
symmetryS S

Article

Extended Covering Arrays for Sequence Coverage

Yunlong Sheng ID , Chao Sun *, Shouda Jiang and Chang’an Wei

Automatic Test and Control Institute, School of Electrical Engineering and Automation, Harbin Institute of
Technology, No. 92 Xidazhi Street, Nangang District, Harbin 150001, China; 13B901008@hit.edu.cn (Y.S.);
jsd@hit.edu.cn (S.J.); weichangan@hit.edu.cn (C.W.)
* Correspondence: sunchao@hit.edu.cn; Tel.: +86-0451-86413532-510

Received: 5 April 2018; Accepted: 3 May 2018; Published: 7 May 2018
����������
�������

Abstract: Although combinatorial testing has been widely studied and used, there are still some
situations and requirements that combinatorial testing does not apply to well, such as a system
under test whose test cases need to be performed contiguously. For thorough testing, the testing
requirements are not only to cover all the interactions among factors but also to cover all the
value sequences of every factor. Generally, systems under test always involve constraints and
dependencies in or among test cases. The constraints among test cases have not been effectively
specified. First, we introduce extended covering arrays that can achieve both t-way combinatorial
coverage and t-wise sequence coverage, and propose a clocked computation tree logic-based formal
specification method for specifying constraints. Then, Particle Swarm Optimization (PSO) based
Extended covering array Generator (PEG) is elaborated. To evaluate the constructed test suites,
a method for verifying the constraints’ validity is presented, and kernel functions for measuring the
coverage are also introduced. Finally, the performance of the proposed PEG is evaluated using several
sets of benchmark experiments for some common constraints, and the feasibility and usefulness of
PEG is validated.

Keywords: extended covering arrays; combinatorial coverage; sequence coverage; constraint
specification; particle swarm optimization

1. Introduction

With the development of computer technology and the increase in custom requirements, software
systems are becoming more powerful and complex. In fact, the emergence of unexpected faults in such
systems is inevitable. Once the system encounters a certain fault, it is likely to fail. Failure means that
the system operates with unexpected behaviors. Testing is a very necessary and significant means of
system quality assurance during the product development life cycle [1]. A report released by NIST
(National Institute of Standards and Technology) in 2002 stated that software system bugs cost the U.S.
economy 59.5 billion dollars annually [2]. However, more than one third of this cost could be saved if
better testing is performed [2]. A contributing test method that can exactly find more faults with fewer
test cases is urgently needed.

Combinatorial testing (CT) [3–6] is an efficient testing method through which an optimal or near
optimal test suite with fewer test cases can be designed or generated. CT has proven to be an effective
technique for detecting faults caused by interactions among configurations or factors in a given input
space [7]. The empirical studies of system bugs suggest that CT is equivalent to exhaustive testing in
a certain sense [8,9]. Although CT has been widely studied and used, there are still some situations
and requirements that combinatorial testing does not apply to well, such as a system under test (SUT)
whose test cases need to be performed contiguously. For thorough testing, the testing requirements
of this SUT are not only to cover all the interactions among factors, but also to cover all the value

Symmetry 2018, 10, 146; doi:10.3390/sym10050146 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-4794-0107
http://www.mdpi.com/2073-8994/10//146?type=check_update&version=1
http://dx.doi.org/10.3390/sym10050146
http://www.mdpi.com/journal/symmetry

Symmetry 2018, 10, 146 2 of 26

sequences of every factor. When CT is used to design a test suite for this SUT, only the interactions
among factor values can be effectively covered to a certain level according to the t-way combinatorial
criterion; there is no effective criterion for the value sequences of every factor [10]. For example, the
“text effect” application of “Microsoft Word” has seven options for users to modify some highlighted
text. These options are “subscript”, “superscript”, “strikethrough”, “double strikethrough”, “all caps”,
“small caps”, and “shadow” [9]. The font-processing function within the application correctly modifies
the highlighted text on the screen according to the settings consisting of these options. When using
CT, a test suite with several test cases can be generated to cover interactions among every t options.
When the test suite is executing, the font-processing function modifies the text according to the test
cases in sequence. However, the sequence of settings in every factor from contiguous test cases cannot
be guaranteed to be tested at a certain level, such as a sequence from text with subscript to text without
subscript for the “subscript” option with binary settings.

To solve the mentioned sequence coverage requirement, a t-way sequence coverage criterion for
the requirement was proposed [11] based on the t-way combinatorial coverage criterion. The t-way
sequence coverage criterion was first introduced to apply to event sequence testing. In terms of an
SUT with n input events, each event can only be input once during a test. Each test case in the test
suite covers (n

t) subsequences with length t (0 < t ≤ n), and the covered t events in a subsequence
do not have to be neighboring. A t-way sequence coverage test suite can cover all (n

t)t! subsequences
that have t different events. The size of a t-way sequence coverage test suite is considerably less than
that of the exhaustive test suite. Thus, a t-way sequence coverage test suite can replace the exhaustive
test suite, which cannot be executed in practice. Another similar form of t-way sequence coverage
is t-wise sequence coverage, which was presented by Kruse [12]. t-wise sequence coverage applies
to SUTs with n inputs each of which can appear more than once in a test. Additionally, the t inputs
covered in a subsequence must be contiguous. The two types of sequence coverage criteria generally
meet the sequence coverage requirement. Then, for SUTs whose test cases need to be performed
contiguously, test suites can cover both the interactions among factor values and the value sequences of
every factor by combining t-way combinatorial coverage and t-wise sequence coverage. The simplest
way to combine them is to generate test suites separately and then integrate them into a large test suite.
Although some coverage redundancies exist in the integrated large test suite, it successfully enables
testing of SUTs with test cases performed contiguously.

In practice, SUTs always involve constraints or dependencies in or among test cases [1], such as
interaction {b1, c1}must not appear in a test case or value c2 must not be input after c1. If a test does
not meet the constraints, the test is invalid. To automatically generate a valid test suite, the constraints
should first be formally specified. Then, the formal specification of constraints can be used to direct
the test suite generation. Although some formal specification methods have been used, such as linear
temporal logic (LTL) and computation tree logic (CTL), the constraints among test cases or test steps
have not been effectively specified, such as when the third input is c1, the fifth input must be c2.
Because of the existence of constraints, when a t-way combinatorial coverage test suite is used alone,
it may potentially violate the constraints among test cases. When a t-wise sequence coverage test suite
is used alone, it may potentially violate the constraints in a test case. Hence, simply combining these
two test suites into a large test suite is infeasible.

In this paper, we present a research work on extending covering arrays for sequence coverage, and
we introduce extended covering arrays that can achieve both t-way combinatorial coverage and t-wise
sequence coverage. Then, we propose a formal specification method for specifying constraints based
on clocked computation tree logic (CCTL), which is an extension of CTL. The main contribution of this
paper is to propose extended covering arrays with combinatorial coverage and sequence coverage for
SUTs with test cases to be performed contiguously. This research has practical application value and
will improve the efficiency of software testing. To evaluate the constructed test suites, a method for
verifying constraints’ validity among test cases is presented corresponding to the specification method,
and kernel functions are also introduced to measure the coverage for constructed test suites.

Symmetry 2018, 10, 146 3 of 26

As Particle Swarm Optimization (PSO) is competitive in uniform and variable strength covering
array generation [13], we propose Particle swarm optimization based Extended covering array
Generator (PEG) for constructing extended covering arrays in this paper. The performance of our
proposed PEG is evaluated using several sets of benchmark experiments for some common constraints
and the feasibility and usefulness of PEG is validated.

The remainder of this paper is organized as follows. First, Section 2 reviews the theoretical
background and methods for sequence coverage testing. Some relative definitions are given in Section 3.
Section 4 introduces extended covering arrays. Section 5 outlines the design and implementation of
PEG, including its corresponding algorithms. Section 6 presents evaluation methods for verifying
constraints’ validity and measuring coverage. The results of 12 benchmark systems under test
generated by PEG are presented in Section 7. Finally, the paper is concluded with a brief summary and
provides a discussion of future research in Section 8.

2. Related Work

Here, we review previous work toward efficient solutions about sequence coverage requirements
using combinatorial testing.

In terms of SUTs with n input events, where each event occurs exactly once in a test, the CT-based
testing is sequence-based t-way testing. Kuhn is perhaps the first person to apply sequence-based
t-way testing. He proposed a “quick and dirty” (QnD) algorithm, which is based on a greedy algorithm
and likely has room for improvement [14], and he then presented Sequence Covering Arrays (SCAs)
according to covering arrays [15]. Subsequently, he proposed a modified greedy algorithm that can
handle the constraints between event pairs [16], and he used SCAs to test labeled transition systems [17].
He reported several algorithms for generating SCAs with the proposed t-way sequence coverage
criterion. These algorithms represent the first effort to systematically explore possible strategies
for solving the problem of t-way test sequence generation in a general context. Zamli discussed
the sequence-based fixed and variable strength testing as an extension of existing t-way strategies
and noted that there is clearly room for improvement, particularly for the t-way sequence coverage
testing [11]. Then, a sequence-based t-way interaction testing strategy using the bees algorithm was
presented by Zamli [18]. The proposed algorithm shows a promising result when compared to QnD
through an experiment. A method for a t-way event-driven test suite generation based on simulated
annealing called t-way Event-Driven Input Sequence Test Case (EDISTC-SA) generator was presented
by Rahman [19]. Farchi defined a test as an ordered tuple of input parameter values and introduced
the ordered constraints and the ordered interaction coverage criteria [10]. Then, an efficient algorithm
for generating test suites with minimum sizes that satisfies the ordered interaction coverage criteria
was proposed and evaluated on several real-life systems. SCAs are of practical value in testing.
As exhaustive testing always consists of an incredible magnitude of tests, SCAs can reduce the cost of
testing by decreasing the number of tests.

