
  

Symmetry 2018, 10, 160; doi:10.3390/sym10050160 www.mdpi.com/journal/symmetry 

Article 

Linguistic Neutrosophic Generalized Partitioned 

Bonferroni Mean Operators and Their Application to 

Multi-Attribute Group Decision Making 

Yumei Wang and Peide Liu * 

School of Management Science and Engineering, Shandong University of Finance and Economics,  

Jinan 250014, China; wangyumei@mail.sdufe.edu.cn 

* Corresponding Author: peide.liu@gmail.com; Tel.: +86-531-82222188 

Received: 10 April 2018; Accepted: 26 April 2018; Published: 14 May 2018 

Abstract: To solve the problems related to inhomogeneous connections among the attributes, we 

introduce a novel multiple attribute group decision-making (MAGDM) method based on the 

introduced linguistic neutrosophic generalized weighted partitioned Bonferroni mean operator 

(LNGWPBM) for linguistic neutrosophic numbers (LNNs). First of all, inspired by the merits of the 

generalized partitioned Bonferroni mean (GPBM) operator and LNNs, we combine the GPBM 

operator and LNNs to propose the linguistic neutrosophic GPBM (LNGPBM) operator, which 

supposes that the relationships are heterogeneous among the attributes in MAGDM. Then, we 

discuss its desirable properties and some special cases. In addition, aimed at the different 

importance of each attribute, the weighted form of the LNGPBM operator is investigated, which we 

call the LNGWPBM operator. Then, we discuss some of its desirable properties and special examples 

accordingly. In the end, we propose a novel MAGDM method on the basis of the introduced 

LNGWPBM operator, and illustrate its validity and merit by comparing it with the existing methods. 

Keywords: LNGPBM operator; LNGWPBM operator; Linguistic neutrosophic sets; generalized 

partitioned Bonferroni mean operator; multiple attribute group decision-making (MAGDM) 

 

1. Introduction 

The goal of the multiple attribute group decision-making (MAGDM) method is to select the 

optimal scheme from finite alternatives. First of all, decision makers (DMs) evaluate each alternative 

under the different attributes. Then, based on the DMs’ evaluation information, the alternatives are 

ranked in a certain way. As a research hotspot in recent decades, the MAGDM theory and methods 

have widely been used in all walks of life, such as supplier selection [1–3], medical diagnosis, 

clustering analysis, pattern recognition, and so on [4–11]. When evaluating alternatives, DMs used to 

evaluate alternatives by crisp numbers, but sometimes it is hard to use precise numbers because the 

surrounding environment has too much redundant data or interfering information. As a result, DMs 

have difficulty fully understanding the object of evaluation and exploiting exact information. As an 

example, when we evaluate people’s morality or vehicle performance, we can easily use linguistic 

term such as good, fair, or poor, or fuzzy concepts such as slightly, obviously, or mightily, to give 

evaluation results. For this reason, Zadeh [12] put forward the concept of linguistic variables (LVs) 

in 1975. Later, Herrera and Herrera-Viedma [5,6] proposed a linguistic assessments consensus model 

and further developed the steps of linguistic decision analysis. Subsequently, it has become an area 

of wide concern, and resulted in several in-depth studies, especially in MAGDM [8,11,13–15]. In 

addition, for the reason of fuzziness, Atanassov [16] introduced the intuitionistic fuzzy set (IFS) on 

the basis of the fuzzy set developed by Zadeh [17]. IFS can embody the degrees of satisfaction and 
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dissatisfaction to judge alternatives, synchronously, and has been studied by large numbers of 

scholars in many fields [1,2,9,10,18–23]. However, intuitionistic fuzzy numbers (IFNs) use the two 

real numbers of the interval [0,1] to represent membership degree and non-membership degree, 

which is not adequate or sufficient to quantify DMs’ opinions. Hence, Chen et al. [24] used LVs to 

express the degrees of satisfaction and dissatisfaction instead of the real numbers of the interval [0,1], 

and proposed the linguistic intuitionistic fuzzy number (LIFN). LIFNs contain the advantages of both 

linguistic term sets and IFNs, so that it can address vague or imprecise information more accurately 

than LVs and IFNs. Since the birth of LIFNs, some scholars have proposed some improved 

aggregation operators and have applied them to MAGDM problems [10,25–28]. 

With the further development of fuzzy theory, Fang and Ye [29] noted while LIFNs can deal 

with vague or imprecise information more accurately than LVs and IFNs, it can only express 

incomplete information rather than indeterminate or inconsistent information. Since the 

indeterminacy of LIFN ( )AI x  is reckoned by ( ) ( )1 A AT x F x− −  in default, evaluating the 

indeterminate or inconsistent information, i.e., ( ) ( ) ( )1A A AI x T x F x − −  or ( ) ( ) ( )1A A AI x T x F x − −

, is beyond the scope of the LIFN. Hence, a new form of information expression needs to be found. 

Fortunately, the neutrosophic sets (NSs) developed by Smarandache [30] are able to quantify the 

indeterminacy clearly, which is independent of truth-membership and false-membership, but NSs 

are not easy to apply to the MAGDM. So, some stretched form of NS was proposed for solving 

MAGDM, such as single-valued neutrosophic sets (SVNSs) [31], interval neutrosophic sets (INSs) 

[32], simplified neutrosophic sets (SNSs) [33], and so on. Meanwhile, they have attracted a lot of 

research, especially related to MAGDM [34–41]. Due to the characteristic of SNSs that use three crisp 

numbers of the interval [0,1] to depict truth-membership, indeterminacy-membership, and false-

membership, motivated by the narrow scope of the LIFN, Fang and Ye [29] put forward the concept 

of linguistic neutrosophic numbers (LNNs) by combining linguistic terms and a simplified 

neutrosophic number (SNN). LNNs use LVs in the predefined linguistic term set to express the truth-

membership, indeterminacy-membership, and falsity-membership of SNNs. So, LNNs are more 

appropriate to depict qualitative information than SNNs, and are also an extension of the LIFNs, 

obviously. Therefore, in this paper, we tend to study the MAGDM problems with LNNs. 

In MAGDM, the key step is how to select the optimal alternative according to the existing 

information. Usually, we adopt the traditional evaluation methods or the information aggregation 

operators. The common traditional evaluation methods include TOPSIS [7,9], VIKOR [19], ELECTRE 

[42], TODIM [20,43], PROMETHE [18], etc., and they can only give the priorities in order regarding 

alternatives. However, the information aggregation operators first integrate DMs’ evaluation 

information into a comprehensive value, and then rank the alternatives. In other words, they not only 

give the prioritization orders of alternatives, they also give each alternative an integrated assessment 

value, so that the information aggregation operators are more workable than the traditional 

evaluation approaches in solving MAGDM problems. Hence, our study is concentrated on how to 

use information aggregation operators to solve the MAGDM problems with LNNs. In addition, in 

real MAGDM problems, there are often homogeneous connections among the attributes. Using a 

common example, quality is related to customer satisfaction when picking goods on the Internet. In 

order to solve this MAGDM problems where the attributes are interrelated, many related results have 

been achieved as a result, especially information aggregation operators such as the Bonferroni mean 

(BM) operator [23,44], the Maclaurin symmetric mean (MSM) operator [45], the Hamy mean operator 

[46], the generalized MSM operator [47], and so forth. However, the heterogeneous connections 

among the attributes may also exist in real MAGDM problems. For instance, in order to choose a car, 

we may consider the following attributes: the basic requirements (G1), the physical property (G2), the 

brand influence (G3), and the user appraisal (G4), where the attribute G1 is associated with the attribute 

G2, and the attribute G3 is associated with the attribute G4, but the attributes G1 and G2 are independent 

of the attributes G3 and G4. So, the four attributes can be sorted into two clusters, P1 and P2, namely 

P1 = {G1, G2} and P2 = {G3, G4} meeting the condition where P1 and P2 have no relationship. To solve 

this issue, Dutta and Guha [48] proposed the partition Bonferroni mean (PBM) operator, where all 

attributes are sorted into several clusters, and the members have an inherent connection in the same 
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clusters, but independence in different clusters. Subsequently, Banerjee et al. [4] extended the PBM 

operator to the general form that was called the generalized partitioned Bonferroni mean (GPBM) 

operator, which further clarified the heterogeneous relationship and individually processed the 

elements that did not belong to any cluster of correlated elements, so the GPBM operator can model 

the average of the respective satisfaction of the independent and dependent input arguments. 

Besides, the GPBM operator can be translated into the BM operator, arithmetic mean operator, and 

PBM operator, so the GPBM operator is a wider range of applications for solving MAGDM problems 

with related attributes. Therefore, in this paper, we are further focused on how to combine the GPBM 

operator with LNNs to address the MAGDM problems with heterogeneous relationships among 

attributes. Inspired by the aforementioned ideas, we aim at: 

(1) establishing a linguistic neutrosophic GPBM (LNGPBM) operator and the weighted form of the 

LNGPBM operator (the form of shorthand is LNGWPBM). 

(2) discussing their properties and particular cases. 

(3) proposing a novel MAGDM method in light of the proposed LNGWPBM operator to address 

the MAGDM problems with LNNs and the heterogeneous relationships among its attributes. 

(4) showing the validity and merit of the developed method. 

