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Abstract: Saliency detection is one of the most valuable research topics in computer vision. It focuses
on the detection of the most significant objects/regions in images and reduces the computational
time cost of getting the desired information from salient regions. Local saliency detection or common
pattern discovery schemes were actively used by the researchers to overcome the saliency detection
problems. In this paper, we propose a bottom-up saliency fusion method by taking into consideration
the importance of the DS-Evidence (Dempster–Shafer (DS)) theory. Firstly, we calculate saliency maps
from different algorithms based on the pixels-level, patches-level and region-level methods. Secondly,
we fuse the pixels based on the foreground and background information under the framework of
DS-Evidence theory (evidence theory allows one to combine evidence from different sources and
arrive at a degree of belief that takes into account all the available evidence). The development
inclination of image saliency detection through DS-Evidence theory gives us better results for saliency
prediction. Experiments are conducted on the publicly available four different datasets (MSRA,
ECSSD, DUT-OMRON and PASCAL-S). Our saliency detection method performs well and shows
prominent results as compared to the state-of-the-art algorithms.

Keywords: image processing; image analysis; object detection; saliency detection; DS-Evidence
theory; saliency fusion

1. Introduction

Nowadays, images are becoming an important piece of media for information transmission,
information retrieval and information security. Saliency information extraction from images is one
of the most active research area in the field of computer and robotics vision. Due to a large amount
of data, it is difficult to deal with the large number of images quickly and accurately. The task of
image saliency detection is to determine the areas of focus by the human visual system in images
and videos. There are different important aspects that should be considered for extracting saliency
information from images like motion, depth, color and localization factors, etc. If the salient parts
are extracted accurately, the calculation time could be significantly reduced and fast processing of
images can be realized. The idea of saliency detection was first introduced by Itti et al. [1]. At present,
applications of image saliency detection are very successful in images transmission systems [2], image
quality assessment [3], image compression [4], image segmentation [5], target recognition [6], image
scaling [7], image retrieval [8], foot plant detection [9], and other areas as well.

Several saliency detection methods have been introduced to overcome the problems in computer
vision system for the last three decades. Some methods solely concentrate on low level visual cues for
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saliency information extraction. These methods can be categorized into pixels-based, patches-based
and region-based methods. A seminal pixel-based saliency detection method was introduced by
Itti et al. [1] in which saliency information was obtained from pixel-level features and center-surround
differences. Achanta et al. [10] adopted a saliency detection approach based on the frequency features
of the images by exploiting the pixel-wise difference with mean shift segmentation and calculate the
saliency by disregarding high frequencies arising from texture, noise on each pixel. These methods
have some shortcomings like boundary blurring, and poorly segmenting the salient object due to the
interior suppression. Due to these shortcomings of pixel-based methods, researchers introduced a
patch level saliency detection method. Margolin et al. [11] proposed a method in which they used the
Principal Component Analysis to represent the set of patches and ignored all of other patches in the
image. Recently, Wang et al. [12] proposed a method based on scene-level analysis and patch-level
inference to support nearest semantics to get saliency information. However, they used region based
segmentation of image patches and made use of other cues to refine the saliency detection. They also
used the scene-level analysis with patch-level to overcome the inefficiency of the patch-level based
methods. In other words, pure patch-based methods cannot achieve satisfying results.