An innovative approach that combines model-based testing and combinatorial testing to design
executable and feasible test sequences was described by Nguyen [20]. The approach starts from a
finite state model, and based on the model, it generates executable paths that represent sequences of
events to be executed against the SUT. Then, these paths are transformed to the equivalence classes
of a classification tree [21]. The first children classifications of the root node of the tree represent the
events, and the classes of a classification are the optional values of the corresponding event. Finally,
the executable test cases corresponding to an executable path are generated from the classification
tree using t-way testing. The classification tree method [21], which is a model-based black-box test
design technique [22], was proposed based on equivalence partitioning, and it is always used for
systematic test design and description of test cases. Mature products based on the classification tree
method to design test sequences are TESTONA [23] and TESSY [24,25]. Using the classification tree
method, the input domain of an SUT is regarded under various aspects assessed as equivalent by
the tester. For every aspect, disjoint and complete classifications are partitioned. The subsequent

Symmetry 2018, 10, 146 4 of 26

partition of every aspect through classifications is a graphical representation based on the form of a
tree [21]. Classes, which are disjointed abstractions of individual input levels for test purposes [26],
derived from these classifications may be further classified even recursively [21]. The tree is the head
of the combination table corresponding to a test suite, and test cases are the body of the combination
table. Test cases are constituted by combining classes from different classifications and correspond
to test steps of the testing task. During the test run, test cases are generally executed in sequential
order. The testing design of the classification tree method has been widely used for embedded
systems [12], embedded automotive systems [12,22,26–28] and web applications [29] in terms of
functional requirements. In addition, “Modbat” and Microsoft’s ”Spec Explorer” are also model-based
test case generating tools. “Modbat” can generate state transitions coverage test cases [30]. Microsoft’s
“Spec Explorer” can generate automated test cases by running traversal techniques to achieve a form
of transition coverage and enable testers to find violations of the requirements with a minimum of
manual effort [31].

Generally, there are constraints among test steps in real systems [12,32,33]. Once test steps in a test
suite that violate the constraints exist, the test suite is invalid for testing. Thus, it is very important to
specify constraints and generate valid test suites based on the specifications [12]. Schooljan described
the linear temporal logic (LTL)-based formal specification method for dependency rules [34]. In his
work, temporal logic expressions are used to validate each test step of a test sequence. The specification
of dependency rules cannot describe the constraints within test steps subjected to LTL. A similar
work was conducted by Fraser, in which constraints were presented by computation tree logic
(CTL) [33]. Using LTL and CTL, the constraints among test cases were specified, whereas the test
cases involving constraints are restricted to neighboring test cases. Krupp and Müller proposed an
innovative application of clocked CTL (CCTL) logic to describe the constraints in real-time systems [35].
The corresponding proposed model checker can verify the validity of test sequences by combining
I/O interval specifications and CCTL expressions. Some similar coverage requirements with t-way
testing criteria were proposed by Kruse [1,12], such as state coverage, transition coverage and state
pair coverage. The state coverage is similar to the 1-wise sequence coverage, which needs all the states
to be covered at least once, and constraints among test cases involving the order of states in every
factor need to be avoided. The transition coverage is 2-wise sequence coverage, which needs all the
transitions of states of every factor to be covered at least once. The state pair coverage is similar to the
2-way combinatorial coverage, which requires all the interactions between two factors to be covered at
least once, and the constraints among test cases involving the order of states in every factor need to be
avoided. Then, three algorithms to generate state coverage and transition coverage test cases were
proposed [10].

3. Background

Before we introduce extended covering arrays, we present the existing covering arrays.
When using CT, the first step is to develop the input space model of the SUT [36]. The term “input”
is used here in a general sense; any factor that can have an influence on the behavior of the SUT
and that can be kept under control is considered to be an “input” [36]. The input space model
implicitly defines the SUT’s valid input space [37]. Given that an SUT has k input factors P1, P2, · · · , Pk,
and factor Pi (1 6 i 6 k) has vi values or levels, the input space model of the SUT can be represented
as M =< P, V >. P is the set of factors P = {P1, P2, · · · , Pk}, and V is the set of numbers of
values V = {v1, v2, · · · , vk}. For each factor Pi, we use {0, 1, · · · , vi − 1} to denote the set of values,
abbreviated as [0, vi − 1].

CT approaches systematically extract and produce a set of configurations that will be run in the
testing phase from the input space model [36]. A set of configurations is called a test suite and a t-way
covering array, in which each valid combination among factor values corresponding to t different
factors appears at least once.

Symmetry 2018, 10, 146 5 of 26

Definition 1. Given a set I = {(Pi1 , ai1), (Pi2 , ai2), · · · , (Pit , ait)} with ij ∈ [1, k](j = 1, 2, · · · , t), if Pij

belongs to the set of factors P with |P| = k and aij belongs to [0, vij − 1], the set I is defined as a t-way
interaction to be covered [38].

We use the set Ht = {I|I = {(Pi1 , ai1), (Pi2 , ai2), · · · , (Pit , ait)}} to denote all the t-way interactions
to be covered.

Definition 2. A test case T = {t1, t2, · · · , tk} is a k-dimensional vector with ti ∈ [0, vi− 1] (i = 1,2, · · · , k) [38,39].

Given a test case T = {t1, t2, · · · , tk} and an interaction I = {(Pi1 , ai1), (Pi2 , ai2), · · · , (Pit , ait)},
if T[ij] = tij = aij meets, then we say that T covers I, denoted as T ⊇ I. We use HT,t = {I|I =

{(Pi1 , ai1), (Pi2 , ai2), · · · , (Pit , ait)} ∧ T ⊇ I} to denote all the interactions covered by T.

Definition 3. Consider that A is an n × k mixed-level covering array, denoted by
MCA(n; t, (v1, v2, · · · , vk)) [38,40], such that every column i only has elements from the set [0, vi − 1] and
every possible t-way interaction I = {(Pi1 , ai1), (Pi2 , ai2), · · · , (Pit , ait)} is at least covered in one row of A. t is
the strength of MCA(n; t, (v1, v2, · · · , vk)).

If the smallest n for MCA(n; t, (v1, v2, · · · , vk)) exists, we also denote it by MCAN(t, (v1, v2, · · · , vk)).
Another alternative form of MCA is MCA(n; t, sy1

1 sy2
2 · · · s

yu
u), which indicates that there are y1

parameters with v1 values, y2 parameters with v2 values, and so forth. It is clear that ∑1≤l≤u yl = k.
When the sizes of all the value sets are the same, v1 = v2 = · · · = vk = v, we use covering array
CA(n; t, k, v) to replace mixed covering array. If the smallest n for CA(n; t, k, v) exists, we also denote
it by CAN(t, k, v) or CAN(n; t, vk).

A single set of configurations consists of one value from every factor. However, not all
combinations of factor values may be valid, as some constraints related to some certain factor values
exist. Once a single set of configurations contains these values, the single set is invalid. Such existing
constraints are often caused by logical relationships among factors. For a calendar example, if factor
"month" takes February, then factor "date" must take no more than 29. To guarantee that a test suite
avoids all the invalid combinations successfully, the constraints must be modeled and specified.

Definition 4. CCA(n; t, k, v, F) is a constraint covering array, where a new variable forbidden interaction F
is introduced to present the set of constraints [40]. For each constraint interaction I = (a1, a2, · · · , ak) in F,
there is ai ∈ [0, vi − 1] ∪ [x](1 ≤ i ≤ k), where x denotes the "do not care" values. The constraints are often
called forbidden tuples [41,42] and forbidden edges [43].

When the k factors have different number of values, constraint mixed-level covering arrays
CMCAs are used.

For example, an SUT has three factors A, B and C with vA = vB = 2, vC = 3, and a constraint
F = {(0, 0, x)}. The constraint mixed covering array CMCA(7; 2, 2231, F = (0, 0, x)) is shown in
Table 1. CMCA(7; 2, 2231, F = (0, 0, x)) covers all the value pairs between each two factors, except
(A = 0, B = 0).

Symmetry 2018, 10, 146 6 of 26

Table 1. CMCA(7; 2, 2231, F = (0, 0, x)).

A B C

1 0 1 0
2 0 1 1
3 0 1 2
4 1 0 0
5 1 0 1
6 1 0 2
7 1 1 0

4. Extended Covering Arrays

In this section, we introduce extended covering arrays.

4.1. ECAs

When CMCA(7; 2, 2231, F = (0, 0, x)) shown in Table 1 is used to test an SUT contiguously, 2-way
combinations are covered. If the SUT has a sequence coverage requirement, then the two-value
sequences of each factor are not completely covered. As in the test sequence {0→ 0→ 0→ 1→ 1→
1→ 1} of factor A, only three two-value sequences {0→ 0}, {0→ 1}, and {1→ 1} are covered. If
we use a 2-wise sequence coverage test suite as shown in Table 2, although all the sequences of two
values of each factor are covered, some value combinations are not covered, such as (A = 1, B = 1)
and (B = 0, C = 2). If both the sequence coverage and combinatorial coverage are required, then
the only way to satisfy this requirement is to combine them into a test suite. However, combining
them into a test suite may lead to some redundancies and a larger size. To design test suites that can
meet both sequence coverage and combinatorial coverage with smaller sizes, extended covering arrays
are defined.

Table 2. A 2-wise sequence coverage test suite.

A B C

1 1 0 0
2 1 0 0
3 0 1 2
4 0 1 2
5 1 0 1
6 1 0 1
7 1 0 0
8 0 1 1
9 0 1 2
10 1 0 0

Definition 5. Consider that a n × k array A is an extended mixed-level covering array, denoted by
EMCA(n; tc, ts, v1, v2, · · · , vk), where tc is combinatorial coverage strength and ts is sequence coverage
strength, such that every column i only has elements from the set [0, vi − 1] and the following two conditions
are met:

1© for each interaction I = {(Pi1 , ai1), (Pi2 , ai2), · · · , (Pitc , aitc)} with length tc (1 ≤ tc ≤ k), there is at
least one row r (1 ≤ r ≤ n), A[r, ij] = aij(j = 1, 2, · · · , tc);

2© in each column i (1 ≤ i ≤ k), for every possible value sequence with length ts (1 ≤ ts ≤
min(v1, v2, · · · , vk)) such as ei

1, ei
2, · · · , ei

ts
∈ [0, vi − 1], there are ts contiguous rows r1, r2, · · · , rts

with A[rj, i] = ei
j (1 ≤ j ≤ ts).

Symmetry 2018, 10, 146 7 of 26

If the smallest n for EMCA(n; tc, ts, v1, v2, · · · , vk) exists, we also denote it by
EMCAN(tc, ts, v1, v2, · · · , vk). Another alternative form of EMCA is EMCA(n; tc, ts, sy1

1 sy2
2 · · · s

yu
u).

When the sizes of all the value sets are the same, v1 = v2 = · · · = vk = v, we denote the extended
covering array as ECA(n; tc, ts, k, v) or ECA(n; tc, ts, vk).

For the example presented above, an EMCA is shown in Table 3. The extended covering array
covers all combinatorial pairs and two value sequences only with size 10.

Table 3. EMCA(7; 2, 2, 2231).