The arrangement of this paper is as follows. In Section 2, we briefly retrospect some elementary 

knowledge, including the definitions, operational rules, and comparison method of the LNNs. We 

also review some definitions and characteristics of the PBM operator and GPBM operator. In Section 

3, we construct the LNGPBM operator and LNGWPBM operator for LNNs, including their 

characteristics and some special cases. In Section 4, we propose a novel MAGDM method based on 

the proposed LNGWPBM operator to address the MAGDM problems where heterogeneous 

connections exist among the attributes. In Section 5, we give a practical application related to the 

selection of green suppliers to show the validity and the generality of the MAGDM method, and 

compare the experimental results of the proposed MAGDM method with the ones of Fang and Ye’s 

MAGDM method [29] and Liang et al.’s MAGDM method [7]. Section 6 presents the conclusions. 

2. Preliminaries 

To understand this article much better, this section intends to retrospect some elementary 

knowledge, including the definitions, operational rules, and comparison method of the LNNs, PBM 

operator, and generalized PBM operator. 

2.1. Linguistic Neutrosophic Set (LNS) 

Definition 1 [29]. Let Z  be the universe of discourse, and z  be a generic element in Z , and let 

0 1( , , , )sL l l l=  be a linguistic term set. A LNS X  in Z  is represented by: 

( ) ( ) ( ) ( ), , , |
X X XT z I z F zX z l l l z Z=    (1) 

where 
XT , 

XI , and 
XF  denote the truth-membership function, indeterminacy-membership function, and 

falsity-membership function of z  in the set X , respectively, and  , , : 0,X X XT I F Z s→  with s  is an even 

number. 

In [29], Fang and Ye called the pair ( ), ,l l l    an LNN, which meets  , , : 0,Z s   → , and s  is an 

even number. 

Definition 2 [29]. Let ( ) = , ,z l l l  
 
be an optional LNN in L , where the score function ( )C z  of the LNN 

z  is defined as shown: 

2
( )

3

s
C z

s

  + − −
=   (2) 
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where , , [0, ]s     and ( ) [0,1]C z  . 

Definition 3 [29]. Let ( ) = , ,z l l l  
 
be an optional LNN in L , where the accuracy function ( )A z  of the 

LNN z  is defined as shown: 

( )A z
s

 −
=   (3) 

where , , [0, ]s     and ( ) [ 1,1]A z  − . 

Definition 4 [29]. Let ( )
1 1 11 , ,z l l l  =  and ( )

2 2 22 = , ,z l l l  
 
be two optional LNNs in L . Then, the order 

between 
1z  and 

2z  is given by the following rules: 

(1) If 
1 2( ) ( )C z C z , then 

1 2z z ; 

(2) If 
1 2( ) ( )C z C z= , then 

If 
1 2( ) ( )A z A z , then 

1 2z z ; 

If 
1 2( ) ( )A z A z= , then 

1 2z z= . 

Example 1. Suppose
0 1 6( , , , )L l l l=  is a linguistic term set, and ( )1 6 2 3, ,z l l l=  and ( )2 4 1 1, ,z l l l=  are two 

LNNs in L . Then, we can calculate the values of their score functions and accuracy functions as 

1( ) 0.7222C z = ,
2( ) 0.7778C z = , 

1( ) 0.5A z = , and 
2( ) 0.5A z = . According to Definition 4, it is easy to find 

that
1 2z z . 

Definition 5 [29]. Let 
0 1( , , , )sL l l l=  be a linguistic term set, and ( )

1 1 11 , ,z l l l  =  and ( )
2 2 22 = , ,z l l l   be 

two haphazard LNNs in L . The basic operational laws between the two LNNs are shown as below: 

( )
1 2 1 2 1 2 1 21 2 / / /, ,s s sz z l l l       + − = , (4) 

( )
1 2 1 2 1 2 1 2 1 21 2 / + / + /= , ,s s sz z l l l         − − , (5) 

( ) ( ) ( )( )
1 1 1

1 1 / / /
= , ,

s s s s s s s
z l l l  

  


− −
, where 0  , (6) 

( ) ( ) ( )( )
1 1 1

1 / 1 / 1 /
= , ,

s s s s s s s s
z l l l  



  − − − −
, where 0   (7) 

It is easy to prove the following operational properties of the LNNs, according to Definition 5. 

Let ( )
1 1 11   , ,z l l l  =  and ( )

2 2 22  = , ,z l l l  
 
be any two LNNs in L . Then: 

1 2 2 1= z z z z  , (8) 

1 2 2 1= z z z z  , (9) 

( )1 2 1 2z z z z   =  , where 0  , (10) 

( )1 1 2 1 1 2 1z z z    = + , where 
1 2, 0    ,  (11) 

1 2 1 2

1 1 1z z z
   +

 = , where 
1 2, 0    , (12) 

( )1 2 1 2z z z z
  =  , where 0    (13) 
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2.2. Generalized Partitioned Bonferroni Mean Operators 

Definition 6 [48]. Suppose the non-negative real set  1 2, , , nA a a a=  is divided into t  clusters 

1 2, , , tP P P , which satisfies 
x yP P =  , x ≠ y and 

1

t

r
r

P A
=

= . Then, the partitioned Bonferroni mean (PBM) 

operator is defined as follows: 

( )

1

,

1 2

1 1 1

1 1 1
, , ,

1

r r

p q
h ht

p q p q

n i j

r i jr r
j i

PBM a a a a a
t h h

+

= = =


 
   
   =
   −  

   
 

     (14) 

where , 0p q   and 0p q+  , 
rh  indicates the number of elements in partition 

rP  and 
1

t

r

r

h n
=

= . 

The PBM operator is used to integrate the input arguments of the different clusters, which 

satisfies that the data has inherent connections in the same clusters, but independence in different 

clusters. However, sometimes, some of the input arguments have nothing to do with any other 

argument, that is, it does not exist in any cluster. We can part these arguments and deal with them 

individually. Hence, we sort the input arguments into two groups: F1 contains the relevant 

arguments, and F2 contains the input arguments that are irrelevant to any argument. These easily 

derive 1 2F F =   and 
1 2F F n+ =  where |F1| and |F2| denote the numbers of arguments in F1 

and F2, respectively. According to the upper description, we suppose that the arguments of F1 are 

divided into t  partitions 
1 2, , , tP P P  on the basis of the interrelationship pattern [4]. To address this 

issue, the PBM operator is modified, and the GPBM operator is proposed, as shown in the following. 

Definition 7 [4]. Suppose that the non-negative real set  1 2, , , nA a a a=  is sorted into two groups: F1 and 

F2. In F1, the elements are divided into t  clusters 
1 2, , , tP P P , which satisfies 

x yP P =  , x ≠ y and 

1
1

t

r
r

P F
=

= ; in F2, the elements are irrelevant to any element. Then, the GPBM operator is defined as follows: 

( )
2

1

2 2,

1 2

1 1 1 12

1 1 1 1
, , ,

1

r r

p p

p q
Fh ht

p q p q p

n i j i

r i j ir r
j i

n F F
GPBM a a a a a a

n t h h n F

+

= = = =


  
      −     = +        −    

    
  

      (15) 

where , 0p q   and 0p q+  , |F2| denotes the number of elements in F2, 
rh  indicates the number of 

elements in cluster 
rP  and 2

1

t

r

r

h n F
=

= − . 

Remark 1. If |F2| = 0, we consider the first sum, and if |F2| = n, we consider the last sum. At the same time, 

we have made the convention 
0

0
0

=  (we only need to define 
0

0
; its conventional real value is not important 

here). 

The interpretation of the GPBM operator is detailed by Banerjee et al. in [4], and the GPBM 

operator has the following characteristics: idempotency, monotonicity, and boundedness [4]. 

Based on the characteristics of F2, there are some special cases of GPBM operator, which are 

described as follows [4]: 

(1) When |F2| = 0, all elements belong to the group F1 and are divided into t  clusters. 
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( ) ( )

1

, ,

1 2 1 2

1 1 1

1 1 1
, , , , , ,

1

r r

p q
h ht

p q p q p q

n i j n

r i jr r
j i

GPBM a a a a a PBM a a a
t h h

+

= = =


  
  = =
  −  

  

      

It is simplified as the PBM operator described in Formula (15). 

(2) When |F2| = 0 and 1t = , all elements belong to the same cluster. 

( ) ( )

1 1

, ,

1 2 1 2

1 1 1 1

1 1 1 1
, , , , , ,

1 1

r r

p q p q
h h n n

p q p q p q p q

n i j i j n

i j i jr r
j i j i

GPBM a a a a a a a BM a a a
h h n n

+ +

= = = =
 

      
      = = =
      − −      

      

   
   

It becomes the BM operator [44]. 

(3) When |F2| = n, all elements are independent. 

( )
2

1 1

,

1 2

1 12

1 1
, , ,

F np p
p q p p

n i i

i i

GPBM a a a a a
F n= =

   
= =    

  
     

It is simplified as the power root arithmetic mean operator [4]. 

3. The Linguistic Neutrosophic GPBM Operators 

In this section, we will construct the LNGPBM operator from the GPBM operator and LNNs. 

Moreover, with respect to the different weights of different attributes in real life, we will propose the 

corresponding weighted operators, and call it the LNGWPBM operator. They are defined as follows. 

3.1. The LNGPBM Operator 

Definition 8. Let
1 2, ,z z and 

nz  be LNNs, which are sorted into two groups: F1 and F2. In F1, the elements 

are divided into t  clusters 
1 2, , , tP P P , which satisfies 

x yP P =  , x ≠ y and 
1

1

t

r
r

P F
=

= ; in F2, the elements 

are irrelevant to any element. The LNGPBM operator of the LNNs 
1 2, ,z z and 

nz  is defined as follows: 

( )
2

1

2 2,

1 2
1 1 1 1

2

1 1 1 1
, , ,

1

r r

p p

p q Fh ht
p q p q p

n i j i
r i j i

r r j i

n F F
LNGPBM z z z z z z

n t h h n F

+

= = = =


  
     −
  =             −       

  

  (16) 

where ( )= , ,
i i iiz l l l    and  , , 0,i i i s    ( 1,2, , )i n= ; , 0p q   and 0p q+  ; |F2| denotes the 

number of elements in F2, 
rh  indicates the number of elements in cluster 

rP  and 2

1

t

r

r

h n F
=

= − . 

