Thm. A.2). Then the assertion follows from

T(t, 0)ξ =
∫ ∞

0
e−sT(t, 0)βs ds =

∫ ∞

0
e−sT(s, 0)βt ds = βt

([16] Thm. 2.19).

Proposition A2. (Normal form of cocycles) Let (U,H) be a continuous unitary one-parameter group and
β : R→ H be a continuous cocycle. Then there exists a Borel measure σ on R such that the triple (U, β,H) is
unitarily equivalent to the triple (Ũ, β̃, L2(R, σ)) with

(Ũt f )(x) = eitx f (x) and βt(x) =

{
eitx−1

ix for x 6= 0

t for x = 0.

Proof. In view of Lemma A2, we may assume that the representation (U,H) is cyclic.
Step 1: First we assume that HU = {0}. According to Bochner’s Theorem, any cyclic unitary

one-parameter group (U,H) withHU = {0} is equivalent to the multiplication representation on some
space L2(R×, µ) by (Ut f )(x) = eitx f (x). For this representation it is easy to determine the cocycles.
They are of the form

βt(x) = (eitx − 1)u(x),

where u : R → C is a measurable function with the property that, for every t ∈ R, the function
(eitx − 1)u is square integrable. Replacing µ by the measure

dσ(x) = x2|u(x)|2 dµ(x),

we may assume that u(x) = 1
ix , which leads to βt(x) = eitx−1

ix .
Step 2: IfHU = H, then β : R→ H is a continuous homomorphism, hence of the form βt = tv for

some v ∈ H. The cyclicity assumption implies that H = Cv ∼= L2(R, σ) for the measure σ = ‖v‖2δ0.
Here the vector v corresponds to the constant function 1, so that βt = tv = t.

The assertion now follows by applying Steps 1 and 2 to the summands of the decomposition
H = HU ⊕ (HU)⊥.
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The following theorem is basically the Lévy–Khintchine Theorem for the group G = R (cf. [50]
(Thm 5.5.1), [23] (Thm. 32), and [48] for a different form).

Proposition A3. Let (Xt)t∈R be a complex-valued zero mean Gaussian process on (Q, Σ, µ) with X0 = 0 and
stationary quadratic increments. Then there exists a uniquely determined Borel measure σ on R such that

Cσ(s, t) = E(X∗s Xt) =
∫
R

es(u)et(u) dσ(u) for et(u) =
eitu − 1

iu
=
∫ t

0
eiτu dτ. (A5)

A measure σ on R arises for such a process if and only if∫
R

dσ(u)
1 + u2 < ∞. (A6)

The function

r(t) :=
∫
R

(
1− eitu +

itu
1 + u2

)dσ(u)
u2

is negative definite and satisfies
r(t) + r(s)− r(t− s) = Cσ(s, t). (A7)

All other negative definite continuous functions satisfying (A7) are of the form r̃(t) = r(t) + itµ for some
µ ∈ R.

The measure σ is called the spectral measure of the process (Xt)t∈R.

Proof. Let A ⊆ L2(Q, Σ, µ) be the closed affine subspace generated by (Xt)t∈R. As X0 = 0, this is
actually a linear subspace. Now Lemma A1 implies the existence of an affine isometric action (αt)t∈R
of R onA satisfying αtXs = Xs+t. In particular, βt := Xt is a corresponding cocycle. Now the existence
of σ follows from Proposition A2.

Now we show that (A6) is equivalent to the square integrability of all (et)t 6=0 (Definition A1) and
the continuity of the function t 7→ Cσ(t, t) = ‖et‖2

2.
From

|et(u)|2 =
∣∣∣cos(tu)− 1

u

∣∣∣2 + ∣∣∣ sin(tu)
u

∣∣∣2 =
1 + cos2(tu) + sin2(tu)− 2 cos(tu)

u2 = 2
1− cos(tu)

u2

it follows that the square integrability of all et with respect to σ is equivalent to

f (t) :=
∫
R

1− cos(tu)
u2 dσ(u) < ∞ for all t ∈ R.

If r > 0 and t is sufficiently small, then the integrand has a positive infimum on the interval
[−r, r]. Therefore the finiteness of all f (t) implies that all compact subsets of R have finite σ-measure.
Since the function f (t) = 1

2 Cσ(t, t) is continuous, for every ε > 0, we have

∞ >
∫ ε

0
f (t) dt =

∫
R

∫ ε

0
(1− cos(tu)) dt

dσ(u)
u2 =

∫
R

(
ε− sin εu

u

) dσ(u)
u2 .

As the function u 7→ 1− sin(εu)
εu has a positive infimum on [1, ∞), it follows that

∫
|u|≥1

dσ(u)
u2 < ∞.