A B C

1 1 0 0
2 1 0 0
3 0 1 2
4 0 1 2
5 1 0 1
6 0 1 1
7 0 1 0
8 0 1 1
9 1 0 2
10 1 1 0

4.2. ECCAs

In real systems, in addition to the constraints among factor values, there are constraints that
involve sequences of factor values. Such a sequence of factor values is also often identified by logically
specifying constraints. These two types of constraints must be avoided in final test suites; otherwise,
test suites may be invalid. Thus, the specification and model of the constraints are the preconditions to
design and generate test suites. On the one hand, the specification of constraints can help to avoid
constraints in the process of constructing test suites. On the other hand, the specification of constraints
can help to verify whether the designed test suites are valid. We also define the extended constraint
covering array as ECCA(n; tc, ts, k, v, C). As there exist constraints that involve value sequences of
each factor, some interactions of factor values may not appear in one test case in practice. See Section 5
for details. This produces a conceptual differences between ECCA and ECA. In other words, ECCA
may violate the first condition in Definition 5. Then, we modify the first condition of ECA to fit ECCA.
The modified condition is that ECCA could cover as many t-way interactions as possible. The t-way
interactions covered in ECCAs can be measured in the method described in Subsection 6.2. When the
k factors have different number of values, extended constraint mixed-level covering arrays (ECMCAs)
are used. ECCAs have the same expression forms with ECAs.

The set C is the set of constraint statements specified by CCTL. CCTL is a variant of timed CTL
based on I/O-interval structures introduced by Ruf [44,45] in the context of the real-time system model
checker. The I/O-interval structures are used in state transition systems to express time annotations.
A time annotation is a constraint that assigns a [min, max]-time interval for a state transition [44].
[min, max]-time intervals can help CCTL to precisely model time in which state transitions occur
compared to LTL and CTL [44]. For this reason, [min, max]-time intervals can also support describing
the temporal relationship among inputs based on time steps precisely. This is the maximum benefit of
CCTL. Thus, we use CCTL to model the constraint relationship.

The CCTL syntax is defined as follows [46]:

φ = AP|¬φ|φ ∧ φ|φ→ φ|φ⊕ φ|φ ∨ φ|φ⊗ φ

|EX[n]φ|EF[m,n]φ|EG[m,n]φ|E(φU[m,n]φ)

|AX[n]φ|AF[m,n]φ|AG[m,n]φ|A(φU[m,n]φ),

(1)

Symmetry 2018, 10, 146 8 of 26

where AP is an atomic proposition and m, n ∈ N+ are time bounds with m ≤ n. ¬, ∧,→, ⊕, ∨ and
⊗ are the classical logic operators included in CCTL syntax. φ is the CCTL formula. X, F, U and G
are the temporal operators, where X is the “next” operator, F is the “final“ operator, G is the “always”
operator, and U is the “until” operator. A and E are path quantifiers. A “path” is an infinite sequence
of states, denoted as ρ. If a CCTL formula φ is true in path ρ, then we write ρ |= φ. Because there are
potentially many paths in a system, E means that “at least one path exists that satisfies the temporal
operator”, and A means “for all paths that satisfy the temporal operator”. In testing, the generated
ECCA is equivalent to the path because it should satisfy the constraints presented by CCTL formulas,
denoted as ECCA |= φ. As there exists at least a test suite which is used to test, we use the path
quantifier E in this paper to specify constraints. Based on a constraint which belongs to a test case or
involves test cases, the specification of constraints are divided into the following two parts.

4.2.1. The Specification of Constraints in a Test Case

The constraints in a test case indicate the restrictions among factor values. These types of
constraints correspond to the traditional covering array. The constraints forbid the appearance of some
certain value combinations that are composed of different factors. Because generating a test case that
avoids all the constraints is a boolean satisfiability problem [47], a formal specification is needed in
the process of automatically generating test cases. Generally, the constraints are often represented in
conjunctive normal form (CNF) [47].

For a forbidden tuple I = {(Pi1 , ai1), (Pi2 , ai2), · · · , (Pit , ait)}, the formal specification is EG(¬Pi1 =

ai1 ∨ ¬Pi2 = ai2 ∨ · · · ∨ ¬Pit = ait). In addition, there are always two types of internal constraints for
an SUT to limit each test case to having one and only one value from every factor. They are the at-least
and at-most constraints [47]. The at-least constraints are needed to ensure that there is no less than one
value of each factor in a test case, and the at-most constraints are needed to ensure that no more than
one value is assigned to a factor in a test case.

• at-most constraints: for each factor Pi with its value set [0, vi− 1] and a test case T = (t1, t2, · · · , tk),
there exists that ∀aim , ain ∈ [0, vi − 1] and aim 6= ain , and the at-most constraints can be denoted as
EG(¬Pi = aim ∨ ¬Pi = ain). The at-most constraints mean that each two values of one factor must
not appear in a same test case.

• at-least constraints: for each factor Pi with its value set [0, vi − 1] and a test case T = (t1, t2, · · · , tk),
the at-least constraints can be denoted as EG(Pi = 0 ∨ Pi = 1 ∨ · · · ∨ Pi = vi − 1). The at-least
constraints mean that there must be at least one value of a factor appearing in a test case.

4.2.2. The Specification of Constraints among Test Cases

The constraints involving value sequences of factors are constraints among test cases or test steps.
The constraints are generally divided into absolute constraints and relative constraints according to
whether constraints have the logical operator “→”. Absolute constraints do not contain the logical
operator “→”, whereas relative constraints have the logical operator “→”. The relative constraints in
front and behind of “→” are composed of the absolute constraints presented by EX, EG, EU and EF.
Relative constraints means that when the condition in front of “→” is tenable, the condition behind of
“→” must be tenable.

Each temporal operator can represent a type of absolute constraint. A formal description of the
temporal operators is presented below. Given ECCA(n; tc, ts, k, v, C) and ∀u, w ∈ N+ with 0 < u ≤ w ≤ n:

• ECCA |= EX[u]φ: There exists an ECCA in which the uth test case satisfies φ. It is the same as
ECCA[u, :] |= φ;

• ECCA |= EG[u,w]φ: ∃u ≤ i ≤ w, and for all 1 ≤ j ≤ i: ECCA[j, :] |= φ;
• ECCA |= E(φU[u,w]ψ): ∃u ≤ i ≤ w, ∀1 ≤ j < i, ECCA[j, :] |= φ and ECCA[i, :] |= ψ;
• ECCA |= EF[u,w]φ: There exists at least one i with u ≤ i ≤ w: ECCA[i, :] |= φ.

Symmetry 2018, 10, 146 9 of 26

We always omit “ECCA |=” in the specification of constraints. The constraints specified above are
the absolute constraints. Then, we introduce the relative constraints. We classify the relative constraints
according to the symbol in front of “→”. We define that when the constraint has the form of EX[u] in
front of other temporal operators, then the u + 1th test case is regarded as the first test case for the
following representations. Given ECCA(n; tc, ts, k, v, C), ∀x, y, z, u, w ∈ N+ with x ≤ y and u ≤ w:

(1) EX

• ECCA |= EG(EX[u]φ→ EX[u+x]ψ): When the uth test case satisfies φ, ECCA[u, :] |= φ, the
(u + x)th test case holds ψ, ECCA[u + x, :] |= ψ;

• ECCA |= EG(EX[u]φ→ EX[z]EG[x,y]ψ): When the uth test case satisfies φ, ECCA[u, :] |= φ,
the (u + z + 1)th test case is regarded as the first test case for EG[x,y]ψ as the EX[z]. Then,
∃x ≤ i ≤ y, and for all 1 ≤ j ≤ i: ECCA[u + z + j, :] |= ψ;

• ECCA |= EG(EX[u]φ→ EX[z]EψU[x,y]σ): When the uth test case satisfies φ, ECCA[u, :] |= φ,
the (u + z + 1)th test case is regarded as the first test case for EψU[x,y]σ as the EX[z]. Then,
∃x ≤ i ≤ y, ∀1 ≤ j < i, ECCA[u + z + j, :] |= ψ and ECCA[u + z + i, :] |= σ;

• ECCA |= EG(EX[u]φ → EF[x,y]ψ): When the uth test case satisfies φ, ECCA[u, :] |= φ: At
least one i exists with x ≤ i ≤ y: ECCA[i, :] |= ψ with x > u.

(2) EG

• ECCA |= EG(EG[u,w]φ → EX[x]ψ): ∃u ≤ i ≤ w and for all 1 ≤ j ≤ i, ECCA[j, :] |= φ exists:
ECCA[x, :] |= ψ with x > w;

• ECCA |= EG(EG[u,w]φ→ EF[x,y]ψ): ∃u ≤ i ≤ w and for all 1 ≤ j ≤ i, ECCA[j, :] |= φ exists:
At least one l exists with x ≤ l ≤ y: ECCA[l, :] |= ψ with x > w.

(3) EU

• ECCA |= EG(EφU[u,w]ψ → EX[x]σ): ∃u ≤ i ≤ w, ∀1 ≤ j < i, ECCA[j, :] |= φ and ECCA[i, :
] |= ψ exists: ECA[x, :] |= σ with x > w;

• ECCA |= EG(EφU[u,w]ψ → EF[x,y]σ): ∃u ≤ i ≤ w, ∀1 ≤ j < i, ECCA[j, :] |= φ and
ECCA[i, :] |= ψ exists: At least one l exists with x ≤ l ≤ y: ECCA[l, :] |= σ with x > w.

(4) EF

• ECCA |= EG(EF[u,w]φ → EX[x]ψ): At least one i exists with u ≤ i ≤ w: ECCA[i, :] |= φ:
ECCA[x, :] |= ψ with x > w;

• ECCA |= EG(EF[u,w]φ→ EF[x,y]ψ): At least one i exists with u ≤ i ≤ w: ECCA[i, :] |= φ: At
least one l exists with x ≤ l ≤ y: ECCA[l, :] |= ψ with x > w.