Theorem 1. Let 
1 2, ,z z and 

nz  be LNNs, where ( )= , ,
i i iiz l l l    and  , , 0,i i i s    ( 1,2, , )i n= . 

The synthesized result of the LNGPBM operator of the LNNs 
1 2, ,z z and 

nz  is still a LNN, which is shown 

as follows: 
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( )

( ) ( )( )

( )

1

22
11

2 2

1 1

,

1 2

1 1 1 1 /

1 1 1

, , , ,
F pn F

nn
Ft Fp t

p
p q i

r i

p

p q

p q

n

s H s

s s H

LNGPBM z z z l

l







−

+

= =

+

   
     
        
      − − − −                               


− − − −







=  


  



       

( )( ) ( ) ( )( )

1

2 22 2
1 11 1

2 22 2

1 1 1 1

1 1 / 1 1 1 1 1 /

,
F Fn F n Fp

n nn n
F Fpt tF Ft t

p p
p q

i i

r i r i

s s s H s

l

 

− −

+

= = = =

  
        
                

                 − − − − − − − −
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Proof.  

According to Formula (16), first of all, we can part two steps: the processing of F1 and F2, and 

then combine them to prove. 

(i) The processing of F1: 

Based on the operational rules of LNNs, we can get 
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Then, we can calculate the average satisfaction of the elements in 
rP  except 

iz : 
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and the conjunction of the satisfaction of element 
iz  with the average satisfaction of the rest of 

elements in 
rP : 
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Then, the satisfaction of the interrelated elements of 
rP  is: 
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So, the average satisfaction of all of the elements of the t  clusters is: 
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(ii) The processing of F2: 

The average satisfaction of all the elements that are irrelevant to any element is: 
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That proves that Formula (17) is kept. Then, we prove that the aggregated result of Formula (17) 
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Firstly, we prove 0 1H  , 0 1H    and 0 1H  . 

Since  , , 0,j j j s     and 0q  , we can get ( )0 1 / 1
q

j s −  , ( )0 1 1 / 1
q

j s − −   and 

( )0 1 1 / 1
q

j s − −  . Owing to 0rh  , the following inequalities are established: 

( )( )

1

1

1

0 1 1 / 1

r
r

h
h

q

j

j
j i

s

−

=


 
  − − 
 
 
 

 , ( )( )

1

1

1

0 1 1 1 / 1

r
r

h
h

q

j

j
j i

s

−

=


 
  − − − 
 
 
 

 , and 

( )( )

1

1

1

0 1 1 1 / 1

r
r

h
h

q

j

j
j i

s

−

=


 
  − − − 
 
 
 

 . 

 

According to 0p  , it is easy to obtain the below inequality: 0 1H  , 0 1H    and 

0 1H  . 
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Besides, on the basis of the upper inequalities, we can get: 
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which can derive directly: 
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Therefore, Theorem 1 is kept if some of the partitions only contain one element. □ 

In the following, we will demonstrate the desired properties of the proposed LNGPBM operator: 
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   





=  







( )( ) ( )( )

1

2
1

2

1

1 1 / 1 1 /

n F p

n Ft t
p p n

r

s s 

−

=

 
  

    
  − − − −  
             

 









 



  
 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

1 1 1

2 2 2 2 2 2

1 1 / 1 / 1 1 1 / 1 1 / 1 1 1 / 1 1 /

, ,
n F F n F F n F Fp p p

p p p p p pn n n n n ns s s s s s s s s s s

l l l

     

− − −             
             − − − − − − − − − − − − − − −
                          

             

 
 
 =  
 
 
 
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( )( )( ) ( )( )( ) ( )( )( ) ( )( ) ( )( ) ( )( )

( )

1 1 1 1 1 1

/ 1 / 1 /1 1 / 1 1 1 / 1 1 1 /

, , , ,

, ,

p p pp p pp p p p p ps s s s s s s ss s s s s s s s

l l l l l l

l l l

    

  

− − − −− − − − − − − − − −

   
   =  =  

  
  

=  

  . 

□ 

(2) Monotonicity: If ( ), ,
i i iiz l l l  = ( )1,2, ,i n=  and ( ), ,

i i iiy l l l  = ( )1,2, ,i n=  are any two 

sets of LNNs; they satisfy the condition 
i i  , 

i i   and 
i i  , then 

( ) ( ), ,

1 2 1 2, , , , , ,p q p q

n nLNGPBM z z z LNGPBM y y y . 

Proof. Suppose that ( ) ( ),

1 2, , , , ,p q

nLNGPBM z z z z l l l  = =  and 

( ) ( ),

1 2, , , , ,p q

nLNGPBM y y y y l l l  = = , then: 

( ) ( )( )

22

2 2

1

11

1 1

1 1 1 1 /

F pn F

nn
Ft Fp t p

p q
i

r i

s H s 

−

+

= =

   
                = − − − −                           

  ,   

( ) ( )( )

22

2 2

1

11

1 1

1 1 1 1 /

F pn F

nn
Ft Fp t p

p q
i

r i

s H s 

−

+

= =

   
                = − − − −                           

  ,  

( ) ( )( )

22

2 2

1

11

1 1

1 1 1 1 1 /

Fn F p

nn
Fpt Ft

p
p q

i

r i

s s H s 

−

+

= =

 
   
       = − − − − − −                     

 

  ,  

( ) ( )( )

22

2 2

1

11

1 1

1 1 1 1 1 /

Fn F p

nn
Fpt Ft

p
p q

i

r i

s s H s 

−

+

= =

 
   
       = − − − − − −                     

 

  ,  

( ) ( )( )

22

2 2

1

11

1 1

1 1 1 1 1 /

Fn F p

nn
Fpt Ft

p
p q

i

r i

s s H s 

−

+

= =

 
   
       = − − − − − −                     

 

  ,  

( ) ( )( )

22

2 2

1

11

1 1

1 1 1 1 1 /

Fn F p

nn
Ft Fp t p

p q
i

r i

s s H s 

−

+

= =

 
   
       = − − − − − −                   

 

  .  

In order to prove this property, we need to compute their score function values ( )C z  and ( )C y

, and their accuracy values ( )A z  and ( )A y  to compare their synthesized result, i.e., z y . Firstly, 

on the basis of the condition 
i i  , 

i i  , and 
i i  , we can get the compared result of their 

truth-membership degrees, indeterminacy-membership degrees, and falsity-membership degrees, 

respectively. 

(i) The comparison of the truth-membership degrees: 

Based on 
i i  , we can get: 
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( ) ( )( ) ( ) ( )( )

1 1

1 1

1 1

1 1 1 1

1 / 1 1 / 1 / 1 1 /

r r

r r
r r r r

h h

h h
h h h h

q qp p

i j i j

i j i j
j i j i

H s s s s H    

− −

= = = =
 

         
            
            = − − −  − − − =
               

            
         

   

 

( ) ( )

2 2

1 1

1 1

1 1 1 1

n F n F

n n
t tp pt t

p q p q

r r

H H 

− −

+ +

= =

   
          − −  − −                  

   

   

and ( )( ) ( )( )

2 2

2 22 2

1 1

1 1

1 / 1 /

F F

n n
F FF F

p p

i i

i i

s s 
= =

   
      

−  −         
      

   

 

.

 

 

In accordance with the upper two inequalities, we have: 

( ) ( )( ) ( ) ( )( )

22 2

2 22

1

11 1

1 1 1 1

1 1 1 1 / 1 1 1 1 /

F pn F n F

nn n
F Ft tFp pt tp p

p q p q
i i

r i r i

s H s s H s  

− −

+ +

= = = =

     
                          − − − −  − − − −                                            

   

2

2

1

1

F p

n
F

  
   

        
       

  

  
 

That is,   . 

(ii) The comparision of indeterminacy-membership degrees and falsity-membership degrees, 

respectively: 

Based on 
i i   and 

i i  , we can also obtain    and   ; this process is similar to 

the process of the truth-membership degrees. 

Thus, it can be obtained that 
2 2

( ) ( )
3 3

s s
C z C y

s s

     + − − + − −
=  = . In the following, we discuss 

two cases. 

(i) If ( ) ( )C z C y , then z y , according to Definition 2. 

(ii) If ( ) ( )C z C y= , then ( ) ( )     − − = − − . Since    −  −  in the light of    and   , 

now we assume    −  − , then   , which is in contradiction with the previous proof 

  . So, we can conclude that    − = − . That is, ( ) ( )A z A y
s s

   − −
= = = , which testifies 

z y= . 

In conclusion, the synthesized result z y , which explains: 

( ) ( ), ,

1 2 1 2, , , , , ,p q p q

n nLNGPBM z z z LNGPBM y y y   

□ 

(3) Boundedness: Let ( ), ,
i i iiz l l l  = ( )1,2, ,i n=  be an arbitrary set of LNNs, then: 

( ),

1 2, , ,p q

i n i
i i

min z LNGPBM z z z max z     

Proof. Since 
i i

i
z min z , according to the monotonicity and idempotency of the proposed LNGPBM 

operator, we can obtain the following result: 

( ) ( ), ,

1 2, , , , , ,p q p q

n i i i i
i i i i

z z z min z min zLNGPBM minLNGPB z n zM mi =    

Similarly, we can obtain the corresponding result for i
i

max z : 

( ) ( ), ,

1 2, , , , , ,p q p q

n i i i i
i i i i

z z z max z max zLNGPBM maxLNGPB z x zM ma =    
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Therefore, ( ),

1 2, , ,p q

i n i
i i

min z LNGPBM z z z max z  . □ 

Based on the character of F2, some special cases are discussed about the LNGPBM operator, and 

shown in the following. 