In contrast to overcoming the patches and pixels based saliency detection methods, region based
saliency detection methods have been introduced. In region-based methods, images are segmented
according to the region-level. Due to irregular regions in some images, those methods can be
sub-categorized and explored on the base of the regions with irregular sizes and shapes [13–16]
and regions with regular sizes and shapes [17–21]. Wei et al. [13] introduced a region-based saliency
detection method by focusing on the background more than the salient region and exploited two
common priors about backgrounds boundary and connectivity priors. Perazzi et al. [14] proposed
getting saliency information by decomposing the given image into a group of homogeneous elements
and generating a pixel-wise saliency map. Cheng et al. [15] used pixels’ appearance information based
on the spatial distribution and similarity for salient region detection. Cheng et al. [16] evaluated
the saliency with spatial weighted coherence scores and global contrast differences, which gives
prominent results, but this method can not perform well in all cases. Achanta et al. [17] introduced a
simple linear iterative clustering (SLIC) super-pixel method for segmenting the salient region based on
mid-level visual features. The absorption Markov chain has been used by Jiang et al. [18] in which
the transient nodes on the image boundaries are computed first and absorbing nodes are treated as
virtual boundary nodes for estimation of the salient regions based on the background and foreground.
Yang et al. [19] used a method for saliency estimation by treating super-pixels as nodes and these
nodes are divided into subsets of similarity to background and foreground queries. Hence, saliency is
computed based on the two non-overlapping regions, as background and salient region. Xie et al. [20]
also used the low and mid-level visual features of the image to define the regions as background and
foreground. In this method, firstly, the salient region is estimated via color features and foreground
region is defined using convex hull. Secondly, super-pixels are used to define salient regions based
on the mid-level visual features. Following Xie’s saliency detection framework, Ayoub et al. [21] also
employed Bayesian framework for saliency detection. They calculated color frequency features of the
images by employing Log–Gabor filter and calculated the salient region by splitting the regions into
foreground and background with convex hull. This method shows prominent results as compared to
the rest of the methods, but, as it uses color features, this method can not perform on gray scale images.

Almost all methods have their importance in conducting image saliency, but, due to the use of
the pixels’, patches’ and region based information, these methods cannot perform well in all cases.
Even different saliency detection methods are complemented to each other [22]. Therefore, fusing
saliency maps of predefined functions based on the pixels’, patches’ and regional-level information
gives impressive results. For better saliency estimation, in this paper, we introduce a new method to
fuse different saliency maps obtained by different predefined algorithms, based on the color, motion,
depth, patches, pixels and regional level information with Dempster–Shafer (DS)-Evidence theory.
In this paper, the remaining sections are organized as follows. The related work based on pixel-level,
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patch-level and region-level saliency detection methods is described in Section 2 (Related Work).
Section 3 (Proposed algorithm) elaborates on the two major steps. Firstly, a review of the DS-Evidence
theory is described. Secondly, we briefly discuss our proposed approach together with the summary of
the complete algorithm. Illustration and experimental results on four different datasets are presented
in Section 4. Finally, the conclusions are made in Section 5.

Figure 1 shows the pipeline of proposed (DS-OUR) saliency fusion framework.
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Figure 1. Pipeline of our proposed (DS-OUR) saliency fusion framework (FG denotes the foreground
area containing salient pixels, BG represents the background area containing salient pixels and
DS-Fusion represents Dempster–Shafer theory of evidence based fusion).

2. Related Work

Various saliency computational models are based on the structure of Feature Integration
Theory [23]. In this theory, objects are supposed to be attentive in a visual scene by its shape, color and
orientations, etc., and are focused by combining these features. Itti et al. [1] practically implemented
these features for the first time to construct the saliency map. Some researchers used pixel-wise local
priors for saliency detection. Lu et al. [24] calculated pixel-level saliency by integrating multi-scale
reconstruction errors and a Gaussian model to refine them under Bayesian framework. Seo et al.
[25] calculated the pixel-level saliency by processing each pixel to its surroundings. Perazzi et al.
[14] introduced a pixel level saliency detection method in which an image was decomposed into
compact and homogeneous elements to extract the necessary detail; then, the uniqueness and the
spatial distribution of these elements are measured to estimate saliency information.

Researchers also used patches level information to estimate the region of interest. Shi et al. [26]
used image patches to tackle the saliency problem and introduced a new saliency benchmark data-set
(ECSSD). They also proposed a multi-layer approach for saliency map construction. The saliency
information extracted a hierarchical model of three layers of different patch sizes, and these layers are
then combined together to produce the final saliency map. Tong et al. [27] used a multi-scale saliency
detection method. They segmented the image into multi-scale super-pixels and then estimated three
different cues from integrity, contrast and central biased on each scale within the Bayesian framework
for saliency detection. They used a guided filter to smooth the final saliency map obtained by a
summation of the saliency information.