(5) φ

• ECCA |= EG(φ → EX[u]EG[x,y]ψ): For each test case in ECCA, if there is a test case i that
holds φ, the (i + u + 1)th test case is regarded as the first test case for EG[x,y]ψ as EX[u]:
∃x ≤ l ≤ y for all 1 ≤ j ≤ l: ECCA[i + u + j, :] |= ψ;

• ECCA |= EG(φ→ EX[u]EψU[x,y]σ): For each test case in ECCA, if there is a test case i that
holds φ, the (i + u + 1)th test case is regarded as the first test case for EψU[x,y]σ as EX[u].
Then, ∃x ≤ l ≤ y, ∀1 ≤ j < l: ECCA[i + u + j, :] |= ψ and ECCA[i + u + l, :] |= σ;

4.3. A Case Study

Two real SUTs are analyzed in this subsection.
The first real system under test is the “VideoGame”, which is described in Ref [1]. “VideoGame”

has two factors: one is “startingGame” and the other is “Pause”. Factor “startingGame” has four levels
and they are “startingGame”, “startup”, “controlling” and “gameOver”, and factor “Pause” has two
levels and they are “running” and “paused”. In terms of factor “startingGame”, “startingGame”
level can transit to itself and “startup”, “startup” level can transit to itself and “controlling”,

Symmetry 2018, 10, 146 10 of 26

“controlling” level can transit to itself and “gameOver”, and “gameOver” level can transit to itself
and “startingGame”. In terms of factor “Pause”, “running” level can only transit to “paused” and
“paused” level can only transit to “running”. The limitations that restrict levels not to transit to others
are constraints. Combined with the at-most constraints and at-least constraints, the constraints of
“VideoGame” are obtained. Thus, the ECMCA(9; 2, 2, 4121, C) of the “VideoGame” can be constructed
as shown in Table 4 and its constraint set C is as follows. The ECMCA has covered all the eight possible
level combinations and ten level transitions:

C = {EG(¬startingGame = startingGame ∨ ¬startingGame = startup)
EG(¬startingGame = startingGame ∨ ¬startingGame = controlling)
EG(¬startingGame = startingGame ∨ ¬startingGame = gameOver)
EG(¬startingGame = startup ∨ ¬startingGame = controlling)
EG(¬startingGame = startup ∨ ¬startingGame = gameOver)
EG(¬startingGame = controlling ∨ ¬startingGame = gameOver)
EG(startingGame = startingGame ∨ startingGame = startup ∨ startingGame = controlling
∨startingGame = startup)
EG(¬Pause = running ∨ ¬Pause = paused)
EG(Pause = running ∨ Pause = paused)
EG(startingGame = startingGame→ EX(startingGame = startingGame ∨ startingGame = startup))
EG(startingGame = startup→ EX(startingGame = startup ∨ startingGame = controlling))
EG(startingGame = controlling→ EX(startingGame = controlling ∨ startingGame = gameOver))
EG(startingGame = gameOver → EX(startingGame = startingGame ∨ startingGame = gameOver))}.

Table 4. An ECMCA(9; 2, 2, 4121, C) of the “VideoGame”.

startingGame Pause

1 startingGame running
2 startingGame paused
3 startup running
4 startup paused
5 controlling running
6 controlling paused
7 gameOver running
8 gameOver paused
9 startingGame running

The second real system under test is the “text effect” application of “Microsoft Word”, which has
seven options for users to modify some highlighted text. These options are “subscript”, “superscript”,
“strikethrough”, “double strikethrough”, “all caps”, “small caps”, and “shadow” [9]. Each option has
optional values: one is “true” and the other is “false”. Three value combination constraints exist, and
they are (subscript = true, superscript = true), (strikethrough = true, double strikethrough = true)
and (all caps = true, small caps = true). The font-processing function within the application correctly
modifies the highlighted text on the screen according to the settings consisting of these options.
When tests are executing, the font-processing function modifies the text according to the test cases in
sequence. Thus, the ECMCA(9; 2, 2, 27, C) of the “text effect” application can be constructed as shown
in Table 5 and its constraint set C is as follows. The ECMCA has covered all the 81 possible value
combinations and 28 value transitions:

Symmetry 2018, 10, 146 11 of 26

C = {EG(¬subscript = true ∨ ¬subscript = f alse)

EG(subscript = true ∨ subscript = f alse)

EG(¬superscript = true ∨ ¬superscript = f alse)

EG(superscript = true ∨ superscript = f alse)

EG(¬strikethrough = true ∨ ¬strikethrough = f alse)

EG(strikethrough = true ∨ strikethrough = f alse)

EG(¬double strikethrough = true ∨ ¬double strikethrough = f alse)

EG(double strikethrough = true ∨ double strikethrough = f alse)

EG(¬all caps = true ∨ ¬all caps = f alse)

EG(all caps = true ∨ all caps = f alse)

EG(¬small caps = true ∨ ¬small caps = f alse)

EG(small caps = true ∨ small caps = f alse)

EG(¬shadow = true ∨ ¬shadow = f alse)

EG(shadow = true ∨ shadow = f alse)

EG(¬subscript = true ∨ ¬superscript = true)

EG(¬strikethrough = true ∨ ¬double strikethrough = true)

EG(¬all caps = true ∨ ¬small caps = true)}.

Table 5. An ECMCA(9; 2, 2, 27, C) of the “text effect” application.

Subscript Superscript Strikethrough Double Strikethrough All Caps Small Caps Shadow

1 true false false true false true true
2 false true true false true false true
3 false true false true false false false
4 true false true false false true false
5 true false false false true false false
6 false false false true true false true
7 false true false true false true true
8 false true true false false true true
9 true false true false true false true

5. The Construction of Extended Covering Arrays

5.1. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) was originally put forward by Kennedy [48] as an
optimization technique inspired by the swarm behavior of birds in 1995. The swarm of particles always
moves towards the optimal position in the process of optimization. The position Xt

i = (xt
i1, xt

i2, · · · , xt
ik)

of a particle indicates the solution under optimization. The speed Vt
i = (vt

i1, vt
i2, · · · , vt

ik) of a particle
indicates the tendency of evolution and the degree of variation. The fitness factor value of a particle
indicates the degree of optimization. Each particle remembers its coordinates in the solution space
where it has found its best solution so far, which is called pBest. In addition to pBest, particles track
the overall best value obtained by any particle in the population, called gBest. The process of evolution
will continue untill the iteration time is reached. As a result of the discrete values in parameters,
we adopt the discrete version of PSO (DPSO), which has been used in covering array generation [13].
The particle Xt

i updates its coordinate xt
ij according to Equations (2) and (3):

Symmetry 2018, 10, 146 12 of 26

vt+1
ij = ωvt

ij + c1r1(pBestt
ij − xt

ij) + c2r2(gBestt
j − xt

ij), (2)

xt+1
ij = xt

ij + vt+1
ij , (3)

where t is the current iteration number, j is the component of the dimension k, i is the particle index,
(c1, c2) are the acceleration coefficients to adjust the weight between components, ω is the inertia
weight in the range of (0, 1), and (r1, r2) are two random factors ranged in (0, 1). According to the
equations above, each particle updates its velocity by following its pBest and gBest in order to produce
a movement towards a better region in the search space.

5.2. The PEG Strategy

5.2.1. The Interaction and Constraint Maps Generation Algorithm

In PEG, fitness factor values that indicate the degree of optimization are used to choose best
particles. Hence, in order to compute the fitness factor values of particles conveniently, effective data
structures are necessary. We propose Combinatorial Interaction Maps (CIMs) and Sequence Interaction
Maps (SIMs) as the structures that are used to choose best particles. Similarly, to verify the constraint
validity of each particle, effective data structures are also necessary. We propose Combinatorial
Constraint Maps (CCMs) and Sequence Constraint Maps (SCMs) as the structures that are used to
validate constraint validity. The “Map” here is an associative container in C++ that stores elements
formed by a combination of a key value and a mapped value, following a specific order. Algorithm 1
shows the corresponding generation algorithm of them. The algorithm receives tc, ts, v1, v2, · · · , vk and
C as inputs, and generates CCM, CIM, SCM and SIM one by one.

Algorithm 1 The interaction and constraint maps generation algorithm.

Input: tc, ts, v1, v2, · · · , vk, C
Output: CCM, CIM, SCM and SIM

1: generate CCM;
2: generate CIM based on CCM;
3: generate SCM;
4: generate SIM based on SCM;

Figure 1 shows an example of generating CCM, CIM, SCM and SIM from ts = tc = 2, v1 = v2 = 2,
v3 = 3 and C = {EG(¬A = 0∨¬B = 0), EG(C = 0→ ¬EX(C = 2))}. Here, the at-most and at-least
constraints are omitted, as they are only used for constraint validity verification. The keys of the four
maps are factors or factor combinations, and the values mapped to the keys are a set of values of
factors. The values in combinatorial maps represent factor value combinations, whereas the values in
sequence maps represent factor value sequences. In the algorithm, the CCM is generated first. Then all
the value combinations of each tc factors are generated in CIM. When CIM is generated, each factor
value combination that appears in CCM must be removed from it. For example, the value combination
{A = 0, B = 0} is a constraint in CCM. Thus, it must not appear in CIM. The generation process of
SCM and SIM is similar with the generation of CCM and CIM. The SCM is generated first. Then, all
the value sequences with length ts of each factor are generated in SIM. When SIM is generated, each
value sequence that appears in SCM must be removed from it.

5.2.2. The ECMCA Generation Algorithm

The ECMCA generation algorithm is performed immediately after the generation of CCM, CIM,
SCM and SIM. The use of CIM and SIM is essential for computing fitness factor values. The use of
CCM and SCM is essential for validating the constraint validity of test cases. The main idea of the
algorithm is that the algorithm makes fully use of the ability of seeking excellent solutions to generate

Symmetry 2018, 10, 146 13 of 26

good results. As usually constraints that are related to sequences are very complex, this algorithm
supports three kinds of most common constraints. The three kinds of common constraints are: 1© initial
value constraints of factors that are presented by EX1; 2© combinatorial value constraints among factors;
and 3©value transition constraints of any factor. The algorithm is shown as Algorithm 2.

CCM

A B

0 0

key

value

CIM

A B

0 1

1 0

1 1

A C

0 0

0 1

0 2

B C

1 0

1 1

1 2

0 0

0 1

0 2

1 0

1 1

1 2

C

0 2

SIM

A

0 1

1 0

1 1

B

0 0

0 1

C

1 0

1 1

0 0

0 1

1 0

1 1

1 2

SCM

0 0

Figure 1. The generation of CCM, CIM, SCM and SIM.

Algorithm 2 The ECMCA generation algorithm.

Input: tc, ts, v1, v2, · · · , vk, C; c1, c2, ω, R, P; CCM, CIM, SCM and SIM
Output: ECMCA

1: initialize the SAT solver;
2: if there is EX[1] in C then

3: generate a test and update CIM and SIM;
4: end if
5: while TRUE do

6: initialize the population with a population size of P;
7: for R repetitions do

8: update the population;
9: disturb the population;

10: end for
11: if the fitness factor value of gBest > 0 then

12: generate a test and update CIM and SIM;
13: else

14: if SCM = ∅ then

15: if SIM = ∅ and CIM = ∅ then

16: break while;
17: end if
18: else

19: if SIM = ∅ then

20: break while;
21: end if
22: end if
23: generate a test with the searching strategy and update CIM and SIM;
24: end if
25: end while

The algorithm is explained in the following aspects.

(1) Processing of the initial value constraint

When an SUT has an initial value constraint that is presented by EX[1], then an initial test case in
which each factor is assigned its initial value is generated. Then, the factor value combinations

Symmetry 2018, 10, 146 14 of 26

and value sequences of factors covered in the test case are removed from CIM and SIM in line 3.
As the generated test case is the first test case in ECMCA, only if ts = 1, it covers value sequences
in SIM. Otherwise, it does not cover value sequences in SIM.