(1) When |F2| = 0, all arguments belong to the group F1, and are divided into t  clusters; then, the 

proposed LNGPBM operator is simplified as the following form: 

( ) ( )

1

, ,

1 2 1 2
1 1 1

1 1 1
, , , , , ,

1

r r
p q

h ht
p q p q p q

n i j n
r i j

r r j i

LNGPBM z z z z z LNPBM z z z
t h h

+

= = =


  
  =     =

  −
  

   

The LNPBM is called the linguistic neutrosophic PBM operator. 

(2) When |F2| = 0 and 1t = , all arguments belong to the same cluster, i.e., hr = n; then, the proposed 

LNGPBM operator becomes the following form: 

( ) ( )

1 1

, ,

1 2 1 2
1 1 1 1

1 1 1 1
, , , , , ,

1 1

r r
p q p q

h h n n
p q p q p q p q

n i j i j n
i j i j

r r j i j i

LNGPBM z z z z z z z LNBM z z z
h h n n

+ +

= = = =
 

      
      =    =    =

      − −
      

   

The LNBM is called the linguistic neutrosophic BM operator. 

(3) When |F2| = n, there is no element in group F1 and all elements are independent; then, the 

proposed LNGPBM operator reduces to the following form: 

( ) ( )
2

1 1

,

1 2 1 2
1 1

2

1 1
, , , , , ,

F p n p
p q p p p

n i i n
i i

LNGPBM z z z z z LNPRAM z z z
F n= =

   
=  =  =       

   

The LNPRAM is called the linguistic neutrosophic power root arithmetic mean operator. 

Moreover, we can also get some special cases by distributing different values to the parameters 

p and q. 

(1) When 0q → , the proposed LNGPBM operator becomes the LNPRAM operator, which was 

described in the previous discussion. Since there is no inner connection in group F1, all of the 

elements are independent. 

(2) When 1p =  and 0q → , the proposed LNGPBM operator reduces to the linguistic 

neutrosophic arithmetic mean (LNAM) operator, which is shown as follows: 

( ) ( )

1

1, 0

1 2 1 2
1 1

1 1
, , , , , ,

n np
p q p

n i i n
i i

LNGPBM z z z z z LNAM z z z
n n

= →

= =

 
=  =  = 

 
  ) 

(3) When 2p =  and 0q → , the proposed LNGPBM operator is transformed into the linguistic 

neutrosophic square root arithmetic mean (LNSRAM) operator, which is shown as follows: 

( ) ( )

1

2
2, 0 2

1 2 1 2
1

1
, , , , , ,

n
p q

n i n
i

LNGPBM z z z z LNSRAM z z z
n

= →

=

 
=  = 

 
.  

(4) When 1p q= = , the proposed LNGPBM operator is simplified as the simplest form of the 

LNGPBM operator, which is shown as follows: 

( )
2

1

2

2 21, 1

1 2
1 1 1 1

2

1 1 1 1
, , ,

1

r r
Fh ht

p q

n i j i
r i j i

r r j i

n F F
LNGPBM z z z z z z

n t h h n F

= =

= = = =


 
     −
  =            −     

 

   

It is often used to simplify the calculation in a problem. 
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3.2. The LNGWPBM Operator 

In Definitions 8, we assume that all the input arguments have the same position. However, in 

many realistic decision-makings, every input argument may have different importance. Accordingly, 

we give different values to the weights of input arguments, and propose the weighted form of the 

LNGPBM operator. Let the weight of input argument ( ), ,
i i iiz l l l  = ( )1,2, ,i n=  be

i , where

 0,1i   and 
1

1
n

i

i


=

= . The weighted form of the LNGPBM operator is shown in the following. 

Definition 9. Let
1 2, ,z z and 

nz be LNNs that are sorted into two groups: F1 and F2. In F1, the elements are 

divided into t  clusters 
1 2, , , tP P P , which satisfy 

x yP P =  , x ≠ y and 
1

1

t

r
r

P F
=

= ; in F2, the elements are 

irrelevant to any element. The weighted form of the LNGPBM operator of the LNNs 
1 2, ,z z and 

nz  is 

defined as follows: 

( )
2

2

1

2 2,

1 2
1 1 1 1

1 1 1

1 1 1 1
, , ,

r r

r r

p p

p q

Fh ht
p q p q p

n i i j j i ih h Fr i j i
j i

i j i
i j i

j i

n F F
LNGWPBM z z z z z z

n t n
  

  

+

= = = =


= = =


  
               −     =                         

    
  

  

  
(18) 

where ( )= , ,
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Proof. Along the lines of Theorem 1, we also process the groups F1 and F2 separately, and then 
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Hence, the following equation is established in the light of the upper: 
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Since the expression H  is too long, we suppose: 
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(ii) The processing of F2: 

Based on the operational laws of LNNs, it is easy to obtain: 

( )( ) ( )( ) ( )( )
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2 2 22 2 2
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i i i
i i ii i i

i i i

F
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 
 

  =  =
 

   
 


   

Finally, we compute the synthesized result of the LNGWPBM operator: 
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That proves that Formula (19) is kept. Then, we prove that the aggregated result of Formula (19) 

is an LNN. It is easy to prove the following inequalities: 
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Firstly, we prove 0 1K  , 0 1K  , and 0 1H  . 

Based on the previous conditions such as  0,j s  , 0p  , 0q  ,  0,1i  , and so on, we can 

get ( )( )0 1 / 1
ip

i s


 −  and ( )( ) 1

1
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0 1 / 1
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r jj

j
j i

h
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j

j
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s
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

=
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  − 
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 
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 , which can deduce the following inequality: 
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h
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j
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  

 

 .   

So, we can easily obtain ( )( ) ( )( )
1

1

1

1

1 1

0 1 1 1 / 1 1 / 1
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j
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    

   

  , i.e., 

0 1K  . 

Similarly, we also have 0 1K   and 0 1H  . 
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Therefore, Theorem 2 is kept. □ 

In the following, we demonstrate the desired properties of the proposed LNGWPBM operator: 

(1) Monotonicity: If ( ), ,
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i i  , then: 
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In order to prove this property, we need to compute their score function values ( )C z  and ( )C y

, and their accuracy values ( )A z  and ( )A y  to compare their synthesized result, i.e., z y . Firstly, 

on the basis of the condition
i i  , 

i i   and 
i i  , we can get the compared result of their 

truth-membership degrees, indeterminacy-membership degrees, and falsity-membership degrees, 

respectively. 

(i) The comparison of the truth-membership degrees: 

Based on 
i i  , we can get: 
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   

    

and ( )( ) ( )( )

2 2

2 22 2
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F F
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      

   

  .  

In accordance with the upper two inequalities, we have: 

( ) ( )( )

22

22

1

1

11

1 1

1 1 1 1 /

F
i

i

i

F pn F

nn
Ft p t p

p q
i

r i

s K s



 

=

−

+

= =
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   

That is,   . 

(ii) The comparison of indeterminacy-membership degrees and falsity-membership degrees, 

respectively: 

Based on 
i i   and 

i i  , we can also obtain    and   , which is similar to the 

process of the truth-membership degrees. 

Thus, it can be obtained that 
2 2

( ) ( )
3 3

s s
C z C y

s s

     + − − + − −
=  = . In the following, we discuss 

two cases. 

(i) If ( ) ( )C z C y , then z y  according to Definition 2. 

(ii) If ( ) ( )C z C y= , then ( ) ( )     − − = − − . Since    −  −  in the light of    and   , 

now we assume    −  − , then   , which is in contradiction with the previous proof

  . So, we can conclude that    − = − . That is ( ) ( )A z A y
s s

   − −
= = = , which testifies 

z y= . 

In conclusion, the synthesized result is z y , which explains 

( ) ( ), ,

1 2 1 2, , , , , ,p q p q

n nLNGWPBM z z z LNGWPBM y y y . □ 

(2) Boundedness: Let ( ), ,
i i iiz l l l  = ( )1,2, ,i n=  be any set of LNNs, then: 

( ) ( ) ( ), , ,

1 2, , , , , , , , ,p q p q p q

i i i n i i i
i i i i i i

min z min z min z z z z max zLNGWPBM LNGWPBM LNGWPB m xM a z max z  .  

Based on the monotonicity property of the LNGWPBM operator, it is easy to prove, and the 

detailed process is omitted here. 

Based on the character of F2, some special cases are discussed about the LNGPBM operator, as 

shown in the following. 

(1) When |F2| = 0, all of the arguments belong to the group F1, and are divided into t  partitions; 

then, the proposed LNGWPBM operator is simplified as the linguistic neutrosophic weighted 

PBM (LNWPBM) operator: 

( ) ( )
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  
  

  
  

 

   

(2) When |F2| = 0 and 1t = , all of the arguments belong to the same partition, i.e., hr= n; then, the 

proposed LNGWPBM operator is translated into the linguistic neutrosophic normalized 

weighted BM (LNNWBM) operator: 
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(3) When |F2| = n, there is no element in group F1 and all of the elements are independent; then, the 

proposed LNGWPBM operator reduces to the linguistic neutrosophic power root weighted 

mean (LNPRWM) operator: 

( ) ( )
2

2
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1 2 1 2
1 1 1
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1 1
, , , , , ,

p p

F n n p
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   

    =  =  =  =      
   

  


   

Moreover, we can also get some special cases by distributing different values to the parameters 

p and q. 