Some researchers computed the saliency maps from regional level information by segmenting the
images into foreground and background. Wei et al. [13] proposed a region based geodesic saliency
detection method in which a saliency map is produced by taking into account the probability of the
background priors as boundary and connectivity priors. A graph based saliency detection method
was introduced by Yang et al. [19] in which a region level saliency detection method is proposed
by representing the image as a close-loop graph with super-pixels as nodes. Then, background and
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foreground based nodes are ranked together to estimate the salient region based on affinity matrices.
Xie et al. [20] proposed a regional level saliency method based on Bayesian framework. They calculated
a saliency map by using low and mid level visual cues. Firstly, saliency information is extracted using
color priors and then a convex hull is computed to estimate foreground and background. The saliency
map is then computed pixel-wise inside and outside the convex hull under the Bayesian framework.
By taking into consideration the importance of Bayesian framework, Ayoub et al. [21] calculated
the saliency map by using color and texture features of images. They used Bayesian framework to
estimate the salient region. Zhu et al. [28] proposed a well modeled saliency detection method in
which image boundary regions were characterized in spatial layout by taking into considerations the
robust background measure, called boundary connectivity. Secondly, an optimization framework was
used for integration of low level visual cues.

DS-Evidence theory is more applicable for the saliency fusion than other saliency fusion methods.
DS-Evidence theory is based on Dempster’s work [29] of upper and lower probabilities. The use of
belief functions into the artificial intelligence was introduced by Barnett [30] in which he introduced
the degree of belief function as a numerical method that combines all possible evidences instead
of null hypothesis. Lowrance et al. [31] defined the DS-Evidence functions as evidential-reasoning
which manipulate all possible reasoning of evidence. A lot of work has been done to improve the
DS-Evidence theory to get the maximum information from the input data. Various methods for saliency
estimation have improved the results of saliency maps for good in accuracy and recall rate. It is much
better to fuse all possible evidence of saliency values rather than a single probability value to reach on
the degree of acceptance. The importance of the DS-Evidence theory and its use in fusing all of the
possible outcomes instead of a null hypothesis can increase the effect of saliency estimation higher
than that of each individual saliency detection method.

Figure 2 shows the comparison of saliency maps calculated from our algorithm and nine other
state-of-the-art saliency detection algorithms.

	

Input GT DS-OUR 

XL 

GS 

MR MS 
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SF 

HS 
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Figure 2. Saliency maps comparison, from top left to bottom right: input image (Input), ground truth
mask (GT), our saliency map (DS-OUR), and saliency maps of other nine sate of the art approaches
DSR [24], GS [13], HS [26], MR [19], MS [27], SF [14], SST [25], XL [20], wCtr [28], respectively.

3. Proposed Algorithm

3.1. DS-Evidence Theory Review

DS-Evidence theory was proposed in 1967 by Dempster [29] in which Dempster introduced a
system of upper and lower probabilities. In the context of statistical inference, Shafer developed
the theory for uncertainty modeling frameworks in 1976 [32]. Beynon et al. [33] revealed that the
DS-Evidence theory has numerous advantages over the various statistical methods and Bayesian
decision theory due to its performance in modeling the reasons under uncertainty. The DS-Evidence
theory can be defined as follows:
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Denoting the universal set by Θ, which represents a finite set of all possible hypotheses of
a problem and its power set by 2Θ to quantify the candidate proposition. The basic probability
assignment (BPA) m : 2Θ → [0, 1] can be defined as

m(φ) = 0, ∑
A⊆2Θ

m(A) = 1. (1)

A probability of mass m(A) provides the body of confidence that proposition A is true. Any set
A ⊂ 2Θ that possesses a nonzero BPA, where m(A) > 0 is called a focal element. In the formalism, the
imprecision of knowledge can be handled by assigning a nonzero probability mass to the union of two
or more classes.