(2) Population initialization

The ECMCA generation algorithm is initialized by generating a random population position
space and a random population velocity space for each particle in line 6. The position of each
particle takes the form of a k-dimensional vector, X0

i = (x0
i1, x0

i2, · · · , x0
ik), where each dimension

x0
ij represents a random integer number from the value set [0, vj − 1]. The velocity of each particle

also takes the form of a k-dimensional vector, V0
i = (v0

i1, v0
i2, · · · , v0

ik), where each dimension v0
ij is

also simultaneously initialized with a random integer number between −(vj − 1) and (vj − 1).
(3) Population update

During the iteration of the algorithm, velocities and positions of the population particles are
updated in line 8 according to Equations 2 and 3. After each iteration, if xt+1

ij is out of the

range [0, vj − 1], then xt+1
ij is updated with the previous value xt

ij. If vt+1
ij is out of the range

[−(vj − 1), (vj − 1)], then vt+1
ij is updated with a random value in the range. Each particle

updates its pBest with the solution space where it has its largest fitness factor value thus far. The
global best solution gBest is updated with the particle that has the larger fitness factor value
and satisfies the constraint validity. We use the SAT solver zChaff to verify the combinatorial
constraint validity. The SAT solver is initialized in line 1 and the at-most and at-least constraints
are generated as the initialization parameters of the SAT solver. The value transition constraints
of factors are verified by comparing with SCM.

(4) Fitness factor value

Fitness factor values are used with PSO in a greedy fashion to identify better particles. A fitness
factor value of a test case is the sum of the number of factor value combinations with size tc

covered in CIM and the number of value sequences of each factor covered in SIM composed
with generated ts − 1 test cases.

(5) Population disturbance

To guarantee the avoidance of the local optimum, after each iteration, one random position in Xt
i

is updated by a random value in line 9. We denote the new particle as Xt∗
i . If the fitness factor

value of Xt∗
i is larger than that of Xt

i , replace Xt
i with Xt∗

i .
(6) Searching strategy

After the iteration progresses, if the fitness factor value of gBest is ≤ 0, a searching strategy
is applied in line 23. At this time, almost a large proportion of factor value combinations are
covered and some value sequences of factors may be left. To find the remaining value sequences
of factors as early as possible, we present a searching strategy. In the searching strategy, a new
test case is constructed one by one factor value to guarantee that it has the potential to cover as
many as value sequences of factors or to help the subsequent test case to cover value sequences
of factors. The searching strategy is divided into two situations. The first situation is to judge
each value of the last generated test case whether belongs to a value sequence uncovered in SIM.
If there exists a value sequence in SIM, the value must be guaranteed that it is not the last value
in the value sequence. Then, the subsequent value is inserted into a new test case, such that
the value a in the last generated test case belongs to a uncovered value sequence (a, b) and the
value b is inserted into the new test case. If the first situation does not exist, a second situation is
performed. A schematic shown in Figure 2 is used to illustrate it. The precondition of the second
condition is that each value can reach other values for each factor. Given a generated value xij
in a last generated test case, a traversal hierarchy is constructed based on the values that can
be reached. Suppose that (vj − 1, vj − 2) is the uncovered value sequence. A path (xij, 0, vj − 1)

Symmetry 2018, 10, 146 15 of 26

can reach vj − 1, and then the value 0 is inserted into the new test case. This process guarantees
that, if the fitness factor value of gBest is still less than 0 after the next iteration progress, then
the first situation of the searching strategy works. It should be noted that when a new value is
inserted into the new test case, the new test case’s constraint validity must be satisfied, otherwise
a random value that can satisfy the constraint validity is inserted. The searching strategy can
guarantee that at least one factor can be updated towards the direction, where the fitness factor
value of gBest is greater than 0.

(7) End condition

Whether SCM is empty, the algorithm has two end conditions. If SCM is empty, the algorithm is
terminated when all the value sequences of factors and factor value combinations are covered
in lines from 15 to 17. If SCM is not empty, the algorithm is terminated only when all the value
sequences of factors are covered in lines from 19 to 21. The reason is that, owning to the existence
of the constraints of value sequences, some factor value combinations can perhaps not appear in
one test case. For example, an SUT has factors A and B, and each factor has values 0, 1 and 2.
The input value sequence of each factor is restricted in circles from 0 to 2. Thus, there are only
three value combinations (A = 0, B = 0), (A = 1, B = 1) and (A = 2, B = 2) that exist. When
tc = 2, CIM has 3× 3 = 9 value combinations and six of them can never be covered. Therefore,
to avoid an infinite loop, the end condition is only SIM = ∅.

xij

0 1 ... vj-2

0 1 ... vj-1

Figure 2. A schematic of the second situation of the searching strategy.

6. Evaluation Methods of Extended Covering Arrays

6.1. Verification of Constraints

An important problem is the verification of constraints for constructed extended covering arrays.
The extended covering arrays that are verified to be valid can be used. According to the two types of
constraints, the verification is also divided into two types. One is the verification of constraints in a
test case and the other is the verification of constraints among test cases.

6.1.1. Verification of Constraints in a Test Case

The constraints in a test case can be presented in conjunctive normal form and CCTL, such as
(¬subscript = true ∨ ¬superscript = true) and EG(¬subscript = true ∨ ¬superscript = true).
The constraint verification is essentially the boolean satisfiability problem, irrespective of which
presentation is used. There are two types of tools according to the presentations. For the conjunctive
normal form, the verification tools are zChaff [49], Simple Theorem Prover (STP) [50], and MiniSAT [51].
For the CCTL form, the verification tools are Spin [52] and NuSMV [53]. The constraints of factor value
combinations, the at-least and at-most constraints are all the inputs of the tools. The tools provide a
“true” or “false” result for each test case at the end of the verification process.

Symmetry 2018, 10, 146 16 of 26

6.1.2. Verification of Constraints among Test Cases

Although there is not an effective tool that can be used for CCTL, some formulas can be used for
directing the verification of constraints among test cases. For different absolute constraints, different
verification measures should be taken. Given m, n ∈ N+ and m ≤ n,

1© ECMCA |= EX[n]φ

Verify whether the nth test case ECMCA[n, :] satisfies φ directly.
2© ECMCA |= EG[m,n]φ

We can use the recursion formula EG[m,n]φ = φ∧ EXEG[m−1,n−1]φ to verify EG[m,n]φ. First, verify
whether the first test case is φ. Second, regard the next test case as the first test case as the EX.
Then, execute the verification process to verify EG[m−1,n−1]φ by repeating the process above.

3© ECMCA |= E(φU[m,n]ψ)

First, use the recursion formula E[φU[m,n]ψ] = φ ∧ EXE[φU[m−1,n−1]ψ] to transform E[φU[m,n]ψ]

to E[φU[1,n−m]ψ] by repeating the process. Then, verify E[φU[1,n−m]ψ] with the recursion formula
E[φU[1,n−m]ψ] = ψ ∨ (φ ∧ EXE[φU[1,n−m−1]ψ]).

4© ECMCA |= EF[m,n]φ

Verify whether there exists a positive integer i with m ≤ i ≤ n that makes that the ith test case
holds φ.

To verify the relative constraints, the constraints need to be split into two parts according to
the logical operator “→”. Then, verify the condition on the left of “→” first. If the condition holds,
verify the constraint on the right of the operator “→”. Once there is one step in the verification process
where the ECMCA violates the constraints, the ECMCA is invalid.

6.2. Coverage Measurement

Given a test suite, we expect that the test suite covers all the value combinations among factors
and value sequences of each factor with a size that is as small as possible. We can use Formula (4) to
calculate the coverage, where the symbol "Covered" indicates the number of targets that have already
been covered and "Total" indicates the total targets to be covered in theory:

Coverage =
Covered

Total
× 100%. (4)

Consider the ECA(n; tc, ts, k, v). It has (k
tc
)vtc factor value combinations to be covered and (v

ts
)ts!k

value sequences with size ts. Thus, there are (k
tc
)vtc + (v

ts
)ts!k targets to be covered. When considering

the constraints, the number of targets to be covered should be less than the targets without
considering constraints.

Because coverage measurement is essentially pattern analysis, which has been widely used
in many domains [54], we define the coverage measurement with combinatorial coverage and
sequence coverage.

6.2.1. Measurement of Combinatorial Coverage

Given a test suite TS and an interaction I = {(Pi1 , ai1), (Pi2 , ai2), · · · , (Pitc , aitc)} with 1 ≤ ij ≤ k,
1 ≤ j ≤ tc, δtc : TS 7→ (δtc

I (TS))I∈Htc
∈ N0 indicates the number of tc-way combinations:

δtc
I (TS) = {|r : TS[r, ij] = aij , 1 ≤ ij ≤ k, 1 ≤ j ≤ tc|}, I ∈ Htc . (5)

Symmetry 2018, 10, 146 17 of 26

δtc
I (TS) indicates the number of interactions covered in TS, and Htc is the set of all interactions

with 0 ≤ δtc
I (TS) ≤ n. Γc ≡ 1 is a characteristic function used for comparing with δtc

I :

θtc
I (TS) = min{δtc

I (TS), Γc}. (6)

Another form of θtc
I (TS) is the following:

θtc
I (TS) =

{
0, δtc

I (TS) < Γc,
1, δtc

I (TS) ≥ Γc.
(7)

The kernel function based on θtc
I (TS) is as follows:

κtc(TS, TS) =< θtc
I (TS), θtc

I (TS) >= ∑
I∈Htc

(θtc
I (TS))

2
. (8)

There is 0 ≤ κtc(TS, TS) ≤ |Htc | for the kernel function. If there are no constraints, then 0 ≤
κtc(TS, TS) ≤ |Htc | = (k

tc
)vtc . Thus, the formula to calculate combinatorial coverage is as follows:

Combinatorial coverage =
κtc(TS, TS)
|Htc |

× 100% =

∑
I∈Htc

(θtc
I (TS))

2

(k
tc
)vtc

× 100%. (9)

6.2.2. Measurement of Sequence Coverage

Given a test suite TS and for each sequence Si = {ei
1, ei

2, · · · , ei
ts
} (ei

j ∈ [0, vi − 1], 1 ≤ j ≤ ts)

of factor Pi, the mapping δts : TS 7→ (δts
Si (TS))Si∈Hi

ts
∈ N0 indicates the number of sequences from

column i in TS:
δts

Si (TS) = {|{(S1, S2) : TS[:, i] = S1, Si, S2}|}, Si ∈ Hi
ts . (10)

The sequence TS[:, i] is viewed as a series of three subsequences S1, Si and S2. [0, vi − 1] is the
value set of factor Pi, and Hi

ts
= [0, vi − 1]ts is the set of all the sequences with length ts. Γs ≡ 1 is a

characteristic function used for comparing with δts
Si :

θts
Si (TS) = min{δts

Si , Γs}. (11)

Another form of θts
Si (TS) is as follows:

θts
Si (TS) =

{
0, δts

Si < Γs,
1, δts

Si ≥ Γs.
(12)

The kernel function based on θts
Si (TS) is as follows:

κi
ts(TS, TS) =< θts

Si (TS), θts
Si (TS) >= ∑

Si∈Hi
ts

(θts
Si (TS))

2
. (13)

There is 0 ≤ κi
ts
(TS, TS) ≤ |Hi

ts
| for the kernel function. If there are no constraints, then

0 ≤ κi
ts
(TS, TS) ≤ |Hi

ts
| = (v

ts
)ts!. Thus, the formula to calculate sequence coverage is the following:

Sequence coverage =

k
∑

i=1
κi

ts
(TS, TS)

k
∑

i=1
|Hi

ts
|
× 100% =

k
∑

i=1
∑

Si∈Hi
ts

(θts
Si (TS))

2

k(v
ts
)ts!