(1) When 0q → , the LNGWPBM operator is translated into the LNPRWM operator, as described 

in the previous discussion. Since there are no inner connections in group F1, all of the elements 

are unrelated. 

(2) When 1p =  and 0q → , the LNGWPBM operator becomes the LNNWAA operator, as defined 

by Fang and Ye [29]: 

( ) ( )

1

1, 0

1 2 1 2
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, , , , , ,
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p q p
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LNGWPBM z z z z z LNNWAA z z z = →

= =

 
=  =  = 

 
.  

(3) When 2p =  and 0q → , the LNGWPBM operator is transformed into the linguistic 

neutrosophic square root weighted mean (LNSRWM) operator, which is shown as follows: 

( ) ( )

1 1

2
2, 0 2
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, , , , , ,
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= =
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   
.  

(4) When 1p q= = , the LNGWPBM operator is simplified as the simplest form of the LNGWPBM 

operator, which is shown as follows: 
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It is often used to simplify the calculation in a problem with different weights. 

4. A Novel MAGDM Method by the Introduced LNGWPBM Operator 

In this section, we develop a novel MAGDM method based on the proposed LNGWPBM 

operator to address the kind of problems where the attributes are sorted into two groups: one group 

contains several clusters where the attributes are relevant in same cluster, but independent in 

different clusters, and another contains the attributes that are irrelevant to any other attribute. Firstly, 

we put this kind of problem in a nutshell. Then, we detail the procedures of the proposed method to 

solve the above problems. 

Suppose  1 2, , , mX X X X=  is a set of alternatives, and  1 2, , , nG G G G=  is a set of 

attributes, j  is the weight of the attribute ( )1,2, ,jG j n= , where 0 1j  ( )1,2, ,j n= , 

1

1
n

j

j


=

= . Experts kD ( )1,2, ,k d=  can use the LNNs to judge the alternative 
iX  for attribute jG  

and denote it as ( ), ,k k k
ij ij ij

k

ijz l l l
  

=  in a linguistic term set 
0 1( , , , )sL l l l= , which meets

 , , 0,k k k

ij ij ij s    , and s  is an even number. The experts’ weight vector is ( )1 2, , ,
T

d   =

satisfying with 0 1k  ( )1,2, ,k d= , 
1

1
d

k

k


=

= . Thus, we form the evaluation values given by 

expert 
kD  into a decision matrix 

k k

ij m n
Z z


 =   ( )1,2, ,k d= . 
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We further hypothesize that the set of attributes  1 2, , , nG G G G=  is sorted into two groups: 

F1 and F2. In F1, the attributes are divided into t  clusters 
1 2, , , tP P P , which satisfies 

x yP P =  , x ≠ 

y and 
1

1

t

r
r

P F
=

= . It means that the group F1 contains several clusters, where the attributes are relevant 

in same cluster, but independent in different clusters; in F2, the attributes are irrelevant to any 

attribute. Afterwards, we decide the priority of alternatives according to the information provided 

above. 

The procedures of the proposed method are designed as follows. 

Step 1. Normalize the LNNs. 

Since the attributes generally fall into two types, the corresponding attribute values have the 

two types. In order to achieve normalization, we generally transform the cost attribute values into 

benefit attribute values. First of all, we assume that 
k k

ij m n
Y y


 =    is the normalized matrix of 

k k

ij m n
Z z


 =   , where ( ), ,k k k

ij ij ij

k

ijy l l l
  

= , 1 i m  , 1 j n  , and 1 k d  . Then, the standardizing 

method is described in the following [7]: 

(1) For benefit attribute values: 

( ), ,k k k
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ij ijy z l l l
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= =   (20) 

(2) For cost attribute values: 

( ), ,k k k
ij ij ij
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ij ij s s s
y z l l l

  − − −
= =  (21) 

Step 2. Calculate the collective decision information by the LNGWPBM operator fixed with |F2| = 0 

and 1t =  (i.e., the LNNWBM operator discussed in Section 3.2), because there is no need to 

divide the experts into different clusters. Then, we can get the unfolding form: 
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 
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(22) 

where 1 i m  , 1 j n  , , 0p q  , and 0p q+  . 

Step 3. Compute the comprehensive value of each alternative based on the LNGWPBM operator; the 

unfolding form is detailed in the following: 
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(23) 

where 1 i m  , , 0p q  , and 0p q+  ; |F2| denotes the number of attributes in F2, 
rh  indicates 

the number of attributes in cluster 
rP , and 2

1

t

r

r

h n F
=

= − . 

Step 4. Calculate the score value ( )iC y  and the accuracy value ( )iA y  of the synthesized evaluation 

value iy  in the light of Definitions 2 and 3, where 1 i m  . 

Step 5. Compare the obtained score values ( )1C y , ( )2C y , …, and ( )mC y based on Definition 4. The 

larger the value of ( )iC y , the more front the order of alternative 
iX , where 1 i m  . If the 

value of ( )iC y  is the same, then compare the obtained accuracy values ( )1A y , ( )2A y , …, 

and ( )mA y  to determine the ranking orders of alternatives. 

Step 6. Ends. 

5. A Practical Application on Selecting Green Suppliers 

In this section, we use a realistic example to illustrate the effectiveness and advantage of the 

proposed MAGDM method by the proposed LNGWPBM operator. 

Example 2. The example is about the selection of green suppliers. A car manufacturer wants to choose parts, 

and there are four alternative green suppliers expressed by  1 2 3 4, , ,X X X X , which can be seen as evaluation 

objects. The car manufacturer establishes seven criteria to assess the four green suppliers and the measured 

evaluation criteria  1 2 3 4 5 6 7, , , , , ,G G G G G G G G=  are shown as follows: price (
1G ), green degree (

2G ), quality 

(
3G ), service level (

4G ), environment for development (
5G ), response time (

6G ), and innovation ability (
7G ). 

Their weight vector is ( )0.1,0.2,0.2,0.1,0.1,0.2,0.1
T

 = . Since the green degree shows the influence degree of 

the green suppliers on the environment and resources, the criterion 
2G  has nothing to do with the other criteria. 

Besides, according to the interrelationship patterns, we are able to divide the other evaluation criteria into three 

partition structures:  1 1 3,P G G=
,
  2 4 6,P G G=

,
 and  3 5 7,P G G= . The car manufacturer assembled a panel 

of three related principals to conduct field explorations and surveys in depth, so that the optimal green supplier 
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can be selected. We use 
kD ( )1,2,3k =  to denote each related principal and their weight vector 

( )0.4,0.3,0.3
T

 = . On the basis of their investigation, professional knowledge and experience, every related 

principal 
kD ( )1,2,3k =  needs to assess each green supplier 

iX ( )1,2,3,4i =  under each evaluation criterion 

jG ( )1,2, ,7j =  by using scores or linguistic information directly. Suppose the linguistic term set 

 0 1 2 3 4 5 6 7 8, , , , , , , ,L l l l l l l l l l= , which expresses, from left to right: extremely low, very low, low, slightly low, 

medium, slightly high, high, very high, and extremely high, respectively. The corresponding relationships 

between score and LV are detailed in Table 1 [7]. Therefore, we can unify evaluation information with LNNs to 

depict the fuzziness and uncertainty of evaluation criteria. Finally, these related principals’ evaluation 

information constructs the three following decision matrices [ ]k k

ij m nZ z = ( )1,2,3k =  described in Tables 2–4, 

where k

ijz  can be depicted as ( ), ,k k k
ij ij ij

l l l
  

 . 

Table 1. The corresponding relationships between score and linguistic values (LV). 

Score 0~19 20~29 30~39 40~49 50~59 60~69 70~79 80~89 90~100 

Evaluation  extremely low very low low slightly low medium slightly high high very high very high 

Linguistic value 0l  
1l  

2l  
3l  

4l  
5l  

6l  
7l  

8l  

Table 2. Evaluation matrix 1Z  given by the related principal 
1D . 

 1G  
2G  

3G  
4G  5G  6G  

7G  

1X  ( )4 4 3, ,l l l  ( )3 5 1, ,l l l  ( )6 3 4, ,l l l  ( )7 1 2, ,l l l  ( )4 1 3, ,l l l  ( )2 1 3, ,l l l  ( )4 4 3, ,l l l  

2X  ( )4 3 2, ,l l l  ( )5 4 2, ,l l l  ( )5 3 2, ,l l l  ( )6 3 1, ,l l l  ( )5 4 3, ,l l l  ( )2 7 2, ,l l l  ( )2 4 1, ,l l l  

3X  ( )5 1 2, ,l l l  ( )3 1 1, ,l l l  ( )7 1 2, ,l l l  ( )7 1 2, ,l l l  ( )4 6 1, ,l l l  ( )4 3 3, ,l l l  ( )1 4 1, ,l l l  

4X  ( )3 4 3, ,l l l  ( )6 3 3, ,l l l  ( )6 4 2, ,l l l  ( )5 1 1, ,l l l  ( )5 2 2, ,l l l  ( )3 1 2, ,l l l  ( )4 6 3, ,l l l  

Table 3. Evaluation matrix 2Z  given by the related principal 
2D . 