The rule proposed by Dempster played an important role in DS-Evidence theory. Given M mass
functions as m1, m2, ..., mM, the rule is defined as

(m1 ⊕ . . .⊕mM)(A) =
1

1− h̄ ∑
A1∩...∩AM=A

M

∏
i=1

mi(Ai), (2)

where Ai ∈ 2Θ, 1 ≤ i ≤ M and h̄ can be calculated as

h̄ = ∑
A1∩...∩AM 6=∅

M

∏
i=1

mi(Ai). (3)

The property of DS-Evidence theory of combining evidence from different sources makes it
applicable for dealing with reasoning under uncertain conditions. The probability can be assigned
to any of the subsets of the discernment framework without having the condition to be mutually
exclusive and exhaustive. DS-Evidence theory regards each subset as a single hypothesis, which can
simulate the reasoning similar to human logic. Therefore, DS-Evidence theory is more applicable in
fusion tasks.

3.2. DS-Fusion Method

We propose a method for saliency maps fusion based on DS-Evidence theory with the aim to
overcome the shortcomings of the above-mentioned prior state-of-the-art methods.

In the first step, n pieces of initial saliency images are generated using n(n > 1) methods to be
fused. In our experiments, we used nine different saliency detection methods, n = 9.

In the second step, for each pixel, we define the mass function corresponding to the n saliency
images. Define the environment Θ = {FG, BG} where FG represents the pixel as the foreground and
BG represents the pixel as the background. The recognition framework contains 22 subset, which
defines a set of powers that can represent pixels as a foreground or a background as 2Θ. We know that
the mass function is satisfied when ΣA∈2Θ m(X) = 1. Thus, we can define the mass function (basic
trust assignment function) in the form of n saliency images as shown in Equations (4) and (5):

mi(FG) = Pi, (4)

mi(BG) = 1− Pi, (5)

where mi(FG) represents the mass function corresponding to the ith saliency maps. FG indicates that
the pixels that should be fused are in the foreground and the saliency value at the corresponding pixel.
BG indicates that the corresponding pixel is in the background.
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In the third step, we calculate the similarity coefficients between the mass functions corresponding
to each saliency images (i.e., each piece of evidence), and list the similar matrices. The similarity
coefficient is calculated by Equation (6):

dij =

∑
Ax∩By 6=0

mi(Ax)mj(By)√
(∑ m2

i (Ax))(∑ m2
j (By))

, (6)

where the similarity coefficient dij(dij ∈ [0, 1]) is used to describe the degree of similarity between the
evidence. dij = 1 indicates the similarity between two pieces of evidence and dij = 0 indicates that two
pieces of evidence are completely different. From the correlation coefficient, we can get the similarity
matrix corresponding to n evidence by Equation (7):

S =



1 d12 . . . d1n

d21 1 . . . d2n
. . . . . .
. . . . . .
. . . . . .

dn1 dn2 . . . 1


n×n

(7)

In the fourth step, we find the supported level and credibility among the evidence. The degree of
support of the evidence indicates the degree of support by other evidence, and if one piece of evidence
are similar to other evidence. The mutual support is considered to be higher and the support formula
of the evidence is shown in Equation (8):

SUP(mi) =
n

∑
j=1

dij(i, j = 1, 2, ..., n). (8)

The credibility of the evidence reflects the credibility of the general evidence of a higher degree.
Credibility can be calculated as follows:

Crd(mi) =
sup(mi)

n
∑

i=1
sup(mi)

. (9)

In the fifth step, with the credibility as the weight of the mass function, we get the weighted
mass function mave(FG) by taking the pixel as the basic probability of the foreground assignment by
Equation (10).

mave(FG) =
n

∑
i=1

Crd(mi)×mi(FG). (10)

In addition, here we will use the weighted mass function value as the saliency value of the saliency
image. All possible prospects of saliency image can detect effectively by a preliminary synthesis of a
significant map. We can assume the mave(FG) as an initial saliency map with the foreground pixels:

sal1 = mave(FG). (11)
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In the sixth step, the weighted average evidence is used for n− 1 times in the DS synthesis rule to
obtain another saliency image of fusion. We know that DS-Evidence mass function in the synthesis of
the law Equation (2). We can get the synthetic mass function as shown in Equation (12):

m(FG) =
(mave(FG))n

k
, (12)

where k = (mave(FG))n + (1−mave(FG))n.
Here, we can get another saliency image sal2 by Equation (13)

sal2 = m(FG). (13)