This implies that
∫
R

dσ(u)
1+u2 < ∞.

Suppose, conversely,
∫
R

dσ(u)
1+u2 < ∞ (cf. [50] Lemma 5.5.1). We claim that we obtain a continuous

negative definite function

r(t) :=
∫
R

(
1− eitu +

itu
1 + u2

)dσ(u)
u2 =

∫
R

(1− eitu

u
+

it
1 + u2

)dσ(u)
u

. (A8)
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We first show that the integrals exist. To this end, we observe that

(
1− eitu +

itu
1 + u2

)1 + u2

u2 = 1− eitu +
1 + itu− eitu

u2 .

Since all three summands are bounded, the existence of the integral (A8) defining r(t) follows.
The first two summands are bounded independently of t, and the third summand can also be written as

1 + itu− eitu

u2 = h(tu)t2,

where the function h : R → C is bounded. We conclude that all summands are locally uniformly
bounded in t. Therefore the continuity of the function r follows from Lebesgue’s Dominated
Convergence Theorem. Moreover, r is negative definite because the functions t 7→ 1 − eitu and
t 7→ it are.

We further have the relation

r(t) + r(s)− r(t− s) = Cσ(s, t) = E(X∗s Xt) =
∫
R

es(u)et(u) dσ(u), (A9)

showing that Cσ is the positive definite kernel associated to the continuous negative definite function r,
hence in particular continuous.

Appendix C. Second Quantization and Gaussian Processes

Definition A4. ([37] Def. 1.6) Let T be a set and K = R or C. A K-valued stochastic process (Xt)t∈T is said
to be Gaussian if, for all finite subsets F ⊆ T, the corresponding distribution of the random vector XF = (Xt)t∈F
with values in KF is Gaussian.

Definition A5. Let H be a K-Hilbert space. A Gaussian random process indexed by H is a random process
(ϕ(v))v∈H on a probability space (Q, Σ, P) indexed byH such that

(GP1) (ϕ(v))v∈H is full, i.e., the random variables ϕ(v) generate the σ-algebra Σ modulo zero sets.
(GP2) Each ϕ(v) is a Gaussian random variable of mean zero.
(GP3) E(ϕ(v)ϕ(w)) = 〈v, w〉H for v, w ∈ H.

Remark A2. If T is a set, γ : T → H a map and (ϕ(v))v∈H is a Gaussian process indexed by H,
then (ϕ(γ(t)))t∈T is a Gaussian process indexed by T with zero means and covariance kernel

C(s, t) = E
(

ϕ(γ(t))ϕ(γ(s))
)
= 〈γ(t), γ(s)〉.

For any function m : T → R, t 7→ mt, we obtain a Gaussian process (Xt)t∈T with mean vector (mt)t∈T by

Xt := ϕ(γ(t)) + mt.

If γ(T) is total inH, then the corresponding Gaussian process is full.
Conversely, every Gaussian process (Xt)t∈T with mean vector (mt)t∈T is of this form. Here we may choose

H as the subspace of L2(Q, Σ, µ) generated by the Xt −mt ([37] Thm. 1.10).

Definition A6. (Second quantization; [51]) For a real Hilbert space H, we write H∗ for its algebraic dual,
i.e., the set of all linear functionalsH → R, continuous or not. Let Γ(H) := L2(H∗, γ,C) denote the canonical
Gaussian measure space on H∗. This measure is defined on the smallest σ-algebra Σ = ΣH∗ for which all
evaluations ϕ(v)(α) := α(v), v ∈ H, are measurable. It is determined uniquely by

E(eiϕ(v)) = e−‖v‖
2/2 for v ∈ H.
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Considering the ϕ(v) as random variables, we thus obtain the canonical centered Gaussian process (ϕ(v))v∈H
overH. It satisfies

E(ϕ(v)) = 0 and E(ϕ(v)ϕ(w)) = 〈v, w〉 for v, w ∈ H.

Remark A3. (The unitary representation of Mot(H) on Γ(H)) The group Mot(H) ∼= Ho O(H) of bijective
isometries ofH has a natural unitary representation on Γ(H) given by

U(b,g)F = eiϕ(b)g∗F, where (g∗F)(α) = F(g−1.α) = F(α ◦ g).

In particular, the map
H → Γ(H), x 7→ U(x,1)1 = eiϕ(x)

is Mot(H)-equivariant with total range. The canonical Gaussian process over the real Hilbert spaceH satisfies

Q(v, w) := E(eiϕ(v)eiϕ(w)) = E(eiϕ(w−v)) = e−
‖v−w‖2

2 . (A10)

Remark A4. The canonical Gaussian measure γ on the algebraic dual H∗1/2 = L2(R)∗ is called white noise
measure. The space of smooth vectors of the unitary representation (U1/2, L2(R)) of GL2(R) (see [9] (Ch. 7) for
this concept) can be naturally identified with the space C∞(S1), considered as a subspace ofH1/2. It coincides
with the space D0 in Hida’s book [37] (p. 304).