 1G  
2G  

3G  
4G  5G  6G  

7G  

1X  ( )3 5 2, ,l l l  ( )3 1 4, ,l l l  ( )5 2 3, ,l l l  ( )6 2 1, ,l l l  ( )5 1 3, ,l l l  ( )3 1 2, ,l l l  ( )3 2 3, ,l l l  

2X  ( )5 1 2, ,l l l  ( )4 4 3, ,l l l  ( )6 1 1, ,l l l  ( )7 2 2, ,l l l  ( )7 4 4, ,l l l  ( )3 3 4, ,l l l  ( )3 1 1, ,l l l  

3X  ( )4 3 1, ,l l l  ( )3 5 1, ,l l l  ( )7 4 3, ,l l l  ( )5 3 1, ,l l l  ( )6 1 2, ,l l l  ( )4 1 2, ,l l l  ( )2 3 3, ,l l l  

4X  ( )3 4 3, ,l l l  ( )5 2 2, ,l l l  ( )7 2 4, ,l l l  ( )7 3 4, ,l l l  ( )4 2 1, ,l l l  ( )2 3 4, ,l l l  ( )4 4 3, ,l l l  

Table 4. Evaluation matrix 3Z  given by the related principal 
3D . 

 1G  
2G  

3G  
4G  5G  6G  

7G  

1X  ( )4 1 2, ,l l l  ( )4 2 3, ,l l l  ( )6 3 2, ,l l l  ( )6 1 4, ,l l l  ( )6 3 1, ,l l l  ( )3 4 5, ,l l l  ( )4 1 2, ,l l l  

2X  ( )5 3 4, ,l l l  ( )5 4 3, ,l l l  ( )5 1 2, ,l l l  ( )5 3 5, ,l l l  ( )5 3 3, ,l l l  ( )2 1 2, ,l l l  ( )3 2 1, ,l l l  

3X  ( )3 1 2, ,l l l  ( )3 1 1, ,l l l  ( )7 1 3, ,l l l  ( )5 2 2, ,l l l  ( )4 1 1, ,l l l  ( )3 2 3, ,l l l  ( )2 2 1, ,l l l  

4X  ( )4 1 4, ,l l l  ( )4 2 3, ,l l l  ( )5 3 5, ,l l l  ( )6 1 5, ,l l l  ( )7 2 4, ,l l l  ( )3 1 2, ,l l l  ( )3 2 1, ,l l l  

5.1. The Evaluation Procedures 

[Step 1] Normalize the LNNs in the evaluation matrix. Since the price (
1G ) and the response time (

6G ) belong to the cost attributes, we need to transform the corresponding LNNs of the 

attributes 
1G  and 

6G  into the benefit attributes values according to Formula (21) in the 

evaluation matrices kZ ( )1,2,3k = . The normalized matrices are 
4 7

k k

ijY y


 =   ( )1,2,3k =
, 

which are displayed in Tables 5–7. 
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Table 5. The normalized matrix 1Y . 

 1G  
2G  

3G  
4G  5G  6G  

7G  

1X  ( )4 4 5, ,l l l  ( )3 5 1, ,l l l  ( )6 3 4, ,l l l  ( )7 1 2, ,l l l  ( )4 1 3, ,l l l  ( )6 7 5, ,l l l  ( )4 4 3, ,l l l  

2X  ( )4 5 6, ,l l l  ( )5 4 2, ,l l l  ( )5 3 2, ,l l l  ( )6 3 1, ,l l l  ( )5 4 3, ,l l l  ( )6 1 6, ,l l l  ( )2 4 1, ,l l l  

3X  ( )3 7 6, ,l l l  ( )3 1 1, ,l l l  ( )7 1 2, ,l l l  ( )7 1 2, ,l l l  ( )4 6 1, ,l l l  ( )4 5 5, ,l l l  ( )1 4 1, ,l l l  

4X  ( )5 4 5, ,l l l  ( )6 3 3, ,l l l  ( )6 4 2, ,l l l  ( )5 1 1, ,l l l  ( )5 2 2, ,l l l  ( )5 7 6, ,l l l  ( )4 6 3, ,l l l  

Table 6. The normalized matrix 2Y . 

 1G  
2G  

3G  
4G  5G  6G  

7G  

1X  ( )5 3 6, ,l l l  ( )3 1 4, ,l l l  ( )5 2 3, ,l l l  ( )6 2 1, ,l l l  ( )5 1 3, ,l l l  ( )5 7 6, ,l l l  ( )3 2 3, ,l l l  

2X  ( )3 7 6, ,l l l  ( )4 4 3, ,l l l  ( )6 1 1, ,l l l  ( )7 2 2, ,l l l  ( )7 4 4, ,l l l  ( )5 5 4, ,l l l  ( )3 1 1, ,l l l  

3X  ( )4 5 7, ,l l l  ( )3 5 1, ,l l l  ( )7 4 3, ,l l l  ( )5 3 1, ,l l l  ( )6 1 2, ,l l l  ( )4 7 6, ,l l l  ( )2 3 3, ,l l l  

4X  ( )5 4 5, ,l l l  ( )5 2 2, ,l l l  ( )7 2 4, ,l l l  ( )7 3 4, ,l l l  ( )4 2 1, ,l l l  ( )6 5 4, ,l l l  ( )4 4 3, ,l l l  

Table 7. The normalized matrix 3Y . 

 1G  
2G  

3G  
4G  5G  6G  

7G  

1X  ( )4 7 6, ,l l l  ( )4 2 3, ,l l l  ( )6 3 2, ,l l l  ( )6 1 4, ,l l l  ( )6 3 1, ,l l l  ( )5 4 3, ,l l l  ( )4 1 2, ,l l l  

2X  ( )3 5 4, ,l l l  ( )5 4 3, ,l l l  ( )5 1 2, ,l l l  ( )5 3 5, ,l l l  ( )5 3 3, ,l l l  ( )6 7 6, ,l l l  ( )3 2 1, ,l l l  

3X  ( )5 7 6, ,l l l  ( )3 1 1, ,l l l  ( )7 1 3, ,l l l  ( )5 2 2, ,l l l  ( )4 1 1, ,l l l  ( )5 6 5, ,l l l  ( )2 2 1, ,l l l  

4X  ( )4 7 4, ,l l l  ( )4 2 3, ,l l l  ( )5 3 5, ,l l l  ( )6 1 5, ,l l l  ( )7 2 4, ,l l l  ( )5 7 6, ,l l l  ( )3 2 1, ,l l l  

[Step 2] Calculate the collective decision information by the LNNWBM operator in Formula (22). In 

order to reduce the complexity of computing, we fix 1p q= = . 

As an example, we can calculate the collective decision value 
11y , and the below is its calculative 

process: 

( ), 1 2 3

11 11 11 11, ,p qy LNNWBM y y y= =  

( )( ) ( )( ) ( ) ( )

1

1 12

1 1
3 3 3

11 11 11 11

1 1 1

1 1 1 1 / 1 1 / 1 1 1 / 1 /

,

k k

k h k hk h k h

k h h
h k h k

s s s s s s s

l l

 

   
   

− −

= = =
 

      
         
                −  − − − − −  − −  − − −      
            

                 
      

=

   ( ) ( )

1 1

12 2

1
3 3 3

11 11

1 1 1

1 1 1 / 1 /

,

k

k hk h

k k h
h k

s s s s

l


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−

= = =

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       
             − −  − − −   
         

               
      

 
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 
 
 
 
 

   
 
 

( )4.5685 4.3818 5.5541, ,l l l=  

 

The other collective decision values
ijy  are shown in the following: 

( )21 3.5344 5.5586 5.2871, ,y l l l= ; ( )31 4.1699 6.4201 6.2805, ,y l l l= ; ( )41 4.9669 4.7841 4.5176, ,y l l l= ;  

( )12 3.4824 2.2406 2.1420, ,y l l l= ; ( )22 4.9669 3.7793 2.3128, ,y l l l= ;  

( )32 3.1424 1.5104 0.7488, ,y l l l= ; ( )42 5.3832 2.0407 2.3634, ,y l l l= ; 

 

( )13 6.0202 2.3634 2.7300, ,y l l l= ; ( )23 5.6366 1.2948 1.3362, ,y l l l= ;  

( )33 7.2512 1.3489 2.3128, ,y l l l= ; ( )43 6.4202 2.7300 3.2926, ,y l l l= ; 

 

( )14 6.7107 0.9833 1.7986, ,y l l l= ; ( )24 6.4202 2.3634 1.9954, ,y l l l= ;  

( )34 6.1444 1.5443 1.3362, ,y l l l= ; ( )44 6.3515 1.1760 2.8122, ,y l l l= ; 
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( )15 5.2700 1.1760 1.9394, ,y l l l= ; ( )25 6.0606 3.4315 3.0331, ,y l l l= ;  

( )35 4.9485 2.0139 0.9833, ,y l l l= ; ( )45 5.7982 1.6889 1.7986, ,y l l l= ; 

 

( )16 5.6872 6.1687 4.5018, ,y l l l= ; ( )26 6.0202 4.0018 5.2871, ,y l l l= ;  

( )36 4.5685 5.9320 5.2005, ,y l l l= ; ( )46 5.6366 6.4201 5.2871, ,y l l l= ; 

 

( )17 3.8863 1.9465 2.3634, ,y l l l= ; ( )27 2.7306 1.9465 0.7488, ,y l l l= ;  

( )37 1.6456 2.7300 1.1760, ,y l l l= ; ( )47 3.8863 3.8560 1.9394, ,y l l l= . 