× 100%. (14)

Symmetry 2018, 10, 146 18 of 26

7. Experiments

This section describes the experimental results of PEG performed on a benchmark of SUTs. Then,
more complex constraints that PEG can not support are discussed.

7.1. Experimental Results of PEG

PEG is developed in the environment that consists of a desktop computer with Windows 7 (Dell,
Xiamen, China), 2.6 GHz Core 2 Duo CPU, 2 GB of RAM. It is coded and implemented in Qt Creator
4.8.1 (C++) (Digia, Helsinki, Finland).

For the experiments, we use a benchmark with 12 different SUTs. Six of them are from Ref. [12].
They are the “Keyboard”, the “Microwave”, the “Autoradio”, the “Coffee Machine”, the “Elevator”
and the “Transmission”. The reason why we choose them is that they have more than one factor and
for each factor of them each value can reach to others. The “text effect“ application of “Microsoft Word”
is also chosen as an SUT. Besides the seven real world SUTs, we supplement five SUTs to increase the
configuration diversity of SUTs. The details of the SUTs are given in Table 6. The configurations of
factors and factor values are listed in the third column. Three kind of constraints are listed from the
fourth column to the sixth column.

Table 6. General characteristics of systems under test.

SUT Name Configuration
Constraints

Combination Constraints Sequence Constraints Initial Value Constraints

1 text effect 27 3 0 0
2 Keyboard 22 0 0 2
3 Microwave 714121 0 33 3
4 Autoradio 1112131 0 84 3
5 Coffee Machine 9132 0 63 3
6 Elevator 51214121 0 31 4
7 Transmission 4131 0 15 2
8 55 0 0 0
9 66 0 0 0
10 88 0 0 0
11 32422351 0 0 0
12 4656 0 0 0

As PEG depends on some degree of randomness, it is non-deterministic. Thus, we performed
30 independent runs per SUT/coverage criterion for a statistical analysis. We use PEG to generate
tc = ts = 2 coverage and tc ≥ 2, ts = 3 coverage, respectively. The results are shown in Tables 7 and 8.
As SUT2 and SUT7 have the configuration of two factors, they can not have test suites with tc > 2
coverage. Thus we use the asterisks “*” to mark the results which are performed with tc = 2 coverage
in Table 8. To demonstrate the performance of PEG, best generated sizes, average generated sizes,
best generated time and average generated time are presented for each SUT. The average coverage
of targets are also reported corresponding to factor value combinations with tc coverage and value
sequences of each factor with ts coverage.

Generally, the generated time increases as the number of factors and factor values grows. However,
the generated time of SUT1 seems longer than other SUTs. This is mainly because much time is wasted
in the calls of the SAT solver under combination constraints. Based on the results obtained, PEG
can generate satisfactory results with total coverage when SUTs have no constraints related to value
sequences of factors. When SUTs have the constraints related to value sequences of factors, PEG can
cover all the target value sequences with covering as many factor value combinations as possible.
Overall, the results show that PEG is feasible and useful to generate ECMCAs.

Symmetry 2018, 10, 146 19 of 26

Table 7. Results of PEG with tc = 2 and ts = 2.

SUT Size Time (Second) Factor Value Combinations Value Sequences of Factors

Best Size Average Size Best Time Average Time |CIM| Average Covered |SIM| Covered

1 8 9.2 39.21 124.46 81 81 28 28
2 5 5.9 0.23 0.28 4 4 8 8
3 45 47 3.41 3.54 50 48.9 36 36
4 82 84.4 6.25 6.4 61 58.1 50 50
5 60 63.7 4.53 4.82 63 58.5 36 36
6 10 13.3 1.13 1.49 60 47.1 18 18
7 7 9.4 0.2 0.28 12 5.8 10 10
8 36 38.6 3.24 3.48 250 250 125 125
9 57 58.7 6.75 7.04 540 540 216 216

10 110 113.2 21.81 22.38 1792 1792 512 512
11 30 31.9 10.27 11.07 269 269 87 87
12 47 48.5 33.33 34.21 1335 1335 246 246

Table 8. Results of PEG with tc ≥ 2 and ts = 3.

SUT Size Time (Second) Factor Value Combinations Value Sequences of Factors

Best Size Average Size Best Time Average Time |CIM| Average Covered |SIM| Covered

1 20 22.4 509.66 995.7 250 250 56 56
2 11 13.2 2.56 0.67 4 * 4 * 16 16
3 175 183.6 12.62 13.09 56 55.3 113 113
4 353 356 25.08 25.54 66 61.6 173 173
5 123 142.7 8.8 10.2 81 65.5 77 77
6 29 34.5 3.3 4.03 116 77.6 28 28
7 13 14.7 0.42 0.48 12 * 6 * 16 16
8 195 199.2 22.49 23.15 1250 1250 625 625
9 374 383.1 74.34 76.14 4320 4320 1296 1296

10 1088 1096.7 578.37 587.72 28,672 28,672 4096 4096
11 140 148 102.12 107.33 1627 1627 331 331
12 285 291.1 740.88 766.24 19,980 19,980 1134 1134

* tc = 2.

7.2. Discussion

As everyone knows, a fundamental problem with software testing is that testing under all
combinations of inputs and preconditions is not feasible, even with a simple product. The SUTs with
test cases to be performed contiguously still face this problem. ECAs attempt to use as few test cases
as possible to cover as many factor value combinations and value sequences of factors as possible.
The purpose of ECAs is to find more system defects. Compared with the manual test suite generation,
ECAs can design more comprehensive test suites. ECAs fill the blank of the test case generation
method for SUTs with test case to be performed contiguously and are of great significance to ensure
the reliability and quality of SUTs. ECAs will be widely applied to many fields with high reliability
requirement, such as aviation, spaceflight and weapon industry. In these industries, most of the input
instructions of components are messages that consist of some relevant elements and are needed to
be performed contiguously. ECAs are very suitable for the element value combinations and value
sequences of elements in the messages.

Take an input instruction of a radar as an example. A high coverage test is needed to ensure the
radar works normally under various working conditions. Table 9 shows the instruction of the radar
under test. The instruction needs to be input contiguously to control its working mode. When scanning
mode is “fixed point”, the scanning speed and the sector scan scope needs to be assigned invalid
values, and the scan center needs to be assigned a degree in the range of [0, 360]. When scanning mode
is “sector scan”, the scanning speed needs to be assigned a valid speed, the sector scan scope needs
to be assigned a valid scan scope, and the scan center needs to be assigned a degree in the range of
[0, 360]. When scanning mode is “circular scan”, the scanning speed needs to be assigned a valid speed,
the sector scan scope and the scan center needs to be assigned an invalid value. ECAs are feasible to be

Symmetry 2018, 10, 146 20 of 26

used as the test suites, and ECAs can improve the test coverage dramatically compared to design test
suites manually. There is a large amount of input messages in the industry like the previous instruction
and high coverage test suites are needed for those messages. Therefore, we believe that ECAs have a
broad application prospect.

Table 9. An instruction of a radar under test.

Scanning Mode Scanning Speed Sector Scan Scope Scan Center

1 fixed point invalid value invalid value invalid value
2 sector scan 1 degree per second 2 ∼ 90 degree a degree in [0, 360]
3 circular scan 2 degree per second −2 ∼ −90 degree
4 5 degree per second 0 ∼ 275 degree
5 10 degree per second 0 ∼ −275 degree
6 12 degree per second

However, PEG still needs to be improved in practice for more complex contraints. The SUTs
whose test cases need to be performed contiguously usually have the three kinds of constraints that are
the prerequisites of PEG. More complex constraints may be exist though they have hardly been seen in
real world systems, such as the constraints between factors values from one test step to another [32].
Refs. [12,32] have put forward the requirement of generating test suites under complex constraints
and described some complex constraints as follows:

1. If value ci from factor C is selected in test case tn, then value cj from factor C must be selected in
the succeeding test step tn+1.

2. If C = ci in tn, then C = cj in a later tn+m.
3. If C = ci in tn, then C = cj in all tn+1 to tn+m.
4. If C = ci in tn, then C = cj in all tn+m to tn+o.
5. If C = ci or B = bk in tn, then D 6= d in a later tn+m.

These complex constraints can all be presented in CCTL as follows. As they do not give the
configurations of factors and factor values, we could not construct their test suites:

1. EG(EX[n](C = ci)→ EX[n+1](C = cj)),
2. EG(EX[n](C = ci)→ EX[n+m](C = cj)),
3. EG(EX[n](C = ci)→ EXEG[1,m](C = cj)),
4. EG(EX[n](C = ci)→ EX[m−1]EG[1,o−m](C = cj)),
5. EG(EX[n](C = ci ∨ B = bk)→ ¬EX[n+m](D = dj)).

Ref. [33] has presented a simplified real world system with complex constraints that is a simplified
controller of a car. It has two boolean inputs that represent the user’s decision to accelerate or brake.
Upon acceleration, the car starts moving, with either a slow or fast velocity. Upon braking, the car
immediately stops. The velocity is also a factor of the example. Figure 3 depicts the values of the three
factors that impact the car controller.

st

low

Car Controller

accelerate brake velocity

true false stoptrue false slow fast

Figure 3. The factor values of the simplified car controller presented as a classification tree.