In the seventh step, we calculate the weighted fusion of the intial saliency maps sal1 and sal2.
The final saliency map can be calculated by merging both intial saliency maps with different weights
as follows:

sal = µ1 × sal1 + µ2 × sal2, (14)

where µ1, µ2 are the composition weights. We set µ1 = 0.35 and µ2 = 0.65 in our experimental work.
The method is different from the existing methods because it takes advantage of the various

saliency detection methods and the results are superior to the results of each individual saliency
detection method. Initial saliency maps can be merged by giving the different weights. Comparison
with the traditional methods shows that the proposed method (DS-OUR) outperforms the various
saliency detection methods. The complete algorithm of proposed saliency fusion method is summarized
in Algorithm 1.

Figure 3 shows the saliency maps results calculated by Equations (11), (13) and (14).

	

(a)				Input	 (b)				!"#$ 	 (c)					%		 (d)					!"#' 	 (e)			!"#	()!-+,-)		 (f)					/0		

Figure 3. From left to right, (a) Input images; (b) Sal1 (the weighted mass function generated by
Equation (11)); (c) K (addition of foreground and background pixels ); (d) Sal2 (combined saliency
map by Equation (13)); (e) Sal(DS −OUR) final saliency maps by Equation (14); (f) GT (Ground
truth mask).
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Algorithm 1: DS-Saliency Fusion Algorithm

for A = RGB Image do
Calculate
Spi = Snpi(A);
Where npi represents the number of pixel-wise saliency methods.
Spa = Snpa(A);
Where npa represents the number of pixel-wise saliency methods.
Sr = Snr(A);
Where nr represents the number of Region-wise saliency methods.
for B = {Spi, Spa, Sr} do

Calculate
Θ = {FG, BG}
for i in {B} do

Calculate foreground and background mass function for i
mi(FG) = Pi
mi(BG) = 1− Pi

end
for B do

Calculate
Similarity Coefficient dij between the mass functions.
calculate mutual support and Credibility for general evidence
SUP(mi) and Crd(mi)

Calculate
mave(FG) =

n
∑

i=1
Crd(mi)×mi(FG) and m(FG) = (mave(FG))n

k

calculate the final saliency map “Sal” by weighted summation of
mave(FG) and m(FG) by Equation (15)

end
end

end

4. Experiments and Results

4.1. Data-Sets

For the evaluation purposes, we use four publicly available datasets in contrast to the efficiency
comparison of our algorithm against nine state-of-the-art saliency detection models. These datasets
have been used by many researchers in their articles to predict and estimate the efficiency of
their algorithms.

MSRA consists of 1000 images introduced by Achanta et al. [10]. It contains pixel-wise ground
truth masks of the salient object annotation in terms of bounding boxes, annotated by 3–9 users.
It is one of the widely used datasets by the Computer vision community for saliency detection and
segmentation comparisons.

ECSSD was introduced by Shi et al. [26] as an extended version of CSSD dataset and contains
1000 images acquired from the Internet. The images in ECSSD dataset structurally have a more complex
background than the CSSD dataset. Pixel-wise ground truth masks were annotated by five different
users for this dataset.

DUT-OMRON was introduced by Yang et al. [19]. It consists of 5168 high quality images,
manually selected from more than 140,000 images. These Images contain one or more salient objects
with complex background. Pixel-wise ground truth masks in terms of bounding boxes were annotated
by 25 users.
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PASCAL-S was built on the validation set of the PASCAL-S segmentation challenge introduced
by Li et al. [34]. It contains 850 natural images as a subset of the PASCAL VOC dataset, with both
saliency segmentation ground truth and eye fixation ground truth. The PASCAL-S is a less biased
data-set and contains one or more objects. Pixel-wise ground truth masks were annotated by 12 users
for this dataset.