 

[Step 3] According to Formula (23), we can get the comprehensive value 
iy  of each alternative 

iX

( )1,2,3,4i =  (suppose 1p q= = ); the results are shown below: 

( )1 5.5760 0.0007 0.0016, ,y l l l=
;

( )2 5.4447 0.0019 0.0009, ,y l l l=
; 

( )3 5.0616 0.0036 0.0004, ,y l l l=
;

( )4 5.8684 0.0046 0.0017, ,y l l l=
. 

 

[Step 4] According to Formula (2), we can obtain the score values ( )1C y , ( )2C y , ( )3C y , and

( )4C y  of the comprehensive values 
1y , 

2y , 
3y , and 

4y , respectively, which are displayed 

as follows: 

( )1 0.8989C y = ; ( )2 0.8934C y = ; ( )3 0.8774C y = ; ( )4 0.9109C y = .   

[Step 5] Since ( ) ( ) ( ) ( )4 1 2 3C y C y C y C y   , which is based on Definition 4, we can see that the 

ranking order of the alternatives 
1X ,

2X ,
3X  and 

4X  is: 
4 1 2 3X X X X , where the most 

suitable alternative is 
4X . 

According to the upper computation of the proposed method, we can find that the most suitable 

green supplier is 
4X , the second is 

1X , and the worst is 
2X  or 

3X . So, we recommend that the car 

manufacturer choose green supplier 
4X . 

5.2. Exploration of the Parameters’ Influence 

In the above steps, we fix parameters p  and q  with 1, but we can easily find that the 

parameters p  and q  play an important role in the procedures of the proposed method, based on 

the LNGWPBM operator. When we change the values of parameters p  and q , the integration 

results are usually different, so that the ranking order may be changed accordingly. Table 8 shows 

the ranking orders of the green suppliers when we assign the parameters p  and q  to different 

values. Then, we further explore the influence of parameters p  and q  on the ranking order. 

Table 8. Ranking orders of the green suppliers under different values of the parameters p  and q . 

Parameters p  and q  Score Value 
iy ( )1,2,3,4i =  Ranking Orders 

1p = , 1q =  ( )1 0.8989C y = ; ( )2 0.8934C y = ; ( )3 0.8774C y = ; ( )4 0.9109C y = . 
4 1 2 3X X X X  

1p = , 0.01q =  ( )1 0.8775C y = ; ( )2 0.8796C y = ; ( )3 0.8742C y = ; ( )4 0.8921C y = . 
4 2 1 3X X X X  

0.01p = , 1q =  ( )1 0.9977C y = ; ( )2 0.9969C y = ; ( )3 0.9951C y = ; ( )4 0.9984C y = . 
4 1 2 3X X X X  

1p = , 2q =  ( )1 0.9019C y = ; ( )2 0.8954C y = ; ( )3 0.8765C y = ; ( )4 0.9136C y = . 
4 1 2 3X X X X  

1p = , 5q =  ( )1 0.9009C y = ; ( )2 0.8993C y = ; ( )3 0.8840C y = ; ( )4 0.9140C y = . 
4 1 2 3X X X X  

1p = , 10q =  ( )1 0.9028C y = ; ( )2 0.9073C y = ; ( )3 0.9007C y = ; ( )4 0.9200C y = . 
4 2 1 3X X X X  

2p = , 1q =  ( )1 0.8835C y = ; ( )2 0.8800C y = ; ( )3 0.8694C y = ; ( )4 0.8938C y = . 
4 1 2 3X X X X  

5p = , 1q =  ( )1 0.8792C y = ; ( )2 0.8790C y = ; ( )3 0.8828C y = ; ( )4 0.8872C y = . 4 3 1 2X X X X  

10p = , 1q =  ( )1 0.8914C y = ; ( )2 0.8923C y = ; ( )3 0.9061C y = ; ( )4 0.8999C y = . 
3 4 2 1X X X X  
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2p = , 2q =  ( )1 0.8846C y = ; ( )2 0.8788C y = ; ( )3 0.8634C y = ; ( )4 0.8938C y = . 
4 1 2 3X X X X  

5p = , 5q =  ( )1 0.8734C y = ; ( )2 0.8683C y = ; ( )3 0.8583C y = ; ( )4 0.8780C y = . 
4 1 2 3X X X X  

9p = , 9q =  ( )1 0.8788C y = ; ( )2 0.8781C y = ; ( )3 0.8659C y = ; ( )4 0.8820C y = . 
4 1 2 3X X X X  

10p = , 10q =  ( )1 0.8806C y = ; ( )2 0.8809C y = ; ( )3 0.8677C y = ; ( )4 0.8835C y = . 
4 2 1 3X X X X  

From Table 8, it is easy to find that the bigger the value of parameter p  or q  is, the more 

chaotic the ranking order. Let’s explain with an example. When 1p =  10q = , the ranking order is

4 2 1 3X X X X ; when 5p = 1q = , the ranking order is 
4 3 1 2X X X X ; however, when 

10p = 1q = , the ranking order is 
3 4 2 1X X X X . So, it’s hard to get the regularity of 

arrangements under this situation. However, when the parameters p  and q  are equal and less than 

10, the ranking orders are relatively stable, and the best green supplier is 
4X , and the worst is 

3X . 

Generally, the bigger the values of parameters p  and q , the more complex the calculation 

becomes, and the more the interrelations between the attributes are emphasized. DMs usually choose 

the right parameters p  and q  according to their preferences. However, there is a special case, i.e., 

0q = , and the proposed method cannot reflect inner connections between attributes, which is similar 

to another case such as |F2| = n. Hence, this is not in conformity with this example, and we only allow 

q  to be close to 0 infinitely when discussing. When 1p =  0.01q = , the ranking order is 

4 2 1 3X X X X , and the best green supplier is still 
4X . Therefore, in real decision making, we 

generally recommend that the parameter values be 1 from a practical point of view, which is not only 

intuitionistic and simple, but is also able to consider the inner connections between attributes. 

5.3. Comparison with Other Existing Methods 

In this subsection, in order to illustrate the validity and advantage of the proposed MAGDM 

method related to the LNGWPBM operator, we plan to compare it with Fang and Ye’s MAGDM 

method [29], which is related to the LNNWAA operator, and Liang et al.’s MAGDM method [7], 

which is about improving classical TOPSIS with LNNs based on Example 2; their ranking results are 

displayed in Table 9. 

Table 9. A comparison of the ranking results of the alternatives for different multiple attribute group 

decision-making (MAGDM) methods for Example 2. LNGWPBM: linguistic neutrosophic generalized 

weighted partitioned Bonferroni mean operator. 

Methods Score Values Ranking Orders 

Fang and Ye’s MAGDM method [29] by the LNNWAA operator 
1 0.6403C = , 

2 0.6508C = ,  

3 0.6748C = , 
4 0.6300C = . 

3 2 1 4X X X X  

Liang et al.’s MAGDM method [7] by improving classical TOPSIS No 3 2 1 4X X X X  

Our proposed MAGDM method by the LNGWPBM operator (when 

1p q= = ) 
1 0.8989C = , 

2 0.8934C = , 

3 0.8774C = , 
4 0.9109C = . 

4 1 2 3X X X X  

Our proposed MAGDM method by the LNGWPBM operator (when 

1p = , 0q = and |F2| = 7) 
1 0.6403C = , 

2 0.6508C = ,  

3 0.6748C = , 
4 0.6300C = .

 
3 2 1 4X X X X  

Note: 
iC  is the abbreviation of the score value ( )iC y  of the collective decision information 

iy

( )1,2,3,4i = , respectively. 

(1) Since Fang and Ye’s method [29] by the LNNWAA operator can only address the MAGDM 

problems where the attributes are not associated with each other, in order to complete the 

comparison between it and our proposed MAGDM method by the LNGWPBM operator, we 

suppose that the seven attributes are independent of each other in Example 2, i.e., |F2|=7; then, 

we compare their ranking results. In terms of Table 9, we can find that the ranking order of Fang 

and Ye’s method [29] by the LNNWAA operator is consistent with the one of our proposed 

MAGDM method by the LNGWPBM operator (when 1p = , 0q =  and |F2|=7), which is
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3 2 1 4X X X X . However, the ranking order of Fang and Ye’s method [13] by the LNNWAA 

operator has a great difference from the one of our proposed MAGDM method by the 

LNGWPBM operator (when 1p q= = ); even the best alternatives are not the same. In the 

following, we explain the reason for the ranking results. 

Fang and Ye’s method [29] by the LNNWAA operator cannot capture inner connections between 

attributes. In this practical application about the selection of green suppliers, if our assumption is that 

the attributes have nothing to do with any other attribute, then, i.e., |F2| = 7. Besides, we take 1p =

, 0q =  to make the LNNWBM operator become the LNNWAA operator in integrating the 

evaluation information given by DMs, which is consistent with step 1 in Fang and Ye’s method [29]. 

Then, the ranking result of Fang and Ye’s method [29] by the LNNWAA operator should be consistent 

with the one of our proposed MAGDM method by the LNGWPBM operator (when 1p = , 0q =  

and |F2| = 7). By using the two methods to deal with Example 2, respectively, we find that the ranking 

result of Fang and Ye’s method [29] by the LNNWAA operator is equal to the one of our proposed 

MAGDM method by the LNGWPBM operator (when 1p = , 0q = and |F2| = 7), which is

3 2 1 4X X X X . Therefore, this can explain that our proposed MAGDM method is tried and true. 