Appendix D. The Hilbert Spaces HH , 0 < H < 1

Appendix D.1. The Scalar Product onHH

In this section we give a short discussion about the complementary series representation in the
one dimensional case. For detailed discussion see [32] (p. 28) and [4] (Sect. 9).

For 1
2 < H < 1 and ξ, η ∈ S(R), we have

(2H − 1)
∫
R

ξ(x)|x− y|2H−2 dx

= (2H − 1)
( ∫ y

−∞
ξ(x)(y− x)2H−2 dx +

∫ ∞

y
ξ(x)(x− y)2H−2 dx

)
=
∫ y

−∞
ξ ′(x)(y− x)2H−1 dx−

[
ξ(x)(y− x)2H−1

∣∣∣y
−∞

−
∫ ∞

y
ξ ′(x)(x− y)2H−1 dx +

[
ξ(x)(x− y)2H−1

∣∣∣∞
y

=
∫
R

ξ ′(x)
sgn(y− x)
|x− y|1−2H dx dy

We accordingly obtain

〈ξ, η〉H = H
∫
R

∫
R

ξ ′(x)η(y)
sgn(y− x)
|x− y|1−2H dx dy (A11)

and thus

lim
H→ 1

2

〈ξ, η〉H =
1
2

∫
R

∫
R

ξ ′(x)η(y) sgn(y− x) dx dy

=
1
2

∫
R

η(y)
[ ∫ y

−∞
ξ ′(x) dx−

∫ ∞

y
ξ ′(x) dx

]
=
∫
R

η(y)ξ(y) dy = 〈ξ, η〉L2(R).

It therefore makes sense to putH1/2 := L2(R), so that we have Hilbert spacesHH for 1
2 ≤ H < 1.
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In the form (A11), the scalar product 〈·, ·〉H is defined by a distribution kernel which is locally
integrable for any H > 0. We shall use this observation to define Hilbert spaces HH for 0 < H < 1.
To find a more symmetric form of the scalar product, we calculate∫

R
η(y) sgn(y− x)|x− y|2H−1 dy = −

∫ x

−∞
η(y)(x− y)2H−1 dy +

∫ ∞

x
η(y)(y− x)2H−1 dy

=
1

2H

[
η(y)(x− y)2H

∣∣∣x
−∞
− 1

2H

∫ x

−∞
η′(y)(x− y)2H dy

+
1

2H

[
η(y)(y− x)2H

∣∣∣∞
x
− 1

2H

∫ ∞

x
η′(y)(y− x)2H dy

= − 1
2H

∫
R

η′(y)|x− y|2H dy.

We thus obtain from (A11) the simple form

〈ξ, η〉H = −1
2

∫
R

∫
R

ξ ′(x)η′(y)|x− y|2H dx dy. (A12)

Appendix D.2. Unitarity of the Representations UH , 0 < H < 1

To verify the unitarity of the representations UH , for H > 1
2 , we calculate for ξ, η ∈ S(R)

〈UH
g ξ, UH

g η〉
H(2H − 1)

=
∫
R

∫
R

ξ(g−1.x)η(g−1.y)
|ad− bc|2H

|cx + d|2H |cy + d|2H
dx dy

|x− y|2−2H

=
∫
R

∫
R

ξ(x)η(y)
|ad− bc|2H−2

|c(g.x) + d|2H−2|c(g.y) + d|2H−2
dx dy

|g.x− g.y|2−2H ,

so that unitarity follows from

c · (g.x) + d =
ad− bc
a− cx

, which implies
|g.x− g.y|
|x− y| =

|ad− bc|
|a− cx||a− cy| =

|c(g.x) + d| · |c(g.y) + d|
|ad− bc| .

For H < 1
2 we use the fact that PGL2(R) is generated by the affine group Aff(R) and the map

σ(x) = x−1. As the kernel function |x− y|2H is translation invariant, the translations define unitary
operators UH

g (ξ)(x) := ξ(x + b), b ∈ R. For dilations g−1(x) = ax, we have

(UH
g ξ)(x) = sgn(a)|a|Hξ(ax) and (UH

g ξ)′(x) = |a|H+1ξ ′(ax).

This leads to

〈UH
g ξ, UH

g η〉 =
∫
R

∫
R
|a|2H+2ξ ′(ax)η′(ay)|x− y|2H dx dy =

∫
R

∫
R

ξ ′(x)η′(y)|x− y|2H dx dy = 〈ξ, η〉.