Symmetry 2018, 10, 146 21 of 26

As to pedal the brake and accelerator at the same time should be avoided when driving, the value
combination of “accelerate = true” and “brake = true” is a constraint for the car controller. This
value combination constraint can be denoted as EG(¬accelerate = true ∨ ¬brake = true). For each
factor, there are also at-least and at-most constraints. Figure 4 shows the states and the transitions
of states [33]. A constraint that can be denoted as EGEX[1](accelerate = f alse ∧ brake = f alse ∧
velocity = stop) restricts the first state S0 of the car controller. Figure 5 shows the value transitions
of each factor. When “velocity = stop” holds in a test case, “velocity=fast” cannot occur in the
next test case. The constraint is EG(velocity = stop → ¬EX(velocity = f ast)). When “velocity
= slow” holds in a test case, “velocity=slow” cannot occur in the next test case. The constraint is
EG(velocity = slow → ¬EX(velocity = slow)). Integrated with seven other complex constraints
that are given in [33], all the constraints consist of the constraint set C in ECMCA(n; tc, ts, 2231, C)
as follows:

C = {EG(¬accelerate = true ∨ ¬brake = true)

EG(¬accelerate = true ∨ ¬accelerate = f alse)

EG(accelerate = true ∨ accelerate = f alse)

EG(¬brake = true ∨ ¬brake = f alse)

EG(brake = true ∨ brake = f alse)

EG(¬velocity = stop ∨ ¬velocity = slow)

EG(¬velocity = f ast ∨ ¬velocity = slow)

EG(¬velocity = f ast ∨ ¬velocity = stop)

EG(velocity = f ast ∨ velocity = stop ∨ velocity = slow)

EGEX[1](accelerate = f alse ∨ brake = f alse ∨ velocity = stop)

EG(velocity = stop→ ¬EX(velocity = f ast))

EG(velocity = slow→ ¬EX(velocity = slow))

EG(accelerate = true ∧ brake = f alse ∧ velocity = stop→ EX(velocity = slow))

EG(accelerate = true ∧ brake = f alse ∧ velocity = slow→ EX(velocity = f ast))

EG(accelerate = true ∧ brake = f alse ∧ velocity = f ast→ EX(velocity = f ast))

EG(accelerate = f alse ∧ brake = f alse ∧ velocity = f ast→ EX(velocity = slow))

EG(accelerate = f alse ∧ brake = f alse ∧ velocity = slow→ EX(velocity = stop))

EG(accelerate = f alse ∧ brake = f alse ∧ velocity = stop→ EX(velocity = stop))

EG(brake = true→ EX(velocity = stop))}.

S0

!accelerate/stop

S1

S2

accelerate/fast

!accelerate/stop

brake/stop

brake/stop

accelerate/slow !accelerate/slow

accelerate/fast

brake/stop

Figure 4. The state transitions of the car controller.

Symmetry 2018, 10, 146 22 of 26

true

false

true

false

stop

fast

slow

accelerate brake velocity

Figure 5. The value transitions of each factor.

The ECMCA(12; 2, 2, 2231, C) of the car controller presented in Table 10 is generated by PEG
without considering complex constraints. The combinatorial coverage of this ECMCA(12; 2, 2, 2231, C)

is κ1(ECMCA(12;2,2,2231,C),ECMCA(12;2,2,2231,C))
|H2|

× 100% = 15
16 = 93.75%, as the combination

{accelerate=true, brake=true} is a constraint that is forbidden to appear. The sequence coverage of

this ECMCA(12; 2, 2, 2231, C) is

3
∑

i=1
κi

2(ECMCA(12;2,2,2231,C),ECMCA(12;2,2,2231,C))

3
∑

i=1
|Hi

2|
× 100% = 15

17 × 100% =

88.24%, as "velocity=stop" → "velocity=fast" and "velocity=slow" → "velocity=slow" are value
sequence constraints. As PEG cannot handle complex constraints, the ECMCA(12; 2, 2, 2231, C)
in Table 10 violates complex constraints. The first and second test cases violate the constraint
EG(accelerate = f alse∧ brake = f alse∧ velocity = stop→ EX(velocity = stop)), as when the first test
is (accelerate=false, brake=false, velocity=stop), the second test case violates the EX(velocity = stop).
In the same way, the second and third test cases violate EG(brake = true → EX(velocity = stop)).
The third and fourth test cases violate EG(accelerate = true ∧ brake = f alse ∧ velocity = f ast →
EX(velocity = f ast)). The fourth and fifth test cases violate EG(accelerate = true ∧ brake =

f alse ∧ velocity = slow → EX(velocity = f ast)). The seventh and eighth test cases violate
EG(brake = true → EX(velocity = stop)). The ninth and tenth test cases violate EG(accelerate =

f alse ∧ brake = f alse ∧ velocity = stop → EX(velocity = stop)). The tenth and eleventh test cases
violate EG(accelerate = f alse∧ brake = f alse∧ velocity = slow→ EX(velocity = stop)). The eleventh
and twelfth test case violate EG(accelerate = f alse∧ brake = f alse∧ velocity = f ast→ EX(velocity =

slow)). To illustrate an ECMCA that satisfies the complex constraints, an ECMCA(12; 2, 2, 2231, C)
is constructed manually as shown in Table 11. As the configuration is simple, we can construct
it manually. The ECMCA shown in Table 11 satisfies all the constraints and covers all the value
combinations and value sequences of each factors.

Through the analysis above, though PEG can produce satisfactory EMCAs, PEG still has some
limitations to generate ECMCAs for SUTs with complex constraints. The emerging complex constraints
can be specified by CCTL actually. It is certain that more real world SUTs with complex constraints are
needed and analyzed, so that complex constraints can be classified and handled reasonably.

Table 10. An ECMCA(12; 2, 2, 2231, C) generated by PEG without complex constraints.

Accelerate Brake Velocity Accelerate Brake Velocity

1 false false stop 7 false true slow
2 false true slow 8 false true fast
3 true false fast 9 false false stop
4 true false slow 10 false false slow
5 false true stop 11 false false fast
6 true false stop 12 false false fast

Symmetry 2018, 10, 146 23 of 26

Table 11. An ECMCA(12; 2, 2, 2231, C) generated manually.

Accelerate Brake Velocity Accelerate Brake Velocity

1 false false stop 7 false true fast
2 false true stop 8 true false stop
3 false true stop 9 true false slow
4 true false stop 10 false false fast
5 true false slow 11 false true slow
6 true false fast 12 false false stop

8. Conclusions

In this paper, we have proposed extended covering arrays with t-way combinatorial coverage and
t-wise sequence coverage for SUTs whose test cases need to be performed contiguously. In extended
covering arrays, we have introduced the clocked computation tree logic based formal specification
method for specifying constraints. A Particle swarm optimization based Extended covering array
Generator (PEG) that can produce feasible and useful ECMCAs with common constraints has also been
presented. The performance of PEG is assessed considering benchmark experiments. For generated
test suites, the method for verifying constraints’ validity has been presented corresponding to the
constraint specification method. Moreover, kernel functions that can measure the coverage of generated
test suites have be given. Compared with the manual test suite generation, ECAs can design more
comprehensive test suites, which improves the possibility of finding system defects. In a word, ECAs
fill the blank of the test case generation method for SUTs with test case to be performed contiguously
and are of great significance to ensure the reliability and quality of SUTs. Though some deficiencies
exists, we still believe that ECAs can have a broad application prospect through continuous progress
in practice.

As part of our future work, we will first optimise PEG to cover more possible value combinations
under the constraints of value sequences, then try to find real world SUTs with complex constraints
and extend PEG to support them. Compared to the fixed strength combinatorial testing, the variable
strength combinatorial testing usually considers the actual interaction relationship in software
sufficiently. Therefore, ECAs with variable strength are also worthy of study.

Author Contributions: The authors contributed equally to this work and wrote this paper together.

Acknowledgments: The authors also gratefully acknowledge the helpful comments and suggestions of the
reviewers, which have improved the presentation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ferrer, J.; Kruse, P.M.; Chicano, F.; Alba, E. Search based algorithms for test sequence generation in functional
testing. Inf. Softw. Technol. 2014, 58, 419–432. [CrossRef]

2. Tassey, G. The economic impacts of inadequate infrastructure for software testing. Natl. Inst. Stand. Technol.
2002, 15, 125.

3. Kacker, R.N.; Kuhn, D.R.; Lei, Y.; Lawrence, J.F. Combinatorial testing for software: An adaptation of design
of experiments. Measurement 2013, 46, 3745–3752. [CrossRef]

4. Nie, C.; Leung, H. A survey of combinatorial testing. ACM Comput. Surv. 2011, 43, 33–63. [CrossRef]
5. Kuhn, D.R.; Kacker, R.N.; Lei, Y. Practical combinatorial testing. Nist Spec. Publ. 2010, 10, 19–23.
6. Kuhn, D.R.; Bryce, R.; Duan, F.; Ghandehari, L.S.; Lei, Y.; Kacker, R.N. Combinatorial testing: Theory and

practice. Adv. Comput. 2015, 99, 1–66.
7. Cohen, D.M.; Dalal, S.R.; Fredman, M.L.; Patton, G.C. The aetg system: An approach to testing based on

combinatorial design. IEEE Trans. Softw. Eng. 1997, 23, 437–444. [CrossRef]

http://dx.doi.org/10.1016/j.infsof.2014.07.014
http://dx.doi.org/10.1016/j.measurement.2013.02.021
http://dx.doi.org/10.1145/1883612.1883618
http://dx.doi.org/10.1109/32.605761

Symmetry 2018, 10, 146 24 of 26

8. Kuhn, D.R.; Wallace, D.R.; Gallo, A.M. Software fault interactions and implications for software testing.
IEEE Trans. Softw. Eng. 2004, 30, 418–421. [CrossRef]

9. Kuhn, D.R.; Kacker, R.N.; Lei, Y. Introduction to Combinatorial Testing; Springer: Berlin/Heidelberg,
Germany, 2013.

10. Farchi, E.; Segall, I.; Tzorefbrill, R.; Zlotnick, A. Combinatorial testing with order requirements.
In Proceedings of the IEEE Seventh International Conference on Software Testing, Verification and Validation
Workshops, Cleveland, OH, USA, 31 March–4 April 2014; pp. 118–127.

11. Zamli, K.Z.; Othman, R.R.; Zabil, M.H.M. On sequence based interaction testing. In Computers and Informatics;
Universiti Tenaga Nasional: Selangor, Malaysia, 2011; pp. 662–667.

12. Kruse, P.M. Enhanced Test Case Generation With the Classification Tree Method; Freie Universität Berlin: Berlin,
Germany, 2014.