Figure 4 shows the saliency maps calculated by our saliency detection method and nine different
state-of-the-art algorithms on four different data-sets.									
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Figure 4. Saliency maps comparison, from left to right: first column shows the source input images
(Input), ground truth mask (GT), our saliency map (DS-OUR), and saliency maps of other nine
state-of-the-art approaches DSR [24], GS [13], HS [26], MR [19], MS [27], SF [14], SST [25], XL [20],
wCtr [28], respectively.

4.2. Evaluation Metrics

We follow the evaluation matrices used in [10,19,20,26], where saliency maps are binarized at a
fixed threshold within range [0, 255].

4.2.1. Precision–Recall Curves

Precision–Recall curves are used to evaluate the performance in contrast to the best estimation
of salient regions. Many researchers have employed the method Precision–Recall matrices to show
the accuracy of their algorithms, where saliency maps are binarized within the domain of [0, 255] and
compared with the ground truth fixation masks. The thresholds vary from 0 to 255 and precision_recall
metrics are calculated at each binarized threshold by Equation (15)

Precision =
tnp

snp
, Recall =

tnp

gnp
, (15)

where tnp is the total number of the pixels inside the salient regions of the saliency map and ground
truth, snp, is the number of the salient pixels in saliency map. gnp, is the number of the salient pixels
inside the salient region of ground truth.
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4.2.2. ROC–AUC Curves

Receiver Operating Characteristic (ROC) curves are used to quantify the performance of a saliency
map detection algorithm in contrast to distinguishing fixation vs. non-fixation regions. AUC stands
for the area under the ROC curve. The greater value of the AUC shows the better performance of the
classifier. The value of AUC is calculated based on a true positive rate (TPR) and a false positive rate
(FPR). TPR is the ratio of the number of saliency values above a given threshold that overlap with the
fixation points in the ground truth. FPR is the ratio of the number of saliency map values above the
given threshold that do not overlap with the fixation points in the ground truth map. TPR and FPR are
computed as follows:

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

. (16)

Figure 5 shows the AUC comparison results on four different datasets. Our saliency detection
method performs well with higher AUC values.
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Figure 5. AUC results on four different datasets, from left to right: DS-OUR, DSR [24], GS [13], HS [26],
MR [19], MS [27], SF [14], SST [25], XL [20], wCtr [28], respectively.

4.2.3. F-Measure

F-measure scores are calculated as a harmonic mean of average precision and average recall.
We set α2 to 0.3 to weigh precision more than recall. The precision, recall and F-measure are averaged
over total number of the images:

F =
(1 + α2)precision× recall

α2 × precision + recall
, (17)

where value of α2 is 0.3.
Figure 6 shows the graphical representation of precision–recall curves, ROC curves and

F-measures comparison results on the databases presented in [10,19,26,34]
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Figure 6. Qualitative comparison of our method against nine different state-of-the-art algorithms
on 4 different datasets, from left to right: First column shows the precision_recall curves, second
column shows the ROC curves and third column shows the F-measure results, our method (DS-OUR)
performed better than other nine state-of-the-art algorithms.

4.2.4. MAE Evaluation

Mean Absolute Error (MAE) is used to measure the closed prediction between calculated saliency
map and ground truth map. MAE is computed between saliency map (S) and Ground truth (G).
The formula for measuring mean absolute error is

MAE =
1
n

n

∑
i=1
| Smap(i)− Gmap(i) | . (18)
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Figure 7 shows the MAE comparison results on four different data-sets. Our saliency detection
method shows better performance against other saliency detection by showing a minimum mean
absolute error.
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Figure 7. MAE results on four different datasets, from left to right: DS-OUR, DSR [24], GS [13], HS [26],
MR [19], MS [27], SF [14], SST [25], XL [20], wCtr [28], respectively.