The most tricky part is to verify that the operator (Uξ)(x) := −|x|−2Hξ(x−1) is unitary on HH .
Since U is an involution, it suffices to show that

〈Uξ, η〉 = 〈ξ, Uη〉 for ξ, η ∈ S(R). (A13)

To verify this symmetry relation, we may assume that ξ and η are real-valued. We first observe that

(Uξ)′(x) = 2H sgn(x)|x|−2H−1ξ(x−1) + |x|−2H−2ξ ′(x−1).
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This leads to

〈Uξ, η〉 = −
∫
R

∫
R

H sgn(x)|x|−2H−1ξ(x−1)η′(y)|x− y|2H dx dy (A14)

− 1
2

∫
R

∫
R
|x|−2H−2ξ ′(x−1)η′(y)|x− y|2H dx dy.

The second summand in (A14) equals

−1
2

∫
R

∫
R
|x|2H+2ξ ′(x)η′(y)|x−1 − y|2H dx

x2 dy = −1
2

∫
R

∫
R

ξ ′(x)η′(y)|1− xy|2H | dx dy,

which is symmetric in ξ and η. The first summand in (A14) equals

−
∫
R

∫
R

H sgn(x)|x|2H+1ξ(x)η′(y)|x−1 − y|2H dx
x2 dy = −

∫
R

∫
R

Hξ(x)η′(y)|1− xy|2H dx
dy
x

.

With ∫
R

η′(y)|1− xy|2H dy
x

= −2H
∫
R

η(y)|1− xy|2H−1 sgn(1− xy)(−x)
dy
x

= 2H
∫
R

η(y)|1− xy|2H−1 sgn(1− xy) dy,

we obtain for the first summand in (A14)

−2H2
∫
R

∫
R

ξ(x)η(y)|1− xy|2H−1 sgn(1− xy) dx dy.

Again, the symmetry of the integral kernel now implies that this expression is symmetric in ξ

and η. We conclude that U defines a unitary operator onHH . This implies unitarity of the operators
UH

g for 0 < H < 1
2 .

Appendix E. The Spectral Measure of Fractional Brownian Motion

For Re z > 0, we have the integral representation of the Gamma function

Γ(z) =
∫ ∞

0
e−λλz−1 dλ. (A15)

For 0 < α < 1, this leads to

Γ(1− α) =
∫ ∞

0
e−λ dλ

λα
. (A16)

By partial integration, we further obtain

∫ ∞

0
(1− e−λ)λ−1−α dλ =

1
α

∫ ∞

0
e−λ dλ

λα
=

Γ(1− α)

α
. (A17)

This in turn leads to

zα =
α

Γ(1− α)

∫ ∞

0
(1− e−zλ)λ−1−α dλ for 0 < α < 1, z ∈ C \ (−∞, 0] (A18)

(cf. [31] p. 78). In fact, for z > 0 real, this follows from (A17) by dilation, so that the claim follows by
analytic continuation from the holomorphy of both sides. For z = i, we obtain from (A18)

cos
(απ

2

)
= Re eiαπ/2 = Re(iα) =

α

Γ(1− α)

∫ ∞

0
(1− cos λ)λ−1−α dλ for 0 < α < 1. (A19)
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With
Γ(1− α)Γ(α) =

π

sin(πα)
=

π

2 sin(πα/2) cos(πα/2)
(A20)

we obtain
2Γ(1− α) cos

(πα

2

)
=

π

sin
(

πα
2
)
Γ(α)

. (A21)

Thus∫
R
(1− cos λ)|λ|−1−α dλ =

π

αΓ(α) sin
(

απ
2
) =

π

Γ(1 + α) sin
(

απ
2
) =

Γ
(
1− α

2
)
Γ
(

α
2
)

Γ(1 + α)
.

We further obtain for t ∈ R by dilation

∫
R
(1− cos tλ)|λ|−1−α dλ =

Γ
(
1− α

2
)
Γ
(

α
2
)

Γ(1 + α)
|t|α.

For H = 2α this implies

|t|2H =
Γ(2H + 1)

Γ(H)Γ(1− H)

∫
R

1− cos λt
|λ|2H

dλ

|λ|

=
1
2

Γ(2H + 1)
Γ(H)Γ(1− H)

∫
R

(1− cos λt)2 + sin2 λt
λ2 |λ|1−2H dλ

=
1
2

Γ(2H + 1)
Γ(H)Γ(1− H)

∫
R
|et(λ)|2|λ|1−2H dλ,

and therefore the spectral measure of fractional Brownian motion is

dσ(λ) =
1
2

Γ(2H + 1)
Γ(H)Γ(1− H)

· |λ|1−2H dλ =
sin(πH)Γ(2H + 1)

2π
· |λ|1−2H dλ. (A22)
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