However, the ranking result of Fang and Ye’s method [29] by the LNNWAA operator has a great 

difference from the one of our proposed MAGDM method by the LNGWPBM operator (when 

1p q= = ); even the best alternatives are not the same. In Example 2, we can find that inner 

connections exist between the attributes and a special condition where the criterion 
2G  has nothing 

to do with other criteria, i.e., |F2| = 1; this can be solved by the LNGWPBM operator well, but the 

LNNWAA operator does not have the same ability. It is easy to compute in our proposed MAGDM 

method; we assume 1p q= = , and then the ranking result by the LNGWPBM operator is 

4 1 2 3X X X X , which is very different from Fang and Ye’s method [29] by the LNNWAA operator. 

In addition, DMs can choose the right value of the parameters p and q  according to the actual 

decision-making situation and their personal preferences, so our proposed MAGDM method is 

universal and elastic. Meanwhile, Fang and Ye’s method [29] can only solve the MAGDM problems 

with independent attributes, and is not suitable for this kind of question, such as in Example 2. 

Therefore, our proposed MAGDM method by the LNGWPBM operator is more workable and elastic 

than Fang and Ye’s method [29] by the LNNWAA operator. 

(2) From Table 9, we find that the ranking result of Liang et al.’s MAGDM method [7] by improving 

classical TOPSIS is the same as the one of our proposed MAGDM method by the LNGWPBM 

operator (when 1p = , 0q = and |F2|=7), which is
3 2 1 4X X X X ; however, it is 

inconsistent with the one of our proposed MAGDM method by the LNGWPBM operator (when

1p q= = ). Then, we elaborate what leads to the ranking results. 

Liang et al.’s MAGDM method [7] uses the LNNWAA operator to integrate the evaluation 

information given by DMs, and then adopts the extended TOPSIS model to rank the alternatives. To 

compare our proposed MAGDM method with Liang et al.’s MAGDM method [7], we also take 

1p = , 0q = , and |F2| = 7 similar to in the previous analysis; so, the ranking result of Liang et al.’s 

MAGDM method [7] should be consistent with the one of our proposed MAGDM method. It is 

important to note that when using Liang et al.’s MAGDM method [7] to solve Example 2, we use the 

weights of the attributes given in Example 2. By calculating separately, the ranking result of Liang et 

al.’s MAGDM method [7] by improving classical TOPSIS is the same as the one of our proposed 

MAGDM method by the LNGWPBM operator (when 1p = , 0q =  and |F2| = 7), which is

3 2 1 4X X X X . This proves the validity of our proposed MAGDM method again. However, Liang 

et al.’s MAGDM method [7] cannot integrate evaluation information, and does not reflect inner 

connections between attributes, while our proposed MAGDM method by the LNGWPBM operator 

can easily achieve these two points. Furthermore, in the extended TOPSIS model used by Liang et 

al.’s MAGDM method [7], the correlation coefficient cannot guarantee that the best solution should 
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have the closest distance from the positive ideal solution and the farthest distance from the negative 

ideal solution, simultaneously [49]. At the same time, Liang et al.’s MAGDM method [7] by 

improving the classical TOPSIS model neglects DMs’ utilities or preferences, whereas our proposed 

MAGDM method can draw attention to the influence of DMs’ utilities or preferences on the final 

results, and select the appropriate parameters p and q . When 1p q= = , the ranking result of our 

proposed MAGDM method is 
4 1 2 3X X X X , which is even the opposite result of Liang et al.’s 

MAGDM method [7]. Therefore, our proposed MAGDM method is more appropriate and effective 

than Liang et al.’s MAGDM method [7] in solving the problem, such as in Example 2. 

(3) To further interpret the effectiveness of our proposed MAGDM method by the LNGWPBM 

operator, we use our proposed MAGDM method to solve the illustrative examples in [29] and 

[7], and compare our proposed MAGDM method by the LNGWPBM operator with Fang and 

Ye’s MAGDM method [29] by the LNNWAA operator and Liang et al.’s MAGDM method [7] by 

improving the classical TOPSIS model. Of course, because the attributes are independent of each 

other in these two illustrative examples, we still fix with 1p = , 0q =  and |F2| = n, where n 

denotes the numbers of the attributes. By applying our proposed MAGDM method to these two 

illustrative examples, we can find that the ranking result of our proposed MAGDM method is 

consistent with that of Fang and Ye’s MAGDM method [29] and Liang et al.’s MAGDM method 

[7], respectively, which are detailed in Tables 10 and 11. This further illustrate the effectiveness 

of our proposed MAGDM method by the LNGWPBM operator. 

Table 10. A ranking comparison of the alternatives for different MAGDM methods for example described 

by Fang and Ye in [29]. 

Methods Score Values Ranking Order 

Fang and Ye’s MAGDM method [29] by the LNNWAA 

operator 

1 0.7528C = ,
2 0.7777C = ,  

3 0.7613C = ,
4 0.8060C = . 

4 2 3 1X X X X  

Our proposed MAGDM method by the LNGWPBM operator 

(when 1p = , 0q = and |F2| = 3) 
1 0.7528C = ,

2 0.7777C = ,  

3 0.7613C = ,
4 0.8060C = . 

4 2 3 1X X X X  

Note: 
iC  is abbreviation of score value ( )iC y  of the collective decision information 

iy ( )1,2,3,4i = , 

respectively. 

Table 11. A ranking comparison of the alternatives for different MAGDM methods for example described 

by Liang et al. in [7]. 

Methods Score Values Ranking Order 

Liang et al.’s MAGDM method [7] by improving classical TOPSIS No 4 2 3 1X X X X  

Our proposed MAGDM method by the LNGWPBM operator (when 

1p = , 0q =  and |F2| = 5) 
1 0.4941C = ,

2 0.7901C = ,  

3 0.6495C = ,
4 0.7925C = . 

4 2 3 1X X X X  

Note: 
iC  is abbreviation of score value ( )iC y  of the collective decision information 

iy ( )1,2,3,4i = , 

respectively. 

In the following, we compare the desirable properties of our proposed MAGDM method with 

the ones of Fang and Ye’s MAGDM method [29] and Liang et al.’s MAGDM method [7] to go even 

further in the advantages of our proposed MAGDM method. Table 12 describes the final comparison 

results. 

Table 12. A comparison of the properties for different MAGDM methods. DM: decision makers. 

Methods 

Properties 

Fang and Ye’s MAGDM 

Method [29] by the 

LNNWAA Operator 

Liang et al.’s MAGDM Method 

[7] by Improving Classical 

TOPSIS 

Our proposed MAGDM 

Method by the LNGWPBM 

Operator 

Integrate evaluation 

information 
Yes No Yes 

Reflect DMs’ preferences No No Yes 
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Consider inner relations 

between attributes in the same 

cluster 

No No Yes 

Consider the clusters of the 

input arguments 
No No Yes 

From Table 12, the following conclusions are drawn: 

(1) Our proposed MAGDM method and Fang and Ye’s MAGDM method [29] can integrate 

evaluation information, while Liang et al.’s MAGDM method [7] cannot do this and only rank 

the alternatives by comparing the relative closeness of the positive ideal alternative and the 

negative ideal alternative. 

(2) Although Fang and Ye’s MAGDM method [29] can integrate evaluation information, it ignores 

DMs’ preferences, and does not capture the inherent relation pattern between attributes. Besides, 

Liang et al.’s MAGDM method [7] also cannot reflect DMs’ preferences and the inherent relation 

patterns between attributes. 

(3) Our proposed MAGDM method contains regulatory factors that are determined by DMs’ 

preferences, and considers the clusters of the input arguments and the inner relations between 

the attributes in the same cluster. So, our proposed MAGDM method can effectively address the 

problems with the heterogeneous relationship among attributes. However, the other two 

methods do not have these advantages, which show that the application scopes of the two 

methods are relatively narrow. 

In summary, the contrastive analysis further illustrates the validity and merit of our proposed 

MAGDM method, compared with Fang and Ye’s MAGDM method [29] and Liang et al.’s MAGDM 

method [7]. 

6. Conclusions 

The GPBM operator can model the average of the respective satisfaction of the independent and 

dependent inputs, and is an extended form of the PBM operator, the arithmetic mean operator, and 

the BM operator. Its merit is to capture the heterogeneous relationship among attributes where all of 

the attributes are sorted into two groups: F1 and F2. In F1, the elements are divided into several 

clusters, and the members have inherent connections in the same cluster, but independence in 

different clusters; in F2, the elements do not belong to any cluster of the correlated input arguments 

in F1. Besides, LNNs can depict the qualitative information more appropriately than the SNNs, and 

are also an extension of the LIFNs. However, now, based on LNNs, we yet have not seen any studies 

addressing the MAGDM problems with the heterogeneous relationships among attributes. 

Therefore, in order to fill this gap, we have expanded the GPBM operator to adapt the linguistic 

neutrosophic environment, and have proposed the LNGPBM operator in this paper. At the same time, 

its desired properties and special cases have been discussed. Moreover, aiming at the condition where 

different attributes have different weights in practical applications, we also have introduced its 

weighted version, namely the LNGWPBM operator, including discussing its desired properties and 

special cases. Then, based on the developed LNGWPBM operator, we have developed a novel 

MAGDM method with LNNs to solve the MAGDM problems with the heterogeneous relationship 

among attributes. By comparing with Fang and Ye’s MAGDM method [29] and Liang et al.’s 

MAGDM method [7], we find that the developed MAGDM method is more valid and general for 

solving the MAGDM problems with co-dependent attributes. This is because the developed MAGDM 

method can intuitively and realistically depict qualitative information and reflect the heterogeneous 

relationship among attributes. In further research, our developed operators can be improved by 

considering the unknown weights, objective data, or other forms of information, such as unbalanced 

linguistic information [50]. Besides, we can apply our developed operators to the other practices such 

as medical diagnosis, clustering analysis, pattern recognition, discordance analysis, and so on. 
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