13. Ahmed, B.S.; Zamli, K.Z.; Lim, C.P. Application of particle swarm optimization to uniform and variable
strength covering array construction. Appl. Soft Comput. 2012, 12, 1330–1347. [CrossRef]

14. Qnd. Available online: http://csrc.nist.gov/groups/SNS/acts/sequence_cov_arrays.html (accessed on
5 February 2018).

15. Kuhn, D.R.; Higdon, J.M.; Lawrence, J.F.; Kacker, R.N.; Lei, Y. Efficient methods for interoperability testing
using event sequences. Crosstalk J. Def. Softw. Eng. 2012, 25, 15–18.

16. Kuhn, D.R.; Higdon, J.M.; Lawrence, J.F.; Kacker, R.N.; Lei, Y. Combinatorial methods for event sequence
testing. In Proceedings of the IEEE Fifth International Conference on Software Testing, Verification and
Validation, Montreal, QC, Canada, 17–21 April 2012; pp. 601–609.

17. Yu, L.; Lei, Y.; Kacker, R.N.; Kuhn, D.R.; Lawrence, J. Efficient algorithms for t-way test sequence generation.
In Proceedings of the International Conference on Engineering of Complex Computer Systems, Paris, France,
18–20 July 2012; pp. 220–229.

18. Hazli, M.Z.M.; Zamli, K.Z.; Othman, R.R. Sequence-based interaction testing implementation using bees
algorithm. In Proceedings of the 2012 IEEE Symposium on Computers & Informatics (ISCI), Penang,
Malaysia, 18–20 March 2012; pp. 81–85.

19. Rahman, M.M.; Othman, R.R.; Ahmad, R.B.; Rahman, M.M. A meta heuristic search based t-way event
driven input sequence test case generator. Int. J. Simul. Syst. Sci. Technol. 2014, 15, 65–71.

20. Nguyen, C.D.; Marchetto, A.; Tonella, P. Combining model-based and combinatorial testing for effective
test case generation. In Proceedings of the International Symposium on Software Testing and Analysis,
Minneapolis, MN, USA, 15–20 July 2012; pp. 100–110.

21. Grochtmann, M.; Grimm, K. Classification trees for partition testing. Softw. Test.Verif. Reliab. 1993, 3, 63–82.
[CrossRef]

22. Conrad, M.; Fey, I.; Sadeghipour, S. Systematic model-based testing of embedded automotive software.
Electron. Notes Theor. Comput. Sci. 2005, 111, 13–26. [CrossRef]

23. Mattner, B. Testona. Available online: http://www.testona.net/ (accessed on 1 March 2018).
24. Razorcat, Tessy. Available online: http://www.razorcat.com/downloads-tessy.html (accessed on

1 March 2018).
25. Büchner, F. Test case design using the classification tree method. ATZelektronik Worldw. 2007, 2, 15–17.
26. Lamberg, K.; Beine, M.; Eschmann, M.; Otterbach, R.; Conrad, M.; Fey, I. Model-based testing of embedded

automotive software using mtest. J. Passeng. Carselectron. Electr. Syst. 2004, 7, 132–140.
27. Mjeda, A.; Mcelligott, P.; Ryan, K.; Thiel, S. Reactive Model-Based Testing Design for Embedded Automotive

Software; Sae International: Hongkong, China, 2008.
28. Conrad, M.; Krupp, A. An extension of the classification-tree method for embedded systems for the

description of events. Electron. Notes Theor. Comput. Sci. 2006, 164, 3–11. [CrossRef]
29. Kruse, P.M.; Nasarek, J.; Fernandez, N.C. Systematic testing of web applications with the classification

tree method. In Proceedings of the XVII Iberoamerican Conference on Software Engineering, Pucón, Chile,
23–25 April 2014; pp. 219–232.

30. Artho, C.V.; Biere, A.; Hagiya, M.; Platon, E.; Seidl, M.; Tanabe, Y.; Yamamoto, M. Modbat: A Model-based
API tester for event-driven systems, verification and testing. In Proc. 9th Haifa Verification Conference; Springer:
Cham, Switzerland, 2013; pp. 112–128.

http://dx.doi.org/10.1109/TSE.2004.24
http://dx.doi.org/10.1016/j.asoc.2011.11.029
http://csrc.nist.gov/groups/SNS/acts/sequence_cov_arrays.html
http://dx.doi.org/10.1002/stvr.4370030203
http://dx.doi.org/10.1016/j.entcs.2004.12.005
http://www.testona.net/
http://www.razorcat.com/downloads-tessy.html
http://dx.doi.org/10.1016/j.entcs.2006.09.002

Symmetry 2018, 10, 146 25 of 26

31. Anand, S.; Burke, E.K.; Chen, T.Y.; Clark, J.; Cohen, M.B.; Grieskamp, W.; Harman, M.; Harrold, M.J.;
Mcminn, P. An orchestrated survey on automated software test case generation. J. Syst. Softw. 2013, 86,
1978–2001. [CrossRef]

32. Kruse, P.M.; Wegener, J. Test sequence generation from classification trees. In Proceedings of the IEEE
Fifth International Conference on Software Testing, Verification and Validation, Montreal, QC, Canada,
17–21 April 2012; pp. 539–548.

33. Fraser, G.; Wotawa, F.; Ammann, P.E. Testing with model checkers: A survey. Softw. Test. Verif. Reliab. 2009,
19, 215–261. [CrossRef]

34. Schooljan, H. Test Sequence Validation and Generation Using Classification Trees; Delft University of Technology:
Delft, The Netherlands, 2013.

35. Krupp, A.; Mueller, W. Modelchecking von klassifikationsbaum-testsequenzen. In Proceedings of the
GI/ITG/GMM Workshop “Methoden und Beschreibungssprachen zur Modellierung und Verifikation von
Schaltungen und Systemen”, Munich, Germany, 5–7 April 2005.

36. Yilmaz, C.; Fouche, S.; Cohen, M.B.; Porter, A.; Demiroz, G.; Koc, U. Moving forward with combinatorial
interaction testing. Computer 2014, 47, 37–45. [CrossRef]

37. Yilmaz, C. Test case-aware combinatorial interaction testing. IEEE Trans. Softw. Eng. 2013, 39, 684–706.
[CrossRef]

38. Martínez, C.; Moura, L.; Panario, D.; Stevens, B. Locating errors using eLAs, covering arrays, and adaptive
testing algorithms. Siam J. Discret. Math. 2010, 23, 1776–1799. [CrossRef]

39. Sheng, Y.; Wei, C.; Jiang, S. Constraint test cases generation based on particle swarm optimization. Int. J.
Reliab. Qual. Saf. Eng. 2017, 24, 1750021-1–1750021-21. [CrossRef]

40. Alsewari, A.R.A.; Zamli, K.Z. Design and implementation of a harmony-search-based variable-strength
t-way testing strategy with constraints support. Inf. Softw. Technol. 2012, 54, 553–568. [CrossRef]

41. Yu, L.; Lei, Y.; Nourozborazjany, M.; Kacker, R.N.; Kuhn, D.R. An efficient algorithm for constraint handling
in combinatorial test generation. In Proceedings of the 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation, Luxembourg, Luxembourg, 18–22 March 2013; pp. 242–251.

42. Yu, L.; Duan, F.; Lei, Y.; Kacker, R.N. Constraint handling in combinatorial test generation using forbidden
tuples. In Proceedings of the IEEE Eighth International Conference on Software Testing, Verification and
Validation Workshops, Graz, Austria, 13–17 April 2015; pp. 1–9.

43. Danziger, P.; Mendelsohn, E.; Moura, L.; Stevens, B. Covering arrays avoiding forbidden edges.
Theor. Comput. Sci. 2008, 410, 5403–5414. [CrossRef]

44. Ruf, J.; Kropf, T. Symbolic model checking for a discrete clocked temporal logic with intervals. In Advances
in Hardware Design and Verification; Springer: Boston, MA, USA, 1997; pp. 146–163.

45. Ruf, J.; Kropf, T. Modeling and Checking Networks of Communicating Real-Time Processes. In Correct
Hardware Design and Verification Methods; Springer: Berlin/Heidelberg, Germany, 2008; pp. 267–279.

46. Flake, S.; Müller, W.; Ruf, J. Mapping of Structured English Sentences To Cctl Formulae; University of Paderborn:
Paderborn, Germany, 2000.

47. Cohen, M.B.; Dwyer, M.B.; Shi, J. Constructing interaction test suites for highly-configurable systems in the
presence of constraints: A greedy approach. IEEE Trans. Softw. Eng. 2008, 34, 633–650. [CrossRef]

48. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.

49. S. R. Group, Zchaff. Available online: https://www.princeton.edu/~chaff/zchaff.html (accessed on
20 February 2018).

50. Cadar, C.; Ganesh, V.; Pawlowski, P.M.; Dill, D.L.; Engler, D.R. Exe: Automatically generating inputs of
death. In ACM Transactions on Information and System Security (TISSEC); ACM: New York, NY, USA, 2008;
Volume 12, pp. 1–38.

51. Niklas, E.; Niklas, S. Minisat. Available online: http://minisat.se/ (accessed on 20 February 2018).
52. Spin. Available online: http://spinroot.com/spin/whatispin.html (accessed on 20 February 2018).

http://dx.doi.org/10.1016/j.jss.2013.02.061
http://dx.doi.org/10.1002/stvr.402
http://dx.doi.org/10.1109/MC.2013.408
http://dx.doi.org/10.1109/TSE.2012.65
http://dx.doi.org/10.1137/080730706
http://dx.doi.org/10.1142/S0218539317500218
http://dx.doi.org/10.1016/j.infsof.2012.01.002
http://dx.doi.org/10.1016/j.tcs.2009.07.057
http://dx.doi.org/10.1109/TSE.2008.50
https://www.princeton.edu/~chaff/zchaff.html
http://minisat.se/
http://spinroot.com/spin/whatispin.html

Symmetry 2018, 10, 146 26 of 26

53. Nusmv. Available online: http://nusmv.fbk.eu/ (accessed on 20 February 2018).
54. Last, M. Kernel Methods for Pattern Analysis; China Machine Press: Beijing, China, 2005.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://nusmv.fbk.eu/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Background
	Extended Covering Arrays
	ECAs
	ECCAs
	The Specification of Constraints in a Test Case
	The Specification of Constraints among Test Cases

	A Case Study

	The Construction of Extended Covering Arrays
	Particle Swarm Optimization
	The PEG Strategy
	The Interaction and Constraint Maps Generation Algorithm
	The ECMCA Generation Algorithm

	Evaluation Methods of Extended Covering Arrays
	Verification of Constraints
	Verification of Constraints in a Test Case
	Verification of Constraints among Test Cases

	Coverage Measurement
	Measurement of Combinatorial Coverage
	Measurement of Sequence Coverage

	Experiments
	Experimental Results of PEG
	Discussion

	Conclusions
	References