4.3. Performance Comparison

For the evaluation purposes, we compare the quantitative and qualitative results obtained from
our method and nine different state-of-the-art algorithms. We compare our saliency maps’ results
in contrast to better object detection in the images. The method XL [20] detects non-interesting
background pixels as salient, and it calculates saliency of each pixel inside and outside the interesting
region by using the convex-hull method with low level visual features. This method can not perform
well when the same color of the background is detected as foreground. The approach SF [14] fails to
detect the salient pixels of the prominent objects as it considers the saliency as uniqueness of the pixels
and spacial distribution of the elements. Our approach consistently estimates the accurate pixels on
the dominant objects and their contextual surroundings by considering the pixels of foreground and
background, and fuse them for better results. Our final saliency maps were computed by fusing the
saliency maps by using Equation (14). We took two sample images from each database presented in
[10,19,26,34]. These databases contain the original images and annotated ground-truths to show the
saliency maps’ comparison results. Figure 4 shows the comparison of our saliency maps results with
the biologically-inspired saliency detection approaches. Our algorithm gives the better performance in
contrast to over all thresholded accuracy. Figure 5 shows the AUC comparison results on four different
datasets. Our saliency detection method performs well with higher AUC values. Figure 6 shows the
graphical representation of precision–recall curves, ROC curves and F-measures comparison results.
Figure 7 shows the graphical representation of MAE (Mean absolute error) results on the four different
data-sets, our (DS-OUR) algorithm shows minimum error in contrast to overall performance in saliency
detection as compared to the other nine state-of-the-art algorithms. In part of the images, only the
prominent object was marked. For the purpose of fair evaluation, we performed the experiments on
these datasets with each algorithm. Table 1 shows quantitative comparison of our algorithm against
nine state-of-the-art algorithms. The quantitative results obtained from our algorithm shows the best
performance in terms of the AUC (Maximum is better), MAE (Minimum is better) and F-measure
values (maximum is better).
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Table 1. Area Under the ROC Curves (AUC), Mean Absolute Error (MAE) and F-measure Comparison
Results (AUC/MAE/F-measure).

Methods MSRA ECSSD DUT-OMRON PASCAL-S

DS-OUR 0.982/0.061/0.915 0.919/0.160/0.727 0.901/0.127/0.572 0.864/0.195/0.647
DSR 0.958/0.096/0.845 0.868/0.176/0.676 0.862/0.137/0.518 0.811/0.205/0.602
GS 0.974/0.107/0.828 0.879/0.206/0.609 0.877/0.174/0.466 0.847/0.221/0.596
HS 0.966/0.111/0.866 0.883/0.228/0.634 0.858/0.227/0.519 0.833/0.263/0.549
MR 0.964/0.075/0.895 0.847/0.186/0.660 0.845/0.187/0.528 0.773/0.229/0.567
MS 0.978/0.105/0.830 0.913/0.204/0.671 0.886/0.210/0.491 0.863/0.224/0.601
SF 0.899/0.129/0.808 0.689/0.219/0.493 0.779/0.147/0.435 0.646/0.236/0.448

SST 0.834/0.223/0.502 0.772/0.313/0.374 0.799/0.254/0.320 0.740/0.302/0.411
XL 0.951/0.195/0.769 0.837/0.307/0.502 0.805/0.332/0.395 0.785/0.310/0.465

wCtr 0.976/0.066/ 0.884 0.881/0.172/0.677 0.886/0.144/0.528 0.841/0.199/0.629

5. Conclusions

In this paper, we discuss the DS-Evidence theory that is used to fuse the saliency maps in our
proposed method. Second, our method regards the saliency information extraction as an important
issue and considers the foreground and background regions to get the salient pixels’ information.
Inspired by processes of the human visual and cognitive systems, our proposed method uses the
relationship model between saliency labels. We calculate saliency maps by adopting different methods,
based on the pixels-level, patches-level and regional-level information. We fuse these saliency maps
under the framework of DS-Evidence theory. Extensive experiments on four publicly available images
data-sets demonstrate that the proposed method significantly outperforms state-of-the-art saliency
detection methods, particularly in terms of insensitivity to different features. In the future, we plan to
improve our proposed framework for saliency detection by adding noise and incomplete scenes.
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